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Abstract

The use of evolutionary algorithms (EAs) to solve problems with multiple
objectives (known as Vector Optimization Problems (VOPs)) has attracted
much attention recently. Being population based approaches, EAs offer a
means to find a group of pareto–optimal solutions in a single run. Differential
Evolution (DE) is an EA that was developed to handle optimization prob-
lems over continuous domains. The objective of this paper is to introduce a
novel Pareto Differential Evolution (PDE) algorithm to solve VOPs. The so-
lutions provided by the proposed algorithm for five standard test problems, is
competitive to nine known evolutionary multiobjective algorithms for solving
VOPs.
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1. Introduction

Although single objective decision models are sufficient for some decision

making processes, there are many situations where problems involve multi-

ple objectives. Multi–objective problems are known as Vector optimization

problems (VOPs). In these situations, the aim is to simultaneously optimize

a group of conflicting objectives. VOPs are a very important research topic,

not only because of the multi–objective nature of most real–world decision

problems, but also because there are still many open questions in this area.

In fact, there is no universally accepted definition of “optimum” in VOP as

opposed to single–objective optimization problems, which makes it difficult

to even compare results of one method to another. Normally, the decision

about what the “best” answer is, corresponds to the so–called human decision
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maker2.

Traditionally, there are several methods available in the Operational Re-

search (OR) literature for solving VOPs as mathematical programming mod-

els, viz goal programming 1, weighted sum method13, goals as requirement2, goal

attainment 15, and the iso–resource–cost solution method 16. The concept of

a goal is somewhat different from an objective. A goal is usually considered

as a planned objective. Therefore, the optimality is measured, in the case of

goal–based methods, in terms of the amount of deviation from the planned

levels (aspiration levels). Among the previous methods, goal programming is

the most widely used in practice although it relies on domain knowledge to

setup the goals’ aspiration levels. None of the traditional methods treat all

the objectives simultaneously, except the Iso–resource–cost Solution method,

which is a basic requirement in most VOPs. Subsequently, the solutions may

be far away from the acceptable ones. These methods handle VOPs with a

set of impractical assumptions such as linearity and convexity.

The iso–resource–cost solution method16 has been recently demonstrated

for a problem with two objectives, two variables and few constraints. To gen-

erate the iso–cost solutions, the cost is assumed to equal the total cost of

all available resources. Therefore, the set of solutions assumes full utilization

of the resource budget. This may lead to many infeasible solutions (under

original problem structure) in the solution set16. The amount of available

resources is decided based on many factors other than the budget, and finding

the appropriate mix of resources will make the problem even more complex.

However, the concept of iso–resource–cost solutions would be very useful to

enhance the future research in VOPs.

In VOPs, there is no single optimal solution, but rather a set of alternative

solutions. These solutions are optimal in the wider sense that no other solu-

tions in the search space are superior to (dominate) them when all objectives

are simultaneously considered. They are known as pareto–optimal solutions.

Pareto–optimality is expected to provide flexibility for the human decision

maker in multiobjective optimization.

Recently, evolutionary algorithms (EAs) were found useful for solving VOPs17.

EAs have some advantages over traditional OR techniques. For example, con-

siderations for convexity, concavity, and/or continuity of functions are not

necessary in EAs, whereas, they form a real concern in traditional OR tech-

niques. Although EAs are successful, to some extent, in solving VOPs, the

methods appearing in the literature vary a lot in terms of their solutions and

the way of comparing their best results with other existing algorithms. In

other words, there is no well–accepted method for VOPs that will produce a
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good set of solutions for all problems. This motivates the further development

of good approaches to VOPs.

