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Abstract -
The Pareto Differential Evolution (PDE) algorithm

was introduced last year and showed competitive re-
sults. The behavior of PDE, as in many other evolu-
tionary multiobjective optimization (EMO) methods,
varies according to the crossover and mutation rates.
In this paper, we present a new version of PDE with
self-adaptive crossover and mutation. We call the
new version Self–adaptive Pareto Differential Evolu-
tion (SPDE). The emphasis of this paper is to an-
alyze the dynamics and behavior of SPDE. The ex-
periments will also show that the algorithm is very
competitive to other EMO algorithms.

I. Introduction

Evolutionary algorithms [3] is a kind of global opti-
mization techniques that use selection and recombination
as their primary operators to tackle optimization prob-
lems. Differential evolution (DE) is a branch of evolu-
tionary algorithms developed by Rainer Storn and Ken-
neth Price [11] for optimization problems over continuous
domains.

The aim of multiobjective optimization problems
(MOPs) is to generate a list (called the pareto or non–
dominated list) of solutions for problems with more than
one objective. Each solution A in the list is optimal in
the sense that no other solution B of the problem better
than A as measured by all the objectives.

Different evolutionary multiobjective optimization
(EMO) methods have been proposed in the literature
to overcome the drawbacks of traditional approaches to
MOPs. EMO methods do not have assumptions underly-
ing the MOP. In addition, most of them are population
based; therefore they can generate a number of pareto
solutions in a single run. One of the recent approaches
to EMO is the Pareto Differential Evolution (PDE) algo-
rithm [1]. The algorithm was designed for EMO problems
with continuous variables and achieved a very competi-
tive results compared to other algorithms in the EMO
literature. However, there was no obvious way to select
the best crossover and mutation rates apart from running
the algorithm with different rates, then selecting the best

among them. This is actually a problem with most EMO
methods.

In this paper, we introduce a new version of PDE
where the crossover and mutation rates are self-adaptive.
We call the new version Self–adaptive Pareto Differential
Evolution (SPDE). This paper aims to introduce SPDE,
an initial analysis to its behavior and some comparisons
against well known algorithms for EMO problems. The
paper is organized as follows: background materials are
covered in Section II followed by the proposed algorithm
in Section III. Experiments are then presented in Sec-
tion IV and conclusions are drawn in Section V.

II. Background Materials

Consider a MOP as presented below:-

Optimize F (~x)
subject to: Ω = {~x ∈ Rn|G(~x) ≤ 0}

Where ~x is a vector of decision variables (x1, . . . , xn) and
F (~x) is a vector of objective functions (f1(~x), . . . , fK(~x)).
Here f1(~x), . . . , fK(~x), are functions on Rn and Ω is a
nonempty set in Rn. The vector G(~x) represents con-
straints that may be easily handled explicitly, such as
lower and upper bounds on the variables.

In MOPs, the aim is to find the optimal solution ~x∗ ∈
Ω which optimizes F (~x). Each objective function, fi(~x),
is either maximization or minimization. In this paper, we
assume that all objectives are to be minimized for clarity
purposes. We may note that any maximization objective
can be transformed to a minimization one by multiplying
it by -1.

To define the concept of non–dominated solutions in
MOPs, we need to define two operators, � and - and
then assume two vectors, ~x and ~y. ~x � ~y iff ∃ xi ∈ ~x
and yi ∈ ~y such that xi 6= yi. And, ~x - ~y iff ∀ xi ∈ ~x
and yi ∈ ~y, xi ≤ yi, and ~x � ~y. � and - can be seen as
the “not equal to” and “less than or equal to” operators
respectively, over two vectors. We can now define the
concepts of pareto solutions in VOPs.

Efficient (non–inferior/ pareto–optimal) solution A
vector ~x∗ ∈ Ω is said to be an efficient solution of



VOP iff @ ~x ∈ Ω such that F (~x) - F (~x∗).
Pareto (non–dominated) solution A vector ~y∗ ∈ F (~x)

is said to be a pareto solution of VOP iff its pro-
jection onto the decision space, ~x∗, is an efficient
solution of VOP.

