
A Memetic Pareto Evolutionary Approach to
Artificial Neural Networks

H.A. Abbass

University of New South Wales, School of Computer Science, ADFA Campus,
Canberra, ACT 2600, Australia, h.abbass@adfa.edu.au.

Abstract. Evolutionary Artificial Neural Networks (EANN) have been
a focus of research in the areas of Evolutionary Algorithms (EA) and
Artificial Neural Networks (ANN) for the last decade. In this paper, we
present an EANN approach based on pareto multi-objective optimization
and differential evolution augmented with local search. We call the ap-
proach Memetic Pareto Artificial Neural Networks (MPANN). We show
empirically that MPANN is capable to overcome the slow training of
traditional EANN with equivalent or better generalization.

Keywords: neural networks, genetic algorithms

1 Introduction

Evolutionary Artificial Neural Networks (EANNs) have been a key research
area for the last decade. On the one hand, methods and techniques have been
developed to find better approaches for evolving Artificial Neural Networks and
more precisely - for the sake of our paper – Multi–layer feed–forward Artificial
Neural Networks (ANNs). On the other hand, finding a good ANNs’ architecture
has been an issue as well in the field of ANNs. Methods for network growing
(such as Cascade Correlation [4]) and for network pruning (such as Optimal
Brain Damage [14]) have been used to overcome the long process for determining
a good network architecture. However, all these methods still suffer from their
slow convergence and long training time. In addition, they are based on gradient–
based techniques and therefore can easily stuck in a local minimum. EANNs
provide a better platform for optimizing both the network performance and
architecture simultaneously. Unfortunately, all of the research undertaken in the
EANN literature ignores the fact that there is always a trade–off between the
architecture and the generalization ability of the network. A network with more
hidden units may perform better on the training set, but may not generalize well
on the test set. This trade–off is a well known problem in Optimization known
as the Multi-objective Optimization Problem (MOP).

With the trade–off between the network architecture – taken in this paper
to be the number of hidden units – and the generalization error, the EANN
problem is in effect a MOP. It is, therefore, natural to raise the question of why
not applying a multi–objective approach to EANN.

The objective of this paper is to present a Memetic (ie. evolutionary algo-
rithms (EAs) augmented with local search [18]) Pareto Artificial Neural Net-
works (MPANN). The rest of the paper is organized as follows: In Section 2,
background materials are covered followed by an explanation of the methods
in Section 3. Results are discussed in Section 4 and conclusions are drawn in
Section 5.

2 Background Materials

In this section, we introduce necessary background materials for Multi-objective
Optimization, ANNs, Differential Evolution (DEs), Evolutionary Multi-objective,
and EANN.

2.1 Multi-objective Optimization

Consider a Multi-Objective Optimization Problem (MOP) model as presented
below:-

Optimize F (x)
subject to: Ω = {x ∈ Rn|G(x) ≤ 0}

Where x is a vector of decision variables (x1, . . . , xn) and F (x) is a vector
of objective functions (f1(x), . . . , fK(x)). Here f1(x), . . . , fK(x), are functions
on Rn and Ω is a nonempty set in Rn. The vector G(x) represents a set of
constraints.

In MOPs, the aim is to find the optimal solution x∗ ∈ Ω which optimize F (x).
Each objective function, fi(x), is either maximization or minimization. Without
any loss of generality, we assume that all objectives are to be minimized for clarity
purposes. We may note that any maximization objective can be transformed to
a minimization one by multiplying the former by -1.

To define the concept of non-dominated solutions in MOPs, we need to define
two operators, � and - and then assume two vectors, x and y. We define the
first operator as x � y iff ∃ xi ∈ x and yi ∈ y such that xi 6= yi. And,
x - y iff ∀ xi ∈ x and yi ∈ y, xi ≤ yi, and x � y. The operators �
and - can be seen as the “not equal to” and “less than or equal to” operators
respectively, between two vectors. We can now define the concepts of local and
global optimality in MOPs.

Definition 1: Neighborhood or open ball The open ball (ie. a neighborhood
centered on x∗ and defined by the Euclidean distance) Bδ(x∗) = {x ∈
Rn| ||x− x∗|| < δ}.