In this paper, we propose a novel Differential Evolution (DE) algorithm

for VOPs. The approach shows promising results when compared with nine

evolutionary multiobjective algorithms for five benchmark problems. The

motivation for the current study was initially to use an efficient evolutionary

multiobjective algorithm for training artificial neural networks. This dragged

us into DE as an evolutionary algorithm which is designed for continuous do-

mains and use quite different crossover operator from other EAs. We then

developed the PDE algorithm introduced in this paper and decided to start

testing it on conventional optimization problems before using it for artificial

neural networks. At the moment, we are using PDE for prediction and clas-

sification by neural networks and it is found to be very competitive against

artificial neural networks training’s approaches.

The paper is organized as follows: background materials are scrutinized

in Section followed by the proposed algorithm in Section . Experiments are

then presented in Section and conclusions are drawn in Section .

2. Background Materials

2.1. Local and Global optimality in VOPs

Consider a VOP model as presented below:-

Optimize F (~x)

subject to: Ω = {~x ∈ Rn|G(~x) ≤ 0}

Where ~x is a vector of decision variables (x1, . . . , xn) and F (~x) is a vector

of objective functions (f1(~x), . . . , fK(~x)). Here f1(~x), . . . , fK(~x), are functions

on Rn and Ω is a nonempty set in Rn. The vector G(~x) represents constraints

that may be easily handled explicitly, such as lower and upper bounds on the

variables.

In VOPs, the aim is to find the optimal solution ~x∗ ∈ Ω which optimize

F (~x). Each objective function, fi(~x), is either maximization or minimization.

In this paper, we assume that all objectives are to be minimized for clarity

purposes. We may note that any maximization objective can be transformed

to a minimization one by multiplying it by -1.

To define the concept of non–dominated solutions in VOPs, we need to
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define two operators, � and - and then assume two vectors, ~x and ~y. ~x � ~y

iff ∃ xi ∈ ~x and yi ∈ ~y such that xi 6= yi. And, ~x - ~y iff ∀ xi ∈ ~x and

yi ∈ ~y, xi ≤ yi, and ~x � ~y. � and - can be seen as the “not equal to” and

“less than or equal to” operators respectively, over two vectors. We can now

define the concepts of local and global optimality in VOPs.

Definition 1: Neighborhood or open ball The open ball (ie. a neighbor-

hood centered on ~x∗ and defined by the Euclidean distance) Bδ(~x
∗) =

{~x ∈ Rn| ||~x− ~x∗|| < δ}.
Definition 2: Local efficient (non–inferior/ pareto–optimal) solution

A vector ~x∗ ∈ Ω is said to be a local efficient solution of VOP iff @ ~x ∈
(Bδ(~x

∗) ∩ Ω) such that F (~x) - F (~x∗) for some positive δ.

Definition 3: Global efficient (non–inferior/ pareto–optimal) solu-

tion A vector ~x∗ ∈ Ω is said to be a global efficient solution of VOP iff

@ ~x ∈ Ω such that F (~x) - F (~x∗).

Definition 4: Local non–dominated solution A vector ~y∗ ∈ F (~x) is said

to be local non–dominated solution of VOP iff its projection onto the

decision space, ~x∗, is a local efficient solution of VOP.

Definition 5: Global non–dominated solution A vector ~y∗ ∈ F (~x) is

said to be global non–dominated solution of VOP iff its projection onto

the decision space, ~x∗, is a global efficient solution of VOP.

In this paper, the term “non–dominated solution” is used as a shortcut for

the term “global non–dominated solution”.

2.2. VOPs and EAs

EAs for VOPs2 can be categorized as plain aggregating, population–based

non–Pareto and Pareto–based approaches. The plain aggregating approaches

takes a linear combination of the objectives to form a single objective func-

tion (such as in the weighted sum method, goal programming, and goal at-

tainment). This approach produces a single solution at a time that may not

satisfy the decision maker, and it requires the quantification of the importance

of each objective (eg. by setting numerical weights), which is very difficult for

most practical situations. However optimizing all the objectives simultane-

ously and generating a set of alternative solutions, offer more flexibility to

decision makers. The simultaneous optimization can fit nicely with popula-

tion based approaches, such as EAs, because they generate multiple solutions

in a single run.