EMO methods usually fall into one of three cate-
gories, viz plain aggregating, non–Pareto and Pareto–
based approaches. For an interested reader, a com-
prehensive survey is presented in [2]. Some of these
methods include: Random Sampling Evolutionary Al-
gorithm (RAND)[12], Hajela’s and Lin’s genetic algo-
rithm (HLGA) [5], single objective evolutionary algo-
rithm (SOEA) [12], Vector Evaluated Genetic Algorithm
(VEGA) [9], Non–dominated Sorting Genetic Algorithms
(NSGA) [10], Fonseca and Fleming’s genetic algorithm
(FFGA) [4], Niched Pareto Genetic Algorithm (NPGA)
[6], and Pareto Archived Evolution Strategy (PAES) [7],
[8].

To compare between different algorithms, we use
Knowles and Corne [8] statistical analysis method. For a
complete description of this method, the reader can refer
to [8]. When comparing two algorithms A and B, the
method outputs two values [a, b]. The value a represents
the percentage of the pareto–frontier where algorithm A
outperformed algorithm B and the value b represents the
percentage of the pareto–frontier algorithm B outper-
formed algorithm A. The sum of a and b should not
exceed 100. The value 100 − (a + b) represents the per-
centage of the pareto–frontier where both A and B are
statistically insignificant at confidence level 0.95.

III. Self–adaptive Pareto Differential Evolution

The SPDE algorithm for vector optimization problems
is an adaptation of the PDE algorithm described in [1].
Similar to PDE, the SPDE algorithm works as follows.
Assuming that all variables are bounded between [0,1],
an initial population is generated at random from a Gaus-
sian distribution with mean 0.5 and standard deviation
0.15. All dominated solutions are removed from the pop-
ulation. The remaining non–dominated solutions are re-
tained for reproduction. Three parents are selected at
random (one as a main and also trial solution and the
other two as supporting parents). A child is generated
from the three parents and is placed into the population
if it dominates the main parent; otherwise a new selec-
tion process takes place. This process continues until the
population is completed.

In contrast to PDE, SPDE self–adapts the crossover
and mutation rates. Both rates are inherited from the
parents in the same way crossover is undertaken for the
decision variables. A generic version of the adopted al-
gorithm follows:

1. Create a random initial population of potential so-
lutions. Each variable is assigned a random value
according to a Gaussian distribution N(0.5, 0.15).

2. Repeat
(a) Evaluate the individuals in the population and

label those who are non–dominated.
(b) If the number of non–dominated individuals in

the population is less than 3 repeat the following
until the number of non–dominated individuals in
the population is greater than or equal to 3.

i. Find a non–dominated solution among those who
are not labelled.

ii. Label the solution as non–dominated.
(c) If the number of non–dominated individuals in

the population is greater than the allowed max-
imum (Equation 6), apply the neighborhood dis-
tance function until the number of non–dominated
individuals in the population is less than the al-
lowed maximum.

(d) Delete all dominated solutions from the popula-
tion.

(e) Repeat
i. Select at random an individual as the main par-

ent α1, and two individuals, α2, α3 as support-
ing parents.

ii. Select at random a variable j.
iii. Crossover rate: Let the crossover rate be

xchild
c ← xα1

c + N(0, 1)× (xα2
c − xα3

c ) (1)

If the crossover rate is not in [0, 1], repair the
crossover rate according to the repair rule.

iv. Mutation rate: Let the mutation rate be

xchild
m ← xα1

m + N(0, 1)× (xα2
m − xα3

m ) (2)

If the mutation rate is not in [0, 1], repair the
mutation rate according to the repair rule.

v. Crossover: For each variable i
With some probability Uniform(0, 1) > xchild

c

or if i = j, do

xchild
i ← xα1

i + N(0, 1)× (xα2
i − xα3

i ) (3)

otherwise
xchild

i ← xα1
i (4)

where each variable i in the main parent, xα1
i ,

is perturbed by adding to it a ratio, F ∈
Gaussian(0, 1), of the difference between the
two values of this variable in the two support-
ing parents. At least one variable must be
changed.



vi. If the child dominates the main parent,
A. Mutation: With some probability

Uniform(0, 1) > xchild
m , do

For each variable i

xchild
i ← xchild

i + N(0, 0.1)× range (5)

Where range is the difference between the
maximum value the variable can take and
its minimum.