Definition 2: Local efficient (non-inferior/ pareto-optimal) solution A
vector x∗ ∈ Ω is said to be a local efficient solution of MOP iff @ x ∈
(Bδ(x∗) ∩Ω) such that F (x) - F (x∗) for some positive δ.

Definition 3: Global efficient (non-inferior/ pareto-optimal) solution
A vector x∗ ∈ Ω is said to be a global efficient solution of MOP iff @ x ∈ Ω
such that F (x) - F (x∗).

Definition 4: Local non-dominated solution A vector y∗ ∈ F (x) is said to
be local non-dominated solution of MOP iff its projection onto the decision
space, x∗, is a local efficient solution of MOP.

Definition 5: Global non-dominated solution A vector y∗ ∈ F (x) is said to
be global non-dominated solution of MOP iff its projection onto the decision
space, x∗, is a global efficient solution of MOP.

In this paper, the term “non-dominated solution” is used as a shortcut for
the term “local non-dominated solution”.

2.2 Artificial Neural Networks

We may define an ANN by a graph: G(N, A, ψ), where N is a set of neurons
(also called nodes), A denotes the connections (also called arcs or synapses)
between the neurons, and ψ represents the learning rule whereby neurons are
able to adjust the strengths of their interconnections. A neuron receives its inputs
(also called activation) from an external source or from other neurons in the
network. It then undertakes some processing on this input and sends the result as
an output. The underlying function of a neuron is called the activation function.
The activation, a, is calculated as a weighted sum of the inputs to the node in
addition to a constant value called the bias. The bias can be easily augmented
to the input set and considered as a constant input. From herein, the following
notations will be used for a single hidden layer MLP:

– I and H are the number of input and hidden units respectively.
– Xp ∈ X = (xp

1, x
p
2, . . . , x

p
I), p = 1, . . . P , is the pth pattern in the input

feature space X of dimension I, and P is the total number of patterns.
– Without any loss of generality, Yp

o ∈ Yo is the corresponding scalar of
pattern Xp in the hypothesis space Yo.

– wih and who, are the weights connecting input unit i, i = 1 . . . I, to hidden
unit h, h = 1 . . .H, and hidden unit h to the output unit o (where o is
assumed to be 1 in this paper) respectively.

– Θh(Xp) = σ(ah); ah =
∑I

i=0 wihxp
i , h = 1 . . . H, is the hth hidden unit’s

output corresponding to the input pattern Xp, where ah is the activation of
hidden unit h, and σ(.) is the activation function that is taken in this paper
to be the logistic function σ(z) = 1

1+e−Dz , with D the function’s sharpness
or steepness and is taken to be 1 unless it is mentioned otherwise.

– Ŷ p
o = σ(ao); ao =

∑H
h=0 whoΘh(Xp) is the network output and ao is the

activation of output unit o corresponding to the input pattern Xp.

MLPs are in essence non-parametric regression methods which approximate
underlying functionality in data by minimizing a risk function. The data are
presented to the network and the risk function is approximated empirically Remp

by summing over all data instances as follows:

Remp(α) =
P∑

p=1

(Y p
o − Ŷ p

o)2 (1)

The Back-propagation algorithm (BP), developed initially by Werbos [25] and
then independently by Rumelhart group [21], is commonly used for training
the network. BP uses the gradient of the empirical risk function to alter the
parameter set α until the empirical risk is minimum. BP in its simple form uses
a single parameter, η representing the learning rate. For a complete description
for the derivations of this algorithm, see for example [8]. The algorithm can be
described in the following steps:-

1. Until termination conditions are satisfied, do
(a) for each input-output pairs, (Xp, Y p

o), in the training set, apply the fol-
lowing steps
i. Inject the input pattern Xp into the network
ii. Calculate the output, Θh(Xp), for each hidden unit h.
iii. Calculate the output, Ŷo

p
, for each output unit o.