The Random Sampling Evolutionary Algorithm (RAND)17 generates ran-

domly a certain number of individuals per generation, according to the rate
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of crossover and mutation (though neither crossover, mutation nor selection

are performed). Hence the number of fitness evaluations was the same as

for the EAs. Another algorithm called Single Objective Evolutionary Algo-

rithm (SOEA) 17 uses the weighted-sum aggregation. In contrast to other

algorithms, 100 independent runs were performed per test problem, each run

being optimized towards another randomly chosen linear combination of the

objectives. The nondominated solutions among all solutions generated in the

100 runs form the trade-off frontier achieved on a particular test problem.

The Vector Evaluated Genetic Algorithm (VEGA)10 is a population-based

non-Pareto approach. In this approach, the total population is divided into

a number of populations equal to the number of objective functions to be

optimized. Each population is used to optimize each objective function in-

dependently. The populations are then shuffled together followed by conven-

tional crossover and mutation operators. Schaffer10 realized that the solutions

generated by his system were non-dominated in a local sense, because their

non-dominance was limited to the current population, and while a locally

dominated individual is also globally dominated, the converse is not necessar-

ily true.

In the Pareto–based approaches, the dominated and non–dominated solu-

tions in the current population are separated. Goldberg 5 suggested a non–

dominated ranking procedure to decide the fitness of the individuals. Later,

Srinivas and Dev 11 introduced Non–dominated Sorting Genetic Algorithms

(NSGA) based on the idea of Goldberg’s procedure. The population’s indi-

viduals are layered according to their ranks. Afterwards, the non–dominated

individuals are removed layer by layer from the population.

Hajela’s and Lin’s genetic algorithm (HLGA)6 is also a non-Pareto ap-

proach that uses the weighted-sum method for fitness assignment. Thereby,

each objective is assigned a weight between zero and one, with the sum of

all weights being exactly equal to one. To search for multiple solutions in

parallel, the weights are encoded in the genotype. The diversity of the weight

combinations is promoted by phenotypic fitness sharing. As a consequence,

the EA evolves solutions and weight combinations simultaneously.

In the Pareto-based approaches, the dominated and non-dominated solu-

tions in the current population are separated. Goldberg 5 suggested a non-

dominated ranking procedure to decide the fitness of the individuals. Later,

Srinivas and Dev 11 introduced Non-dominated Sorting Genetic Algorithms

(NSGA) based on the idea of Goldberg’s procedure. In this method, the fitness

assignment is carried out through several steps. In each step, the nondom-

inated solutions constituting a nondominated frontier are assigned the same
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dummy fitness value. These solutions have the same fitness values and are

ignored in the further classification process. Finally, the dummy fitness is set

to a value less than the smallest shared fitness value in the current nondomi-

nated frontier. Then the next frontier is extracted. This procedure is repeated

until all individuals in the population are classified.

Fonseca and Fleming4 proposed a slightly different scheme which is known

as Fonseca and Fleming’s genetic algorithm (FFGA). In this approach, an

individual’s rank is determined by the number of individuals dominating it.

Without using any non-dominated ranking methods, Horn et al7 proposed the

Niched Pareto Genetic Algorithm (NPGA) that combines tournament selec-

tion and the concept of Pareto dominance. Two competing individuals and

a comparison set of other individuals are picked at random from the popula-

tion; the size of the comparison set is given by a user defined parameter. If

one of the competing individuals is dominated by any member of the set and

the other is not, then the later is chosen as the winner of the tournament. If

both individuals are dominated (or not dominated), the result of the tourna-

ment is decided by sharing: the individual that has the least individuals in

its niche (defined by the niche radius) is selected for reproduction. Horn and

Nafpliotis7 used phenotypic sharing on the objective vectors.

The common features of the Pareto–based approaches mentioned above are

that (i) the Pareto–optimal solutions in each generation are assigned either

the same fitness or a rank, and (ii) some sharing and niche techniques are

applied in the selection procedure. Recently, Zitler and Thiele17 proposed a

Pareto–based method, the Strength Pareto Evolutionary Algorithm (SPEA).

