

What will integrated circuits be at 2010?

- Microprocessors will have more than one billion logic transistors on a single chip
- Transistors and wires will have feature sizes less than a tenth of a micron
- The time to send a signal along an on-chip wire will become proportionally much greater than that needed for a transistor to switch
- Off-chip communication will become relatively slower
- Minimizing power dissipation and the resultant heat will be enormous, despite reduce voltage levels

What is FPGA?

- Field Programmable Gate Arrays
- Array of logic cells connected via routing channels
- Special I/O cells
- Logic cells are mainly LUT with associated registers
- Interconnection on SRAM basis or antifuse elements
- Architecting a FPGA
 - Performance
 - Density and capacity
 - Ease of use
 - In-system programmability and in-circuit reprogrammability

	/: ret a v	, г г		:1、7		-	~			
	/irtex	<-ヒ t	-am	IIY (UI Pa	11 L	S			
_				5						
Table 1: Virtex-E Field-Programmable Gate Array Family Members										
Device	System Gates	Logic Gates	CLB Array	Logic Cells	Differential I/O Pairs	User I/O	BlockRAM Bits	Distribute RAM Bits		
XCV50E	71,693	20,736	16 x 24	1,728	83	176	65,536	24,576		
XCV100E	128,236	32,400	20 x 30	2,700	83	196	81,920	38,400		
XCV200E	306,393	63,504	28 x 42	5,292	119	284	114,688	75,264		
XCV300E	411,955	82,944	32 x 48	6,912	137	316	131,072	98,304		
XCV400E	569,952	129,600	40 x 60	10,800	183	404	163,840	153,600		
XCV600E	985,882	186,624	48 x 72	15,552	247	512	294,912	221,184		
XCV1000E	1,569,178	331,776	64 x 96	27,648	281	660	393,216	393,216		
XCV1600E	2,188,742	419,904	72 x 108	34,992	344	724	589,824	497,664		
XCV2000E	2,541,952	518,400	80 x 120	43,200	344	804	655,360	614,400		
XCV2600E	3,263,755	685,584	92 x 138	57,132	344	804	753,664	812,544		
XCV3200E	4,074,387	876,096	104 x 156	73,008	344	804	851,968	1,038,336		

Virtex-II Pro												
Feature/Product	XC 2VP2	XC 2VP4	XC 2VP7	XC 2VP20	XC 2VP30	XC 2VP40	XC 2VP50	XC 2VP70	XC 2VP100	XC 2VP125		
EasyPath cost reduction	-	•	-	-	XCE 2VP30	XCE 2VP40	XCE 2VP50	XCE 2VP70	XCE 2VP100	XCE 2VP125		
Logic Cells	3,168	6,768	11,088	20,880	30,816	43,632	53,136	74,448	99,216	125,136		
Slices	1,408	3,008	4,928	9,280	13,696	19,392	23,616	33,088	44,096	55,616		
BRAM (Kbits)	216	504	792	1,584	2,448	3,456	4,176	5,904	7,992	10,008		
18x18 Multipliers	12	28	44	88	136	192	232	328	444	556		
Digital Clock Management Blocks	4	4	4	8	8	8	8	8	12	12		
Config (Mbits)	1.31	3.01	4.49	8.21	11.36	15.56	19.02	25.6	33.65	42.78		
PowerPC Processors	0	1	1	2	2	2	2	2	2	4		
Max Available Multi-Gigabit Transceivers*	4	4	8	8	8	12*	16*	20	20*	24*		
	204	348	396	564	644	804	852	996	1164	1200		

http://www.xilinx.com/products/tables/fpga.htm#v2p

Complexity of Logic Element

- How many inputs/outputs for the logic element?
- Does the basic logic element contain a FF? What type?
- Interconnect
 - How fast is it? Does it offer 'high speed' paths that cross the chip? How many of these?
 - Can I have on-chip tri-state busses?
 - How routable is the design? If 95% of the logic elements are used, can I route the design?
 - More routing means more routability, but less room for logic elements

- Binary operations over large operands
- Arithmetic operations over non standard length operands
- Encryption, decryption and compression
- Sequence and string matching
- Sorting
- Physical system simulation
- Video and image processing
- Relaxation methods
- Neural networks implementation
- DSP
- Genetic programming
- Dynamic programming

Conclusions: Reconfigurable Computing

- The use of reconfigurable logic attached to a processor is feasible
 - A number of ways in which the architecture of solutions to application problems might change in the future
- Reconfigurable hardware seems to have all the right characteristics to ensure its long-term position in the market
- Until arbitrary programs can be transformed into efficient hardware implementations, it will be necessary for programmers to think carefully about the "hardware programs" they write
- Hardware compilation and FPGA are key new ideas for research in computer architecture
- Reconfigurable hardware should be an increasingly important component in the future systems