B. place the child into the population.
(f) Until the population size is M

3. Until termination conditions are satisfied, go to 2
above.

If the maximum number of non–dominated solutions
in the generation is greater than the user specified maxi-
mum, the following nearest neighbor distance function is
adopted:

D(x) =
(min||x− xi||+ min||x− xj ||)

2
, (6)

where x 6= xi 6= xj . That is, the nearest neighbor dis-
tance is the average Euclidean distance between the clos-
est two points. The non–dominated solution with the
smallest neighbor distance is removed from the popula-
tion until the total number of non–dominated solutions
is retained to the user specified maximum. The repair
rule is simply to truncate the constant part of the value;
therefore if, for example, the value is 3.3, the repaired
value will be 0.3 assuming that the variable is between 0
and 1.

IV. Experiments

A. Test Problems

The algorithm is tested on the following four bench-
mark problems used in Zitler and Thiele (1999):

Test Problem 1 (P1): Convex

f1(x) = x1 (7)

f2(x) = g × (1−
√

f1

g
) (8)

g = 1 + 9×
∑n

i=2 xi

n− 1
(9)

xi ∈ [0, 1], i = 1, . . . , 30 (10)

Test Problem 2 (P2): Non–convex counterpart to test
problem 1

f1(x) = x1 (11)

f2(x) = g × (1− (
f1

g
))2 (12)

g = 1 + 9×
∑n

i=2 xi

n− 1
(13)

xi ∈ [0, 1], i = 1, . . . , 30 (14)
Test Problem 3 (P3): Multimodality

f1(x) = x1 (15)

f2(x) = g × (1−
√

f1

g
) (16)

g = 1 + 10(n− 1) +
n∑

i=2

(x2
i − 10 cos(4πxi)) (17)

x1 ∈ [0, 1], xi ∈ [−5, 5], i = 2, . . . , 10 (18)
Test Problem 4 (P4): Non–uniformity case

f1(x) = 1− exp(−4x2) sin6(6πx1) (19)

f2(x) = g × (1− (
f1

g
)2) (20)

g(x) = 1 + 9(
∑n

i=2 xi

n− 1
)0.25 (21)

xi ∈ [0, 1], i = 1, . . . , 10 (22)
The first two problems contain two objective functions

and thirty variables whereas the last two contain two
objective functions and ten variables. The computational
results of these test problems are provided in the next
section.

B. Experimental Setup

To be consistent with the literature [12], the initial
population size is set to 100 and the maximum num-
ber of objective evaluations is set to 25000. The ini-
tial population is initialized according to a Gaussian dis-
tribution N(0.5, 0.15), assuming that the variables are
bounded between [0,1]; otherwise the normal distribu-
tion is scaled to cover the variables’ range. Therefore,
with high probability, the Gaussian distribution will gen-
erate values between 0.5± 3× 0.15 which fits within the
variables’ boundaries. If a variable’s value is outside its
range, the repair rule is used to maintain the boundary
constraints. Crossover and mutation rates are initialized
in the initial population from a uniform distribution be-
tween [0, 1]. The step–length parameter F is generated
for each variable from a Gaussian distribution N(0, 1).
The algorithm is written in standard C++ and ran on a
Sun Sparc 4. Each problem was repeated 20 times with
20 different seeds.



