

Two-steps Multipliers

In most algorithms the modular product is computed in two steps: polynomial multiplication followed by modular reduction. Let $A(x)$, $B(x)$ and $(x) \in G F\left(2^{m}\right)$ and $P(x)$ be the irreducible field generator polynomial.

- In order to compute the modular product we first obtain the product polynomial $C(x)$, of degree at most $2 m-2$, as

$$
\begin{aligned}
& \text { Polynomial product } \\
& 2 m-1 \text { coordinates }
\end{aligned} C(x)=A(x) B(x)=\left(\sum_{i=0}^{m-1} a_{i} \alpha^{i}\right)\left(\sum_{i=0}^{m-1} b_{i} \alpha^{i}\right)
$$

- Then, in the second step, a reduction operation is performed in order to obtain the $m-1$ degree polynomial $C^{\prime}(x)$ is defined as

> | Reduction step | |
| :--- | :--- |
| m coordinates | $C^{\prime}(x)=C(x) \bmod P(x)$ |

The field $F_{2}{ }^{m}$

Let us consider a finite field $F=G F\left(2^{m}\right)$ over $K=G F(2)$.

Elements of F : Polynomials of degree less than m, with coefficients in K, such that,

$$
\left\{a_{m-1} x^{m-1}+a_{m-2} x^{m-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0} \mid a_{i}=0 \text { or } 1\right\} .
$$

Fact: The field F has exactly $q-1=2^{m}-1$ nonzero elements plus the zero element.

${ }^{\text {CIINVESAV }}$ Generating polynomial and polynomial basis

The finite field $F=G F\left(2^{m}\right)$ is completely described by a monic irreducible polynomial, often called generating polynomial, of the form

$$
P(x)=x^{m}+k_{m-1} x^{m-1}+k_{m-2} x^{m-2}+\ldots+k_{1} x+k_{0}
$$

Where $k_{i} \in G F(2)$ for $i=0,1, \ldots, m-1$.
Let α be a primitive root of $P(x)$, i.e., $P(\alpha)=0$. Then, we define the polynomial or canonical basis of $G F\left(2^{m}\right)$ over $G F(2)$ using the primitive element α and its m first powers

$$
\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right\}
$$

which happen to be linearly independent over $G F(2)$.

Two-steps Multipliers

In most algorithms the modular product is computed in two steps: polynomial multiplication followed by modular reduction. Let $A(x)$, $B(x)$ and $(x) \in G F\left(2^{m}\right)$ and $P(x)$ be the irreducible field generator polynomial.

- In order to compute the modular product we first obtain the product polynomial $C(x)$, of degree at most $2 m-2$, as

$$
\begin{aligned}
& \text { Polynomial product } \\
& 2 m-1 \text { coordinates }
\end{aligned} C(x)=A(x) B(x)=\left(\sum_{i=0}^{m-1} a_{i} \alpha^{i}\right)\left(\sum_{i=0}^{m-1} b_{i} \alpha^{i}\right)
$$

- Then, in the second step, a reduction operation is performed in order to obtain the $m-1$ degree polynomial $C^{\prime}(x)$ is defined as

$$
\begin{aligned}
& \text { Reduction step } \\
& m \text { coordinates }
\end{aligned} \quad C^{\prime}(x)=C(x) \bmod P(x)
$$

Multipliers performance criteria for hardware applications

- Usually, the measure of the performance for hardware implementations of the arithmetic operations in the Galois field $G F\left(2^{m}\right)$ is the space and time complexities.
- Main performance criteria
- Space complexity
- Number of AND gates
- Number of XOR gates
- Time complexity
- Circuit's total gate delay

Polynomial multiplication: classical algorithm

$\left[\begin{array}{c}c_{0} \\ c_{1} \\ c_{2} \\ \vdots \\ c_{m-2} \\ c_{m-1} \\ c_{m} \\ c_{m+1} \\ \vdots \\ c_{2 m-3} \\ c_{2 m-2}\end{array}\right]=\left[\begin{array}{ccccccc}a_{0} & 0 & 0 & 0 & \cdots & 0 & 0 \\ a_{1} & a_{0} & 0 & 0 & \cdots & 0 & 0 \\ a_{2} & a_{1} & a_{0} & 0 & \cdots & 0 & 0 \\ \vdots & & \vdots & & \ddots & \vdots & \vdots \\ a_{m-2} & a_{m-3} & a_{m-4} & a_{m-5} & \cdots & a_{0} & 0 \\ a_{m-1} & a_{m-2} & a_{m-3} & a_{m-4} & \cdots & a_{1} & a_{0} \\ 0 & a_{m-1} & a_{m-2} & a_{m-3} & \cdots & a_{2} & a_{1} \\ 0 & 0 & a_{m-1} & a_{m-2} & \cdots & a_{3} & a_{2} \\ \vdots & & \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_{m-1} & a_{m-2} \\ 0 & 0 & 0 & 0 & \cdots & 0 & a_{m-1}\end{array}\right]\left[\begin{array}{c}b_{0} \\ b_{1} \\ b_{2} \\ \vdots \\ b_{m-2} \\ b_{m-1}\end{array}\right]$

