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Introduction
• Arithmetic over binary finite fields GF(2m) has many 

important applications, particularly in the theory of error 
control coding and in cryptography.

• In a binary finite field, field addition, subtraction, 
multiplication and division are defined. 

• Out of those four operations, multiplication is by far the 
most important of them. That is  because most applications 
need to perform a large number of multiplications during the 
execution of the algorithms that conform their schemes.

• In the next slide we show a typical top-down model for 
modern cryptographic applications.
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Modern Cryptosystems: A Top-Down Model

F2
m finite field operations : Addition, Squaring,  

multiplication and inversion

Low-level crypto-primitives: addition, doubling, scalar 
multiplication

Top level Crypto-primitives: Key-pair generation, 
Signing and Verification

Crypto-protocols: Diffie-Hellman, authentication 
protocols, etc.

Applications: e-commerce, smart cards, digital money, 
secure communications, etc.
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Elliptic curves over finite fields

Elliptic curve point arithmetic

F2
m (even)

Finite Fields

Fp (odd prime)
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Elliptic curves over finite fields

EC operations: Addition, doubling, scalar multiplication

F2
m finite field operations

Addition
Squaring
Multiplication
Inversion
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Two-steps Multipliers
 In most algorithms the modular product is computed in two steps:

polynomial multiplication followed by modular reduction. Let A(x), 
B(x) and (x) ∈ GF(2m) and P(x) be the irreducible field generator 
polynomial. 

• In order to compute the modular product we first obtain the product 
polynomial C(x), of degree at most 2m-2, as
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• Then, in the second step, a reduction operation is performed in order 
to obtain the m-1 degree polynomial C’(x) is defined as
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Modular Multiplication in GF(2m): Some 
Definitions
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The field F2
m 

 Let us consider a finite field F=GF(2m) over K=GF(2). 

 Elements of F: Polynomials of degree less than m, with coefficients in 

K, such that, 

 {am-1xm-1+am-2xm-2+...+a2x2+a1x+a0|ai= 0 or 1}.

Fact: The field F has exactly q-1=2m-1 nonzero elements plus 

the zero element. 
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Generating polynomial and polynomial basis
 The finite field F=GF(2m) is completely described by a monic irreducible 

polynomial, often called generating polynomial, of the form

 

 Where ki ∈ GF(2) for i=0,1,…,m-1. 

( ) 01
2

2
1

1 ... kxkxkxkxxP m
m

m
m

m +++++= −
−

−
−

Let α be a primitive root of P(x), i.e., P(α) = 0. Then, we define the 

polynomial or canonical basis of GF(2m) over GF(2) using the primitive 

element α and its m first powers

{1, α, α2,…, αm-1},

which happen to be linearly independent over GF(2).
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Two-steps Multipliers
 In most algorithms the modular product is computed in two steps:

polynomial multiplication followed by modular reduction. Let A(x), 
B(x) and (x) ∈ GF(2m) and P(x) be the irreducible field generator 
polynomial. 

• In order to compute the modular product we first obtain the product 
polynomial C(x), of degree at most 2m-2, as
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• Then, in the second step, a reduction operation is performed in order 
to obtain the m-1 degree polynomial C’(x) is defined as
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Bit-Parallel two-steps field multiplier for hardware 
applications
1. Polynomial multiplication:

•Classic
•Karatsuba
•Karatsuba/classic

2. Reduction step:
•Equally-spaced polynomials
•Trinomials
•Pentanomials

Field Multiplication























Hardware
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Multipliers performance criteria for hardware 
applications

• Usually, the measure of the performance for hardware 

implementations of the arithmetic operations in the Galois field

GF(2m) is the space and time complexities. 

• Main performance criteria

– Space complexity

• Number of AND gates

• Number of XOR gates

– Time complexity

• Circuit’s total gate delay
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Polynomial multiplication: classical algorithm
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Special Case: Squaring

• Let A be an element of the finite field F=GF(25). Then, the square of A
is given as, 

a4 0 a3 0      a2 0 a1 0 a0

In general, for an arbitrary element A in the field F=GF(25), we have, 
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Special Case: Squaring [by Nazar Saqib]
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2kn-bit Karatsuba Multipliers
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2kn-bit Karatsuba Multipliers

 There are some asymptotically faster methods for polynomial 

multiplications, such as the Karatsuba-Ofman algorithm.

 Discovered in 1962, it was the first algorithm able to accomplis h 

polynomial multiplication under O(m2) operations.

 Karatsuba's algorithm is based on the idea that the polynomial product 

C=AB can be written as,
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2kn-bit Karatsuba Multipliers

• last equation can be carried out at the cost of only 3 

polynomial multiplications and four polynomial additions.

• Of course, Karatsuba strategy can be applied recursively to 

the three polynomial multiplications of last equation.

• By applying this strategy recursively, it is possible to 

achieve a polynomial complexity of

• Best results can be obtained by combining classical method 

with Karatsuba strategy.