C. Experimental Results and Discussions

In this section, the solutions of four test prob-
lems using the proposed SPDE algorithm are compared
with the solutions of thirteen other EMO algorithms
(FFGA, NSGA, SPEA, HLGA, RAND, VEGA, NPGA,
SOEA, PAES98, PAES.gray, PAES98.gray, PAES20 and
PAES98mut3p) using the statistical comparison tech-
nique of Knowles and Corne [8]. We obtained the al-
gorithms’ results from the web site

“http//www.tik.ee.ethz.ch/vzitzler/testdata.html”.
The results of PEAS was obtained from the web site

“http://www.rdg.ac.uk/vssr97jdk/multi/PAES.html”.
Tables I and II presents the SPDE results without and
with mutation respectively. By comparing both tables,
the results without mutation as shown in Table I are
much better than their counterparts in Table II for
problems P1, P2, and P4. For problem P3, we can see a
slight improvement for SPDE with mutation against all
algorithms except for VEGA and SOEA. We can also
notice that there is a considerable improvement against
PAES.gray.

TABLE I

The results of the statistical analysis performed

between SPDE and 13 other algorithms. The values

take the form [a, b], where a is the percentage of

the pareto frontier where SPDE outperformed the

other algorithm and b is the percentage the other

algorithm outperformed SPDE for the four test

problems. No mutation is used with SPDE.

Functions
Algorithm

P1 P2 P3 P4
FFGA [85.1,11.0] [81.5,10.1] [85.6,9.8] [100.0,0.0]

NSGA [85.9,13.2] [83.0,15.8] [74.7,20.9] [100.0,0.0]

SPEA [70.7,23.5] [76.4,23.0] [68.5,13.9] [100.0,0.0]

HLGA [81.1,17.2] [81.4,16.4] [55.7,41.5] [100.0,0.0]

RAND [87.6,7.5] [87.7,7.4] [83.8,12.1] [100.0,0.0]

VEGA [83.3,13.3] [91.9,7.3] [80.1,14.4] [100.0,0.0]

NPGA [84.9,12.0] [90.4,7.8] [81.7,15.4] [100.0,0.0]

SOEA [77.0,22.1] [77.9,22.0] [100.0,0.0] [100.0,0.0]

PAES98 [45.5,43.0] [57.6,0.0] [70.7,0.0] [98.6,0.7]

PAES.gray [100.0,0.0] [100.0,0.0] [68.9,0.0] [100.0,0.0]

PAES98.gray [96.5,0.0] [100.0,0.0] [100.0,0.0] [100.0,0.0]

PAES20 [48.1,18.0] [51.9,0.0] [72.0,0.0] [99.4,0.0]

PAES98.mut3p [85.1,11.4] [77.2,20.0] [67.5,25.0] [100.0,0.0]

C.1 Analyzing the Dynamics of SPDE

In this section, we are interested in analyzing the dy-
namics and behavior of SPDE. To undertake this, we

TABLE II

The results of the statistical analysis performed

between SPDE and 13 other algorithms. Mutation

is used with SPDE.

Functions
Algorithm

P1 P2 P3 P4
FFGA [84.7,11.3] [81.0,10.4] [85.6,8.7] [100.0,0.0]

NSGA [64.7,28.3] [69.7,29.3] [74.7,20.4] [100.0,0.0]

SPEA [0.0,100.0] [54.8,41.7] [68.4,13.9] [100.0,0.0]

HLGA [80.2,17.8] [80.5,17.8] [56.1,39.4] [100.0,0.0]

RAND [87.4,7.6] [87.5,7.5] [86.8,7.5] [100.0,0.0]

VEGA [81.9,13.9] [76.7,22.7] [80.0,14.4] [100.0,0.0]

NPGA [84.3,12.5] [83.6,14.7] [82.4,12.1] [100.0,0.0]

SOEA [0.0,100.0] [61.6,35.8] [100.0,0.0] [100.0,0.0]

PAES98 [43.4,55.7] [41 1,3.9] [71.0,0.0] [98.3,1.2]

PAES.gray [49.5,49.7] [86.9,3.3] [100.0,0.0] [100.0,0.0]

PAES98.gray [47.4,50.8] [89.1,2.4] [100.0,0.0] [100.0,0.0]

PAES20 [44.8,54.6] [36.7,14.9] [75.4,0.0] [98.9,0.0]