AND gates $=m^{2}$ XOR gates $=(m-1)^{2}$ Time delay $=T_{A}+\left\lceil\log _{2} m\right\rceil T_{X}$

Special Case: Squaring

- Let A be an element of the finite field $F=G F\left(2^{5}\right)$. Then, the square of A is given as,

$$
\frac{a_{4} a_{3} a_{2} a_{1} a_{0} * a_{4} a_{3} a_{2} a_{1} a_{0}}{{ }_{4} a_{0} a_{3} a_{0} \quad a_{2} a_{0} \quad a_{1} a_{0} a_{0} a_{0} \quad 十}
$$

$a_{4} a_{1} \quad a_{3} a_{1} \quad a_{2} a_{1} \quad a_{1} a_{1} \quad a_{0} a_{1}$ $a_{4} a_{2} \quad a_{3} a_{2} \quad a_{2} a_{2} \quad a_{1} a_{2} \quad a_{0} a_{2}$
$\begin{array}{cc}a_{4} a_{3} & a_{3} a_{3} \\ a_{2} a_{3} & a_{1} a_{3} \\ a_{0} a_{3} & = \\ a_{4} a_{4} & a_{3} a_{4} \\ a_{2} & a_{4} \\ a_{1} & a_{4}\end{array} a_{0} a_{4} \quad=$
$\begin{array}{lllllllll}a_{4} & 0 & a_{3} & 0 & a_{2} & 0 & a_{1} & 0 & a_{0}\end{array}$
In general, for an arbitrary element A in the field $F=G F\left(2^{5}\right)$, we have,

$$
C(x)=A(x) A(x)=A^{2}(x)=\left(\sum_{i=0}^{m-1} a_{i} x^{i}\right)\left(\sum_{i=0}^{m-1} a_{i} x^{i}\right)=\sum_{i=0}^{m-1} a_{i} x^{2 i}
$$

Special Case: Squaring [by Nazar Saqib]

CINVESTAV

$$
A=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

$$
A^{2}=a_{6} x^{6}+a_{4} x^{4}+a_{2} x^{2}+a_{0}
$$

$A=1111$
$A^{2}=1010101$

2kn-bit Karatsuba Multipliers

CINVESTAV

There are some asymptotically faster methods for polynomial multiplications, such as the Karatsuba-Ofman algorithm.

Discovered in 1962, it was the first algorithm able to accomplish polynomial multiplication under $O\left(m^{2}\right)$ operations.

Karatsuba's algorithm is based on the idea that the polynomial product $C=A B$ can be written as,

$$
\begin{gathered}
A=x^{\frac{m}{2}} A^{H}+A^{L} ; \quad B=x^{\frac{m}{2}} B^{H}+B^{L} ; \\
C=x^{m} A^{H} B^{H}+\left(A^{H} B^{H}+A^{L} B^{L}+\left(A^{H}+A^{L}\right)\left(B^{H}+B^{L}\right)\right) x^{\left[\frac{m}{2}\right]}+A^{L} B^{L}=x^{m} C^{H}+C^{L}
\end{gathered}
$$

2kn-bit Karatsuba Multipliers

- last equation can be carried out at the cost of only 3 polynomial multiplications and four polynomial additions.
- Of course, Karatsuba strategy can be applied recursively to the three polynomial multiplications of last equation.
- By applying this strategy recursively, it is possible to achieve a polynomial complexity of $O\left(m^{\log _{23} 3}\right)$
- Best results can be obtained by combining classical method with Karatsuba strategy.

2kn-bit Karatsuba Multipliers

It can be shown that the space and time complexities of a $\mathrm{m}=2^{\mathrm{k}} \mathrm{n}$-bit Karatsuba multiplier combined with a classical method are given as,

$$
\begin{aligned}
& \text { XOR Gates } \leq\left(\frac{m}{n}\right)^{\log _{2} 3}\left(n^{2}+6 n-1\right)-8 m+2 ; \\
& \text { AND Gates } \leq\left(\frac{m}{n}\right)^{\log _{2} 3} n^{2} ; \\
& \text { Time Delay } \leq T_{A N D}+T_{X}\left(\log _{2} n+k\right) .
\end{aligned}
$$