The main features of this approach are: it

1. sorts non–dominated solutions externally and continuously update pop-

ulation,

2. evaluates an individual’s fitness depending on the number of external

non–dominated points that dominate it,

3. preserves population diversity using the Pareto dominance relationship,

and

4. incorporates a clustering procedure in order to reduce the non–dominated

set without destroying its characteristics.

Most recently, Knowles and Corne 8,9 proposed a simple Evolution Strate-

gies, (1+1)–ES, known as the Pareto Archived Evolution Strategy (PAES) that

keeps a record of limited non–dominated individuals. The non–dominated in-

dividuals are accepted for recording based on the degree of crowdiness in their

grid (defined regions on the Pareto–frontier) location to ensure diversity of

individuals in the final solution. The algorithm is strictly confined to local
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search i.e. it uses a small change (mutation) operator only, and move from a

current solution to a nearby neighbor. As they reported, the algorithm works

well, specially for problems of low computational complexity. They also pro-

pose an extension to this basic approach, which results in some variants of a

(µ + λ) –ES. The performance of the algorithm is judged, by solving several

test problems, and analyzing the superiority on different regions of the attain-

ment surfaces.

2.3. Statistical Analysis

VOPs require multiple, but uniformly distributed, solutions to form a

Pareto trade–off frontier. When comparing two algorithms, these two fac-

tors (number of alternative solution points and their distributions) must be

considered. There are a number of methods available in the literature to

compare the performance of different algorithms. The error ratio and the

generational distance are used as the performance measure indicators when

the Pareto optimal solutions are known 14. The spread measuring technique

expresses the distribution of individuals over the non–dominated region 11.

The method is based on a chi–square–like deviation distribution measure, and

it requires several parameters to be estimated before calculating the spread

indicator.

The method of coverage metrics17 compares the performances of different

multi–objective evolutionary algorithms. It measures whether the outcomes

of one algorithm dominate those of another without indicating how much bet-

ter it is.

Most recently, Knowles and Corne 9 proposed a method to compare the

performances of two or more algorithms by analyzing the distribution of an

approximation to the Pareto–frontier. For two objective problems, the attain-

ment surface is defined as the lines joining the points on the Pareto–frontier

generated by an algorithm. Therefore, for two algorithms A and B, there are

two attainment surfaces. A number of sampling lines can be drawn from the

origin, which intersects with the attainment surfaces, across the full range of

the Pareto–frontier. For a given sampling line, the intersection of an algorithm

closer to the origin (for both minimization) is the winner. Given a collection

of k attainment surfaces, some from algorithm A and some from algorithm

B, a single sampling line yields k points of intersection, one for each surface.

These intersections form a univariate distribution, and we can therefore per-

form a statistical test to determine whether or not the intersections for one

of the algorithms occurs closer to the origin with some statistical significance.

Such a test is performed for each of several lines covering the Pareto tradeoff
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area. Insofar as the lines provide a uniform sampling of the Pareto surface,

the result of this analysis yields two numbers – a percentage of the surface

in which algorithm A significantly outperforms algorithm B, and the percent-

age of the surface in which algorithm B significantly outperforms algorithm A.

2.4. Differential Evolution

Evolutionary algorithms3 is a kind of global optimization techniques that

use selection and recombination as their primary operators to tackle opti-

mization problems. Differential evolution (DE) is a branch of evolutionary

algorithms developed by Rainer Storn and Kenneth Price 12 for optimization

problems over continuous domains. In DE, each variable is represented in the

chromosome by a real number. The approach works as follows:-

1. Create an initial population of potential solutions at random, where it is

guaranteed, by some repair rules, that variables’ values are within their

boundaries.

2. Until termination conditions are satisfied

(a) Select at random a trail individual for replacement, an individual

as the main parent, and two individuals as supporting parents.