iv. for the output unit o, calculate ro = Ŷ p
o (1− Ŷ p

o)(Y p
o − Ŷ p

o) where ro

is the rate of change in the error of the output unit o.
v. for each hidden unit h, rh = Θp

h(1 − Θp
h)whoro where rh is the rate

of change in the error of hidden unit h.
vi. update each weight in the network using the learning rate η as fol-

lows:
wih ← wih + ∆wih, ∆wih = ηrjaih (2)

who ← who + ∆who, ∆who = ηrkaho (3)

2.3 Differential Evolution

Evolutionary algorithms [5] is a kind of global optimization techniques that
use selection and recombination as their primary operators to tackle optimization
problems. Differential evolution (DE) is a branch of evolutionary algorithms
developed by Rainer Storn and Kenneth Price [24] for optimization problems
over continuous domains. In DE, each variable is represented in the chromosome
by a real number. The approach works as follows:-

1. Create an initial population of potential solutions at random, where it is
guaranteed, by some repair rules, that variables’ values are within their
boundaries.

2. Until termination conditions are satisfied
(a) Select at random a trail individual for replacement, an individual as the

main parent, and two individuals as supporting parents.
(b) With some probability, called the crossover probability, each variable in

the main parent is perturbed by adding to it a ratio, F , of the difference
between the two values of this variable in the other two supporting par-
ents. At least one variable must be changed. This process represents the
crossover operator in DE.

(c) If the resultant vector is better than the trial solution, it replaces it;
otherwise the trial solution is retained in the population.

(d) go to 2 above.

2.4 Evolutionary Multi-objective

EAs for MOPs [3] can be categorized into one of three categories: plain
aggregating, population–based non–Pareto and Pareto–based approaches. The
plain aggregating approach combines all the objectives into one using linear
combination (such as in the weighted sum method, goal programming, and goal
attainment). Therefore, each run results in a single solution and many runs
are needed to generate the pareto frontier. In addition, the quantification of
the importance of each objective (eg. by setting numerical weights) is needed,
which is very difficult for most practical situations. Meanwhile, optimizing all
the objectives simultaneously and generating a set of alternative solutions as in
population-based approaches, offers more flexibility.

There has been a number of methods in the literature for population–based
non–pareto [23] and pareto [9, 32, 13] approaches to MOPs. More recently, we de-
veloped the Pareto Differential Evolution (PDE) method using Differential Evo-
lution (DE) for MOPs [1]. The PDE method outperformed all previous methods
on five benchmark problems.

2.5 Evolutionary Artificial Neural Networks

Over the last two decades, research into EANN has witnessed a flourish
period [28, 27]. Yao [29] presents a thorough review to the field with over 300
references just in the area of EANN. This may indicate that there is an extensive
need for finding better ways to evolve ANN.

A major advantage to the evolutionary approach over traditional learning
algorithms such as Back-propagation (BP) is the ability to escape a local op-
tima. More advantages include robustness and ability to adopt in a changing
environment. In the literature, research into EANN has been taking one of three
approaches; evolving the weights of the network, evolving the architecture, or
evolving both simultaneously.

The EANN approach uses either binary representation to evolve the weight
matrix [10, 11] or real [6, 7, 16, 19]. There is not an obvious advantage of binary
encoding in EANN over the real. However, with real encoding, there are more
advantages including compact and natural representation.

The key problem (other than being trapped in a local minimum) with BP
and other traditional training algorithms is the choice of a correct architecture
(number of hidden nodes and connections). This problem has been tackled by
the evolutionary approach in many studies [12, 15, 20, 30, 31]. In some of these
studies, weights and architectures were evolved simultaneously.

The major disadvantage to the EANN approach is it is computationally ex-
pensive, as the evolutionary approach is normally slow. To overcome the slow
convergence of the evolutionary approach to ANN, hybrid techniques were used
to speed up the convergence by augmenting evolutionary algorithms with a local
search technique (ie. memetic approach), such as BP [26].