PAES98.mut3p [84.9,11.6] [76.8,20.2] [68.0,23.8] [100.0,0.0]

plotted in Figure 1 the first eight generations of a typi-
cal run for SPDE. By scrutinizing the top two graphs in
the figure, it is easy to see a dramatic improvement from
generation 0 to generation 1. In generation 0, the solu-
tions were generated at random and all pareto optimal
solutions in the population were very far from the actual
pareto frontier. A substantial shift of the pareto frontier
occurred between generation 0 to generation 1. In addi-
tion, the number of pareto optimal solutions is very small
(around 15 pareto solutions) compared to the dramatic
increase in generation 1. The intensity of the pareto fron-
tier in generation 1 is supported by the thickness of the
curve. It is notable however that the pareto frontier be-
came sparse once more in generations 3 to 6 where it
started thickening again in generation 7. On the contrary
to the transition from generation 0 to 1, starting from
generation 1, the length of the shift in the pareto frontier
in each generation towards the actual pareto frontier is
quite small.

The dynamics of SPDE entail that the algorithm flips
all the time between improving the quality of the pareto
frontier by pushing it towards the actual one, and im-
proving the intensity of the number of pareto optimal
solutions on the pareto frontier. This type of dynamics
is quite interesting as it suggests the possibility of devel-
oping a two phase algorithm where the first stage pushes
the pareto set to the actual pareto frontier and the sec-
ond stage spread the solutions and increase the intensity
of the pareto solutions on the pareto frontier.
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Fig. 1. The dynamics of SPDE in the first eight generations
for one of the runs for Function P1.

C.2 The Parameters’ Effect on SPDE

In this section, we investigate the performance of
SPDE by varying the maximum number of objective
evaluations and population size. To do this, we vary
the maximum number of objective evaluations between
10,000 to 100,000 with a step of 10,000 and the popu-
lation size between 100 to 250 with a step of 50. To
have a proper comparison, we always compare against
SPDE without mutation with the different parameters
and PAES20. Figures 2, 3, 4, and 5 present the results
for the four test problems.

A population size of 100 seems to have a good perfor-
mance compared to other population sizes. For problem
1, in Figure 2, with 10,000 objective evaluations, SPDE
completely dominates PAES20. For problem 2, in Fig-
ure 3, SPDE dominates PAES20 soon after 20,000 ob-
jective evaluations. With problems 3 and 4, in Figures 4
and 5, SPDE dominates PAES20 with the smallest num-
ber of objective evaluations of 10,000. An increase in
the number of objective evaluations does not change the
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Fig. 2. The effect of maximum number of objective eval-
uations and population size on SPDE as compared to
PAES20 for problem P1.
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Fig. 3. The effect of maximum number of objective eval-
uations and population size on SPDE as compared to
PAES20 for problem P2.

percentage of the pareto frontier where SPDE dominates
PAES20. When the population size increases, it takes
more objective evaluations to generate the same effect.
This is a general trend with the four problems and there-
fore may suggest that longer search is more important
than large populations.

V. Conclusions and Future Research

In this paper, a self–adaptive version of the pareto
differential evolution algorithm was introduced for mul-
tiobjective optimization problems. The approach self–
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Fig. 4. The effect of maximum number of objective eval-
uations and population size on SPDE as compared to
PAES20 for problem P3.
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Fig. 5. The effect of maximum number of objective eval-
uations and population size on SPDE as compared to
PAES20 for problem P4.

adapts the crossover and mutation rates. We tested the
approach on four benchmark problems, where it outper-
formed a number of the state–of–the–art approaches in
the literature. We also examined the effect of population
size and maximum number of objective evaluations. It
was found that the increase in population size did not
have a large effect on the performance on our test cases.
In addition, the approach did not require large number of
objective evaluations to outperform the other algorithms.

For future work, we intend to further examine the
SPDE algorithm and improve its performance for mul-

tiobjective optimization problems. It is our intention to
minimize the user load with regard to the parameter’s
choices to minimum to make the approach more attrac-
tive for decision makers in real life domains.
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