(b) With some probability, called the crossover probability, each variable

in the main parent is perturbed by adding to it a ratio, F , of the

difference between the two values of this variable in the other two

supporting parents. At least one variable must be changed. This

process represents the crossover operator in DE.

(c) If the resultant vector is better than the trial solution, it replaces

it; otherwise the trial solution is retained in the population.

(d) go to 2 above.

From the previous discussion, DE differs from genetic algorithms (GA) in

a number of points:

1. DE uses real number representation while conventional GA uses binary,

although GA sometimes uses integer or real number representation as

well.

2. In GA, two parents are selected for crossover and the child is a recom-

bination of the parents. In DE, three parents are selected for crossover

and the child is a perturbation of one of them.

3. The new child in DE replaces a randomly selected vector from the pop-

ulation only if it is better than it. In conventional GA, children replace

the parents with some probability regardless of their fitness.
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3. PDE: The Pareto Differential Evolution algorithm for VOPs

The Pareto–frontier Differential Evolution (PDE) algorithm for vector op-

timization problems is an adaptation of the DE algorithm described in the

previous section with the following modifications:-

1. The initial population is initialized according to a Gaussian distribution

N(0.5, 0.15).

2. The step–length parameter, F , is generated from a Gaussian distribution

N(0, 1).

3. Reproduction is undertaken only among non–dominated solutions in

each generation.

4. The boundary constraints are preserved either by reversing the sign if

the variable is less than 0 or keeping subtracting 1 if it is greater than 1

until the variable is within its boundaries.

5. Offspring are placed into the population if they dominate the main par-

ent.

The algorithm works as follows. Assuming that all variables are bounded

between (0,1), an initial population is generated at random from a Gaus-

sian distribution with mean 0.5 and standard deviation 0.15. All dominated

solutions are removed from the population. The remaining non–dominated

solutions are retained for reproduction. Three parents are selected at random

(one as a main and also trial solution and the other two as supporting parents).

A child is generated from the three parents and is placed into the population

if it dominates the main parent; otherwise a new selection process takes place.

This process continues until the population is completed. A generic version

of the adopted algorithm follows

1. Create a random initial population of potential solutions. Each vari-

able is assigned a random value according to a Gaussian distribution

N(0.5, 0.15).

2. Repeat

(a) Evaluate the individuals in the population and label those who are

non–dominated.

(b) If the number of non–dominated individuals in the population is

less than 3 repeat the following until the number of non–dominated

individuals in the population is greater than or equal to 3.

i. Find a non–dominated solution among those who are not la-

belled.
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ii. Label the solution as non–dominated.

(c) If the number of non–dominated individuals in the population is

greater than the allowed maximum, apply the neighborhood dis-

tance function until the number of non–dominated individuals in

the population is less than the allowed maximum.

(d) Delete all dominated solutions from the population.

(e) Repeat

i. Select at random an individual as the main parent α1, and two

individuals, α2, α3 as supporting parents.

ii. Select at random a variable j.

iii. For each variable i

A. With some probability Uniform(0, 1) or if i = j, do

xchild
i ← xα1

i + F (xα2
i − xα3

i ) (1)

otherwise

xchild
i ← xα1

i (2)

where each variable i in the main parent, xα1
i , is perturbed

by adding to it a ratio, F ∈ Gaussian(0, 1), of the difference

between the two values of this variable in the two supporting

parents. At least one variable must be changed.

iv. If the child dominates the main parent, place it into the popu-

lation.

(f) Until the population size is M

3. Until termination conditions are satisfied, go to 2 above.

A maximum number of non–dominated solutions in each generation was

set to 50. If this maximum is exceeded, the following nearest neighbor distance

function is adopted:

D(x) =
(min||x− xi||+ min||x− xj ||)

2
,

where x 6= xi 6= xj . That is, the nearest neighbor distance is the average Eu-

clidean distance between the closest two points. The non–dominated solution

with the smallest neighbor distance is removed from the population until the

total number of non–dominated solutions is retained to 50.