3 The MPANN Algorithm

3.1 Representation

In deciding on an appropriate representation, we tried to choose a represen-
tation that can be used for other architectures without further modifications.
Our chromosome is a class that contains one matrix Ω and one vector ρ. The
matrix Ω is of dimension (I + O) × (H + O). Each element ωij ∈ Ω, is the
weight connecting unit i with unit j, where i = 0, . . . , (I − 1) is the input unit
i; i = I, . . . , (I + O − 1) is the output unit (i − I); j = 0, . . . , (H − 1) is the
hidden unit j; and j = H, . . . , (H + O − 1) is the output unit (j − H). This
representation has the following two characteristics that we are not using in the
current version but can easily be incorporated in the algorithm for future work:-

1. It allows direct connection from each input to each output units (we allow
more than a single output unit in our representation).

2. It allows recurrent connections between the output units and themselves.

The vector ρ is of dimension H, where ρh ∈ ρ is a binary value used to indicate
if hidden unit h exists in the network or not; that is, it works as a switch to turn
a hidden unit on or off. The sum,

∑H
h=0 ρh, represents the actual number of

hidden units in a network, where H is the maximum number of hidden units.
This representation allows simultaneous training of the weights in the network
and selecting a subset of hidden units.

3.2 Methods

As the name indicates in our proposed method, we have a multi–objective
problem with two objectives; one is to minimize the error and the other is to
minimize the number of hidden units. The pareto–frontier of the tradeoff between
the two objectives will have a set of networks with different number of hidden
units (note the definition of pareto-optimal solutions). However, sometimes the
algorithm will return two pareto-networks with the same number of hidden units.
This will only take place when the actual number of pareto-optimal solutions
in the population is less than 3. Because of the condition in DE of having at
least 3 parents in each generation, if there are less than three parents, the pareto
optimal solutions are removed from the population and the population is re-
evaluated. For example, assume that we have only 1 pareto optimal solution in
the population. In this case, we need another 2. The process simply starts by
removing the pareto optimal solution from the population and finding the pareto
optimal solutions in the remainder of the population. Those solutions dominating
the rest of the population are added to the pareto list until the number of pareto
solutions in the list is 3.

Our proposed method augments the original PDE [1, 22] algorithm with local
search (ie. BP) to form the memetic approach. In initial investigations, the
algorithm was quite slow and the use of local search improved its performance.
MPANN consists of the following steps:

1. Create a random initial population of potential solutions. The elements of
the weight matrix Ω are assigned random values according to a Gaussian dis-
tribution N(0, 1). The elements of the binary vector ρ are assigned the value
1 with probability 0.5 based on a randomly generated number according to
a uniform distribution between [0, 1]; otherwise 0.

2. Repeat

(a) Evaluate the individuals in the population and label those who are non-
dominated.

(b) If the number of non-dominated individuals is less than 3 repeat the
following until the number of non-dominated individuals is greater than
or equal to 3:-
i. Find a non-dominated solution among those who are not labelled.
ii. Label the solution as non-dominated.

(c) Delete all dominated solutions from the population.
(d) Mark 20% of the training set as a validation set for BP.
(e) Repeat

i. Select at random an individual as the main parent α1, and two in-
dividuals, α2, α3 as supporting parents.

ii. With some crossover probability Uniform(0, 1), do

ωchild
ih ← ωα1

ih + Gaussian(0, 1)(ωα2
ih − ωα3

ih) (4)

ρchild
h ←

{
1 if(ρα1

h + Gaussian(0, 1)(ρα2
h − ρα3

h)) ≥ 0.5
0 otherwise

(5)

otherwise
ωchild

ih ← ωα1
ih (6)

ρchild
h ← ρα1

h (7)

and with some crossover probability Uniform(0, 1), do

ωchild
ho ← ωα1

ho + Gaussian(0, 1)(ωα2
ho − ωα3

ho) (8)

otherwise
ωchild

ho ← ωα1
ho (9)

where each weight in the main parent is perturbed by adding to it a
ratio, F ∈ Gaussian(0, 1), of the difference between the two values
of this variable in the two supporting parents. At least one variable
must be changed.

iii. Apply BP to the child.
iv. If the child dominates the main parent, place it into the population.

