

Ô	Octline						
CINVESIAV	CINVESTAV Outline						
• Int	roduction						
• Mo	odular Multiplication in $GF(2^m)$						
• 2 ^k n	a-bit Karatsuba Multipliers						
• Bir	nary Karatsuba Multipliers						
• An	Example						
• Co	nclusions						
Seminario	de FPGAs Francisco Rodríguez Henríquez						
otoño 2003	Tunoisco Rounguez Honnequez						

CINVESTAV Polyt	nom	ia	.1 mi	ultip	licat	tion:	cl	assi	cal	algorithm
]	a_0		0			0	0]
	<i>c</i> ₁		<i>a</i> ₁	a_0	0 <i>a</i> 0	0		0	0	
	<i>c</i> ₂		<i>a</i> ₂	a_1	a_0	0		0	0	
	1		:		÷		•.	÷	÷	$\begin{vmatrix} b_0 \\ b_1 \end{vmatrix}$
	<i>c</i> _{<i>m</i>-2}		a_{m-2}	a_{m-3}	a_{m-4}	a_{m-5}		a_0	0	
	<i>c</i> _{<i>m</i>-1}	=	a_{m-1}	a_{m-2}	a_{m-3}	a_{m-4}		a_1	a_0	$\begin{bmatrix} b_2 \\ \vdots \end{bmatrix}$
	c _m		0	a_{m-1}	a_{m-2}	a_{m-3}		a_2	a_1	
	<i>c</i> _{<i>m</i>+1}		0		a_{m-1}					$\begin{vmatrix} b_{m-2} \\ b \end{vmatrix}$
	1		:		÷			÷		$\lfloor b_{m-1} \rfloor$
	<i>c</i> _{2<i>m</i>-3}		0	0	0	0		a_{m-1}	a_{m-2}	
	c _{2m-2}		0	0	0	0		0	<i>a</i> _{<i>m</i>-1}	
AND gates = m^2 XOR gates = $(m-1)^2$ Time delay = $T_A + \lceil \log_2 m \rceil T_X$										
Seminario de FPGAs								Fr	ancisco	Rodríguez Henríquez
otoño 2003										

CINVESTAV	0. begin 1. if $(r == 1)$ then 2. $C = mul_n(A, B);$ 3. return;
Procedure Kmul2 ^k (C, A, B)	4. for i from 0 to $\frac{r}{2}$ - 1 do 5. $M_{Ai} = A_i^L + A_i^H;$
Input: Two elements A , B ? $GF(2^m)$ with $m=rn=2^kn$, and where A , B can be expressed as, $A = x^{\frac{m}{2}}A^H + A^L, B = x^{\frac{m}{2}}B^H + B^L.$	6. $M_{Bi} = B_i^L + B_i^H;$ 7. end 8. $mul2^k (C^L, A^L, B^L);$ 9. $mul2^k (M, M_A, M_B);$ 10. $mul2^k (C^H, A^H, B^H);$ 11. for i from 0 to r - 1 do 12. $M_i = M_i + C_i^L + C_i^H;$
Output : A polynomial $C=AB$ with up to $2m-1$ coordinates, where $C=x^mC^H+C^{L}$.	$\begin{bmatrix} 12. & m_i - m_i + C_i + C_i \\ 13. & \text{end} \\ 14. & \text{for i from 0 to r - 1 do} \\ 15. & C_{\frac{r}{2}+i} = C_{\frac{r}{2}+i} + M_i; \end{bmatrix}$
	16. end 17. end
IASTED-CST may 2003	Francisco Rodríguez Henríquez

/ESTAV	Space and Time complexities							
m	r	n	AND gates	XOR gates	Time Delay	Area (NAND units)		
1	1	1	1	0	T _A	1.26		
2	1	2	4	1	T _X +T _A	7.2		
4	1	4	16	9	$2T_X + T_A$	40.0		
8	2	4	48	55	6T _X +T _A	181.5		
16	4	4	144	225	$10T_X + T_A$	676.4		
32	8	4	432	799	$14T_X + T_A$	2302.1		
64	16	4	1296	2649	$18T_X + T_A$	7460.8		
128	32	4	3888	8455	22T _X +T _A	23499.9		
256	64	4	11664	26385	$26T_X + T_A$	72743.6		
512	128	4	34992	81199	30T _X +T _A	222727.7		
512 Seminar toño 20	o de Fl	-		81199		222727.7		

Binary Karatsuba Multipliers

- Problem: Find an efficient Karatsuba strategy for the multiplication of two polynomials A, B ∈ GF(2^m), such that m = 2^k + d, d ≠ 0.
- Basic Idea: Pretend that both operands are polynomials with degree $m' = 2^{(k+1)}$, and use normal Karatsuba approach for two of the three required polynomial multiplications, i.e., given

$$A = x^{\frac{m}{2}}A^{H} + A^{L}; \ B = x^{\frac{m}{2}}B^{H} + B^{L};$$

$$C = x^{m} A^{H} B^{H} + (A^{H} B^{H} + A^{L} B^{L} + (A^{H} + A^{L}) (B^{H} + B^{L})) x^{\left|\frac{m}{2}\right|} + A^{L} B^{L} = x^{m} C^{H} + C^{L}$$

Seminario de FPGAs otoño 2003

Francisco Rodríguez Henríquez

Binary Karatsuba Multipliers

• Compute the two 2^k-bit polynomial multiplications:

$$A^{L}B^{L}$$
 and;
 $M = M_{A}M_{B} = (A^{H} + A^{L})(B^{H} + B^{L})$

• While the remaining *d*-bit polynomial multiplication $A^H B^H$ can be computed using a $k' = \lceil \log_2(d) \rceil$ -bit Karatsuba multiplier in a recursive manner (since the leftover *d* bits can be expressed as,

 $d = 2^{k1} + d_1$).

Seminario de FPGAs otoño 2003

Francisco Rodríguez Henríquez

CINVESTAV		
	Conclusions	
Seminario de FPGAs		Francisco Rodríguez Henríquez
otoño 2003		Trancisco Rouriguez Teninquez