We may note here that similar to the conventional DE algorithm and on

the contrary to other evolutionary algorithms, the algorithm requires in step

(ii) of (d) above that at least one variable be crossovered. Therefore, even if

the crossover probability is zero, PDE still performs crossover (Step A of e–iii).

4. Experiments
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4.1. Test Problems

The algorithm is tested on the following five benchmark problems used in

Zitler and Thiele (1999):

Test Problem 1: Convex

f1(x) = x1

f2(x) = g × (1−
s

f1

g
)

g = 1 + 9×
Pn

i=2 xi

n− 1

xi ∈ [0, 1], i = 1, . . . , 30

Test Problem 2: Non–convex counterpart to test problem 1

f1(x) = x1

f2(x) = g × (1− (
f1

g
))2

g = 1 + 9×
Pn

i=2 xi

n− 1

xi ∈ [0, 1], i = 1, . . . , 30

Test Problem 3: Discontinuous pareto–front

f1(x) = x1

f2(x) = g ∗ (1−
s

f1

g
− f1

g
sin(10πf1))

g = 1 + 9× (
Pn

i=2 xi)

(n− 1)

xi ∈ [0, 1], i = 1, . . . , 30

Test Problem 4: Multimodality

f1(x) = x1

f2(x) = g × (1−
s

f1

g
)
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g = 1 + 10(n− 1) +

nX
i=2

(x2
i − 10 cos(4πxi))

x1 ∈ [0, 1], xi ∈ [−5, 5], i = 2, . . . , 10

Test Problem 5: Non–uniformity case

f1(x) = 1− exp(−4x2) sin6(6πx1)

f2(x) = g × (1− (
f1

g
)2)

g(x) = 1 + 9(

Pn
i=2 xi

n− 1
)0.25

xi ∈ [0, 1], i = 1, . . . , 10

All test problems contain two objective functions and thirty (first three

problems) or ten (last two problems) variables. The computational results of

these test problems are provided in the next section.

4.2. Experimental Setup

The initial population size is set to 100 and the maximum number of gen-

erations to 200. Twenty different crossover rates changing from 0 to 1.00 with

an increment of 0.05 are tested with a small mutation rate of 0.01. The ini-

tial population is initialized according to a Gaussian distribution N(0.5, 0.15).

Therefore, with high probability, the Gaussian distribution will generate val-

ues between 0.5 ± 3 × 0.15 which fits with the variables’ boundaries. If a

variable’s value is not within its range, a repair rule is used to maintain the

boundary constraints. The repair rule is simply to truncate the constant part

of the value; therefore if, for example, the value is 3.3, the repaired value will

be 0.3 assuming that the variable is between 0 and 1. The step–length pa-

rameter F is generated for each variable from a Gaussian distribution N(0, 1).

The algorithm is written in standard C++ and ran on a Sun Sparc 4.

4.3. Experimental Results and Discussions

In this section, the solutions of five test problems, provided by our PDE

algorithm, are compared with the solutions of twelve other MEAs (FFGA,

HLGA, NPGA, NSGA, RAND, SOEA, SPEA, VEGA, PAES, PAESgray,

PAES98gray, PAES98 and PAES98mut3p) using the statistical comparison

technique.
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In Figure 1(right) we plotted all non–dominated solutions for the first

twenty runs of the five problems against the PAES98 and SPEA results. In

addition, in Figure 1(left), the number of non–dominated solutions found for

each crossover probability is shown. We obtained the algorithms’ results from

the web site

“http//www.tik.ee.ethz.ch/vzitzler/testdata.html”.

The results of PEAS was obtained from the web site

“http://www.rdg.ac.uk/vssr97jdk/multi/PAES.html”

The crossover rates of the solutions plotted were 0.15, 0.25, 0.05, 0.10,

and 0.85 for the five test problems respectively. As can be seen in Figure 1

(left), the Pareto–frontier is always lower than SPEA and the distribution of

the points on the Pareto–frontier is more uniformly distributed than SPEA.