(f) Until the population size is M

3. Until termination conditions are satisfied, go to 2 above.

One may note that before each generation starts, 20% of the instances in
the training set are marked as a validation set for the use of BP; that is, BP
will use 80% of the original training set for training and 20% for validation.
Also, the termination condition in our experiments is the maximum number of
epochs is reached; where one epoch is equivalent to one pass through the training
set. Therefore, one iteration of BP is equivalent to one epoch since 80% of the
training set is used for training and the other 20% for validation; that is, one
complete pass through the original training set. After the network is trained, the
chromosome changes to reflect the new weight sets.

4 Experiments

4.1 Data Sets

We have tested MPANN on two benchmark data sets; the Australian credit
card assessment problem and the diabetes problem. Both data sets are available
by anonymous ftp from ice.uci.edu [2]. The following is a brief description of
each data set.

– The Australian Credit Card Assessment Data Set
This data set contains 690 patterns with 14 attributes; 6 of them are numeric
and 8 discrete (with 2 to 14 possible values). The predicted class is binary -
1 for awarding the credit and 0 for not. The problem is to assess applications
for credit cards [17].

– The Diabetes Data Set
This data set has 768 patterns; 500 belonging to the first class and 268 to
the second. It contains 8 attributes. The objective is to test if a patient
has a diabetes or not. The classification problem is difficult as the class
value is a binarized form of another attribute that is highly indicative of a
certain type of diabetes without having a one-to-one correspondence with
the medical condition of being diabetic [17].

4.2 Experimental Setup

To be consistent with the literature [17], the Australian credit card as-
sessment data set is divided into 10 folds and the Diabetes data set into 12
folds where class distribution is maintained in each fold. One–leave–out cross–
validation is used where we run the algorithm with 9 (11) out of the 10 (12) folds
for each data set then we test with the remaining one. We vary the crossover
probability between 0 to 1 with an increment of 0.1. The maximum number of
epochs is set to 2000, the population size 25, the learning rate for BP 0.003, the
maximum number of hidden units is set to 10, and the number of epochs for BP
is set to 5.

4.3 Results

The average of the pareto networks with the best generalization and the
corresponding number of hidden units in each fold are being calculated along
with the standard deviations as shown in Table 1. It is interesting to see the
small standard deviations for the test error in both data sets, which indicates
consistency and stability of the method.

Table 1. The average and standard deviations of the pareto network with the best
generalization (smallest test error) in each run

.

Data set Error Number of hidden units

Australian Credit Card 0.136 ± 0.045 5.000 ± 1.943
Diabetes 0.251 ± 0.062 6.6 ± 1.505

In Figure 1, the average test and training errors corresponding to the best
generalized network in each fold is plotted against each of the eleventh crossover
probabilities. In Figure 1 (left), with crossover 0.1 and upward, the test error
is always smaller than the training error, which indicates better generalization.
However, the degree of this generalization varied across the different crossover
probabilities. The best performance occurs with crossover probability 0.3, which
indicates that 30% of the weights, on the average, in each parent change. This is
quite important as it entails that the building blocks in MPANN is effective; oth-
erwise a better performance would have occurred with the maximum crossover
probability. We may note here that crossover in DE is in effect a guided muta-
tion operator. In Figure 1 (right), it is also apparent that an average crossover
probability of 0.8 resulted in the best generalization ability. Very high or low
crossover probabilities are not as good.

In summary, the best performances for the Australian credit card and Dia-
betes data sets are 0.136± 0.045 and 0.251 ± 0.062 respectively and occur with
crossover probabilities 0.3 and 0.8 respectively.

4.4 Comparisons and Discussions

We compare our results against 23 algorithms tested by Michie et al. [17].
These algorithms can be categorized into decision trees (CART, IndCART,
NewID, AC2, Baytree, Cal5, and C4.5), rule–based methods (CN2, and ITrule),
neural networks (Backprob, Kohonen, LVQ, RBF, and DIPOL92), and statis-
tical algorithms (Discrim, Quadisc, Logdisc, SMART, ALLOC80, k-NN, CAS-
TLE, NaiveBay, and Default). For a complete description of these algorithms,
the reader may refer to [17].