Space and Time complexities

m	r	n	AND gates	XOR gates	Time Delay	Area (NAND units)
1	1	1	1	0	$\mathrm{~T}_{\mathrm{A}}$	1.26
2	1	2	4	1	$\mathrm{~T}_{\mathrm{X}}+\mathrm{T}_{\mathrm{A}}$	7.2
4	1	4	16	9	$2 \mathrm{~T}_{\mathrm{X}}+\mathrm{T}_{\mathrm{A}}$	40.0
8	2	4	48	55	$6 \mathrm{~T}_{\mathrm{X}}+\mathrm{T}_{\mathrm{A}}$	181.5
16	4	4	144	225	$10 \mathrm{~T}_{\mathrm{X}}+\mathrm{T}_{\mathrm{A}}$	676.4
32	8	4	432	799	$14 \mathrm{~T}_{\mathrm{X}}+\mathrm{T}_{\mathrm{A}}$	2302.1
64	16	4	1296	2649	$18 \mathrm{~T}_{\mathrm{X}}+\mathrm{T}_{\mathrm{A}}$	7460.8
128	32	4	3888	8455	$22 \mathrm{~T}_{\mathrm{X}}+\mathrm{T}_{\mathrm{A}}$	23499.9
256	64	4	11664	26385	$26 \mathrm{~T}_{\mathrm{X}}+\mathrm{T}_{\mathrm{A}}$	72743.6
512	128	4	34992	81199	$30 \mathrm{~T}_{\mathrm{X}}+\mathrm{T}_{\mathrm{A}}$	222727.7

Binary Karatsuba Multipliers

- Problem: Find an efficient Karatsuba strategy for the multiplication of two polynomials $A, B \in G F\left(2^{m}\right)$, such that m $=2^{k}+d, d \neq 0$.
- Basic Idea: Pretend that both operands are polynomials with degree $m^{\prime}=2^{(k+1)}$, and use normal Karatsuba approach for two of the three required polynomial multiplications, i.e., given

$$
A=x^{\frac{m}{2}} A^{H}+A^{L} ; \quad B=x^{\frac{m}{2}} B^{H}+B^{L} ;
$$

$C=x^{m} A^{H} B^{H}+\left(A^{H} B^{H}+A^{L} B^{L}+\left(A^{H}+A^{L}\right)\left(B^{H}+B^{L}\right)\right) x^{\left\lceil\frac{m}{2}\right\rceil}+A^{L} B^{L}=x^{m} C^{H}+C^{L}$

Binary Karatsuba Multipliers

CINVESTAV

- Compute the two 2^{k}-bit polynomial multiplications:

$$
\begin{aligned}
& A^{L} B^{L} \text { and; } \\
& M=M_{A} M_{B}=\left(A^{H}+A^{L}\right)\left(B^{H}+B^{L}\right)
\end{aligned}
$$

- While the remaining d-bit polynomial multiplication $\mathrm{A}^{\mathrm{H}} \mathrm{B}^{\mathrm{H}}$ can be computed using a $k^{\prime}=\left\lceil\log _{2}(d)\right\rceil \quad$-bit Karatsuba multiplier in a recursive manner (since the leftover d bits can be expressed as, $\mathrm{d}=2^{\mathrm{k} 1}+\mathrm{d}_{1}$).

Binary Karatsuba Multipliers

- The above outlined strategy yields a Binary Karatsuba scheme where the hamming weight of the original m will determine the number of recursive iterations to be used by the algorithm.

An Example

- As a design example, let us consider the polynomial multiplication of the elements A and $B \in G F\left(2^{193}\right)$. Since $(193)_{2}=11000001$, the Hamming weight of m is $h=3$. This will imply that we need a total of three iterations in order to compute the multiplication using the generalized mbit binary Karatsuba multiplier. Additionally we notice that for this case, $\mathrm{m}=193=2^{7}+65$.

An Example

- Where we have assumed that the above circuit has been implemented using a 1.2μ CMOS technology, where we have that the time delays associated to the AND, XOR logic gates are given as: $\mathrm{T}_{\mathrm{A}} \cong \mathrm{T}_{\mathrm{x}}=0.5 \mathrm{nS}$.
- Next slide shows a comparison between the proposed binary Karatsuba approach and the more traditional hybrid approach discussed previously.

Binary and hybrid Karatsuba multipliers' area complexity

Second step: reduction

- Problem: Given the polynomial product $C(x)$ with at most, $2 m$ - 1 , obtain the modular product C^{\prime} with m coordinates, using the generating irreducible polynomial $P(x)$.

$$
C^{\prime}(x)=C(x) \bmod P(x)
$$

- Using a general irreducible polynomial with Hamming weight (the number of nonzero terms) equal to r would require at most $(r-1)(m-1)$ XOR gates, i.e., complexity $O(m)$.
- The complexity of our schemes as applied to special classes of pentanomials $(r=5)$ requires about m fewer XOR gates than the above prediction.

Conclusions (1/2)

- In this paper we presented a new approach that generalizes the classic Karatsuba multiplier technique.
- The most attractive features of the new algorithm presented here is that the degree of the defining irreducible polynomial can be arbitrarily selected by the designer.

Conclusions (2/2)

- Also the proposed multiplier leads to highly modular architectures and is thus well suited for VLSI implementations.
- As a future work, we are planning to implement in FPGA devices a sequential version of the strategy discussed here, as is shown in the next slide.

Field Multiplication: FPGA Implementation CINVESTAV

Preliminary results yield a time delay of 50-70 η Sec and $\approx 9 \mathrm{~K}$ Slices of hardware resources utilization.

Seminario de FPGAs
Francisco Rodríguez Henríquez
otoño 2003

Programmable binary Karatsuba Multiplier