( )3log 2mO

IASTED-CST may 2003 Francisco Rodríguez Henríquez

Procedure Kmul2k(C, A, B)

Input: Two elements A ,B ? GF(2m) with
m=rn=2kn, and where A, B can be 
expressed as, 

Output: A polynomialC=AB with up to 2m-1 
coordinates , where C=xmCH+CL..
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2kn-bit Karatsuba Multipliers

It can be shown that the space and time complexities of a 
m=2kn-bit Karatsuba multiplier combined with a classical 
method are given as,
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Space and Time complexities 
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Space complexity of hybrid Karatsuba multipliers 
for arbitrary m using n=1, 2, 3
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Binary Karatsuba Multipliers
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Binary Karatsuba Multipliers

• Problem: Find an efficient Karatsuba strategy for the  

multiplication of two polynomials A, B ∈ GF(2m), such that  m

= 2k + d, d ≠ 0.

• Basic Idea: Pretend that both operands are polynomials with 

degree m’ = 2(k+1), and use normal Karatsuba approach for two 

of the three required polynomial multiplications, i.e., given

;   ; 22 LH
m

LH
m

BBxBAAxA +=+=

( )( )( ) LHmLL
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Binary Karatsuba Multipliers

• Compute the two 2k-bit polynomial multiplications:

• While the remaining d-bit polynomial multiplication AHBH can 

be computed using a                     -bit Karatsuba multiplier in a 

recursive manner (since the leftover d bits can be expressed as,

d = 2k1+d1).

( )( )LHLH
BA

LL

BBAAMMM

BA

++==

and; 

( ) dk 2log'=
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Binary Karatsuba Multipliers

• The above outlined strategy yields a Binary 

Karatsuba scheme where the hamming weight 

of  the original m will determine the number of 

recursive iterations to be used by the 

algorithm. 

Francisco Rodríguez HenríquezSeminario de FPGAs
otoño 2003

An Example
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An Example

• As a design example, let us consider the polynomial 

multiplication of the elements A and B ∈ GF(2193). Since 
(193)2 = 11000001, the Hamming weight of m is h = 3. This 

will imply that we need a total of three iterations in order to 
compute the multiplication using the generalized m-bit binary 

Karatsuba multiplier. Additionally we notice that for this case, 

m = 193 =27+65.
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193-bit binary Karatsuba Multiplier

XOR gates = 20524
AND gates =   9201
Time delay = 13.5 nS
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An Example

• Where we have assumed that the above circuit has been 

implemented using a 1.2µ CMOS technology, where we have 
that the time delays associated to the AND, XOR logic gates 

are given as: TA≅ Tx=0.5 nS.

• Next slide shows a comparison between the proposed binary 

Karatsuba approach and the more traditional hybrid approach 

discussed previously.
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Binary and hybrid Karatsuba multipliers’ area 
complexity
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Second step: reduction
• Problem: Given the polynomial product C(x) with at most, 2m-1, obtain 

the modular product C' with m coordinates, using the generating 
irreducible polynomial P(x). 

( ) ( ) ( )xPxCxC mod=′

• The complexity of our schemes as applied to special classes of 
pentanomials (r=5) requires about m fewer XOR gates than the
above prediction.

• Using a general irreducible polynomial with Hamming weight (the 
number of nonzero terms) equal to r would require at most (r-1)(m-1) 
XOR gates, i.e., complexity O(m).
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Bit-Parallel modular dual basis for hardware 
applications

Special Classes of Irreducible Polynomials

Equally-spaced polynomials trinomials pentanomials

•

There exist for only 468
degrees m, less than

1024 ( 45%)

There exist for only 81
degrees m, less than

1024 ( 8%)

There exists at least 
one for any degree 

m>3≈ ≈



18

Francisco Rodríguez HenríquezSeminario de FPGAs
otoño 2003

Squaring: Reduction Step FPGA 
Implementation [by Nazar Saqib]
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Conclusions



19

Francisco Rodríguez HenríquezSeminario de FPGAs
otoño 2003

Conclusions (1/2)

• In this paper we presented a new approach that generalizes the 

classic Karatsuba multiplier technique. 

• The most attractive features of the new algorithm presented 

here is that the degree of the defining irreducible polynomial 

can be arbitrarily selected by the designer.
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Conclusions (2/2)

• Also the proposed multiplier leads to highly modular 

architectures and is thus well suited for VLSI implementations.

• As a future work, we are planning to implement in FPGA 

devices a sequential version of the strategy discussed here, as 

is shown in the next slide.
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Field Multiplication: FPGA Implementation

Preliminary results yield a time delay of 50-70 ηSec 
and ≈9K Slices of hardware resources utilization.
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Programmable binary Karatsuba Multiplier 

Control 
Logic 

GF(2 k ) 
Karatsuba 
Multiplier 

Memory 

XOR 
Network 