In Tables 2 and 3, we find that MPANN is equivalent or better than BP and
comparable to the others. However, we notice here that MPANN also optimized

0 10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

Crossover rate

E
rr

o
r

Test Error

Training Error

0 10 20 30 40 50 60 70 80 90 100
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

Crossover rate

E
rr

o
r

Training Error

Test Error

Fig. 1. The average training and test error for the Australian Credit Card (on the left)
and Diabetes data sets (on the right) obtained by each crossover probability.

Table 2. Comparing MPANN against 23 traditional methods in terms of the average
generalization error for the Australian Credit Card data set.

.
Algorithm Error Rate Algorithm Error Rate Algorithm Error Rate Algorithm Error Rate

MPANN 0.136 CASTLE 0.148 NaiveBay 0.151 Default 0.440
CART 0.145 IndCART 0.152 NewID 0.181 AC2 0.181
Baytree 0.171 Cal5 0.131 C4.5 0.155 CN2 0.204
ITrule 0.137 Backprob 0.154 Kohonen Fail LVQ 0.197
RBF 0.145 DIPOL92 0.141 Discrim 0.141 Quadisc 0.207

Logdisc 0.141 SMART 0.158 ALLOC80 0.201 k-NN 0.181

its architecture while optimizing its generalization ability. Therefore, in terms of
the amount of computations, it is by far faster than BP as we simultaneously
optimize the architecture and generalization error. In addition, the total number
of epochs used is small compared to the corresponding number of epochs needed
by BP.

5 Conclusion

In this paper, we presented a new evolutionary multi–objective approach to
artificial neural networks. We showed empirically that the proposed approach
outperformed traditional Back-propagation and had comparable results to 23
classification algorithms. For future work, we will evaluate the performance of
the proposed method on regression problems and test the scalability of the evo-
lutionary approach.

6 Acknowledgement

The author would like to thank Xin Yao, Bob Mckay, and Ruhul Sarker for
their insightful comments while discussing an initial idea with them. This work

Table 3. Comparing MPANN against 23 traditional methods in terms of the average
generalization error for the Diabetes data set.

.
Algorithm Error Rate Algorithm Error Rate Algorithm Error Rate Algorithm Error Rate

MPANN 0.251 CASTLE 0.258 NaiveBay 0.262 Default 0.350
CART 0.255 IndCART 0.271 NewID 0.289 AC2 0.276
Baytree 0.271 Cal5 0.250 C4.5 0.270 CN2 0.289
ITrule 0.245 Backprob 0.248 Kohonen 0.273 LVQ 0.272
RBF 0.243 DIPOL92 0.224 Discrim 0.225 Quadisc 0.262

Logdisc 0.223 SMART 0.232 ALLOC80 0.301 k-NN 0.324

is supported with ADFA Special Research Grants TERM6 2001 DOD02 ZCOM
Z2844.

References

1. H.A. Abbass, R. Sarker, and C. Newton. A pareto differential evolution approach to
vector optimisation problems. Congress on Evolutionary Computation, 2:971–978,
2001.

2. C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
http://www.ics.uci.edu/∼mlearn/mlrepository.html. University of California,
Irvine, Dept. of Information and Computer Sciences, 1998.

3. C.A. Coello. A comprehensive survey of evolutionary-based multiobjective opti-
mization techniques. Knowledge and Information Systems, 1(3):269–308, 1999.

4. S. Fahlman and C. Lebiere. The cascade correlation learning architecture. Tech-
nical Report CMU-CW-90-100, Canegie Mellon University, Pittsburgh, PA, 1990.

5. D.B. Fogel. Evolutionary Computation: towards a new philosophy of machine in-
telligence. IEEE Press, New York, NY, 1995.

6. D.B. Fogel, E.C. Wasson, and E.M. Boughton. Evolving neural networks for de-
tecting breast cancer. Cancer letters, 96(1):49–53, 1995.

7. D.B. Fogel, E.C. Wasson, and V.W. Porto. A step toward computer-assisted mam-
mography using evolutionary programming and neural networks. Cancer letters,
119(1):93, 1997.

8. S. Haykin. Neural networks - a comprehensive foundation. Printice Hall, USA, 2
edition, 1999.

9. J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched pareto genetic algorithm
for multiobjective optimization. Proceedings of the First IEEE Conference on
Evolutionary Computation, 1:82–87, 1994.

10. D.J. Janson and J.F. Frenzel. Application of genetic algorithms to the training of
higher order neural networks. Systems Engineering, 2:272–276, 1992.

11. D.J. Janson and J.F. Frenzel. Training product unit neural networks with genetic
algorithms. IEEE Expert, 8(5):26–33, 1993.

12. H. Kitano. Designing neural networks using genetic algorithms with graph gener-
ation system. Complex Systems, 4(4):461–476, 1990.

13. J. Knowles and D. Corne. Approximating the nondominated front using the pareto
archived evolution strategy. Evolutionary Computation, 8(2):149–172, 2000.

14. Y. LeCun, J.J. Denker, and S.A. Solla. Optimal brain damage. In D. Touretzky,
editor, Advances in Neural Information Processing Systems. Morgan Kaufmann,
1990.

15. V. Maniezzo. Genetic evolution of the topology and weight distribution of neural
networks. IEEE Transactions on Neural Networks, 5(1):39–53, 1994.

16. F. Menczer and D. Parisi. Evidence of hyperplanes in the genetic learning of neural
networks. Biological Cybernetics, 66:283–289, 1992.

17. D. Michie, D.J. Spiegelhalter, and C.C. Taylor. Machine learning, neural and
statistical classification. Ellis Horwood, 1994.

18. P. Moscato. Memetic algorithms: a short introduction. In D. Corne, M. Dorigo,
and F. Glover, editors, New ideas in optimization, pages 219–234. McGraw-Hill,
1999.

19. V.W. Porto, D.B. Fogel, and L.J. Fogel. Alternative neural network training meth-
ods. IEEE Expert, 10(3):16–22, 1995.

20. J.C.F. Pujol and R. Poli. Evolving the topology and the weights of neural networks
using a dual representation. Applied Intelligence, 8(1):73–84, 1998.

21. D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representa-
tions by error propagation. In J.L. McClelland D.E. Rumelhart and the PDP
Research Group Eds, editors, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition., Foundations, 1, 318,. MIT Press Cambridge, 1986.

22. R. Sarker, H.A. Abbass, and C. Newton. Solving multiobjective optimization
problems using evolutionary algorithm. The International Conference on Compu-
tational Intelligence for Modelling, Control and Automation (CIMCA’2001), Los
Vegas, USA, 2001.

23. J.D. Schaffer. Multiple objective optimization with vector evaluated genetic al-
gorithms. Genetic Algorithms and their Applications: Proceedings of the First
International Conference on Genetic Algorithms, pages 93–100, 1985.

24. R. Storn and K. Price. Differential evolution: a simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical Report TR-95-012, In-
ternational Computer Science Institute, Berkeley, 1995.

25. P. Werbos. Beyond regression: new tools for prediction and analysis in the behav-
ioral sciences. PhD thesis, Harvard University, 1974.

26. W. Yan, Z. Zhu, and R. Hu. Hybrid genetic/bp algorithm and its application for
radar target classification. Proceedings of the 1997 IEEE National Aerospace and
Electronics Conference, NAECON, pages 981–984, 1997.

27. X. Yao. Evolutionary artificial neural networks. International Journal of Neural
Systems, 4(5):203–222, 1993.

28. X. Yao. A review of evolutionary artificial neural networks. International Journal
of Intelligent Systems, 8(4):529–567, 1993.

29. X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–
1447, 1999.

30. X. Yao and Y. Liu. Making use of population information in evolutionary arti-
ficial neural networks. IEEE Trans. on Systems, Man, and Cybernetics, Part B:
Cybernetics, 28(3):417–425, 1998.

31. X. Yao and Y. Liu. Towards designing artificial neural networks by evolution.
Applied Mathematics and Computation, 91(1):83–90, 1998.

32. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative
case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