In comparison to PAES, the performance is similar with small improvement.

However, for problem 4, PDE clearly outperformed PAES. The statistical test

will give a more accurate conclusion later in this section.

In terms of the number of non–dominated solutions, one can see a trend

in the first four problems, where the distribution of non–dominated solutions

against the crossover rate follows a skewed bell shape. For problem 5, the

peaks are close to each others and the bell shape is not clear. However, we

will see in the rest of the discussions that the performance of PDE on problem

5 was somewhat consistent with small variations. SPEA had 179, 107, 190,

84, and 3 non–dominated solutions in total in all twenty runs.

From the experimental results, it is clear that the solution’s quality varies

with the crossover rate. However, the results suggest that there is a trend in

most of the problems which may suggest that the relationship between the

crossover rate and the solution’s quality is almost unimodal. This is very in-

teresting since it makes the search problem for finding a good crossover rate

easy. However, extending our generalizations to any multiobjective problem

would require many researchers to adopt PDE in a large number of real life

applications.

To compare between PDE and the nine algorithms, we need to perform the

statistical analysis using Knowles and Corne method 9. Here, we use the solu-

tions of the twenty runs for each crossover rate. The results of the comparison

is presented in the form of a pair [a,b], where a gives the percentage of the

space (i.e. the percentage of lines) on which algorithm A is found statistically

superior to B, and b gives the similar percentage for algorithm B.

In Figures 2, 3, 4, 5, and 6, the performance of PDE for each crossover

rate is compared against the nine algorithms. Since we found 4 different ver-

sions for PAES, we compared against the four version; therefore we have eight
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algorithms and four versions of PAES to comprise a total of 12 comparisons.

For the other algorithms, the results are the best published results; therefore,

the crossover rate on the x–axis does not reflect the crossover rate used in

each algorithm, but the crossover rate used to obtain the results for PDE.

In Figure 2, we can see that there is always a crossover rate where PDE

outperforms all other algorithms. In problem 1, the best crossover rate is 0.15.

This crossover rate achieves at least 80% dominance to all algorithms.

For problem 2, as shown in Figure 3, PDE outperformed all algorithms

at crossover 0.25 except for SPEA where the statistical results are [17.7 20.1]

which indicates that SPEA outperforms PDE with around 3% more.

For problem 3, as shown in Figure 4, although there is always a crossover

rate where PDE is better than any of the twelve algorithms, there is no single

crossover rate which is consistently better. We can verify this when comparing

PDE against SPEA, where PDE outperforms SPEA with crossover rate 0.05

but PAES98 outperforms PDE at this crossover rate. However, at crossover

0.45 and 0.50, PDE outperforms PAES98 although it is very bad when com-

pared against SPEA.

For problem 4, as shown in Figure 5, PDE outperformed all algorithms

with any crossover rate less than 0.4. The best performance for PDE achieved

with crossover rate of 0.10.

For problem 6, as shown in Figure 6, there is a clear trend that PDE dom-

inated all other algorithms, except PAES98, for almost all crossover rate and

dominated PAES98 at crossover rates of 0.80 and 0.85.

In Figure 7, we plotted the number of objective evaluations (minimum,

average, and maximum) for each crossover probability for each problem. All

problems except Problem 6 achieved small standard deviation in terms of the

number of objective evaluations required at the best chosen crossover rate. In

Problem 6, the best crossover rate was 0.85 and we can see here that there is

some variations although since the average is close to the minimum than the

maximum, this indicates that the maximum is somewhat an outlier. In brief,

the best results were obtained with a total number of objective evaluations

ranging between 35,000 to 50,000 for the five problems.

5. Conclusions and Future Research

In this paper, a novel differential evolution approach is presented for vector
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optimization problems. The approach generates a step by mutation, where

the step is generated from a Gaussian distribution. We tested the approach

on five benchmark problems and it was found that our approach is competi-

tive to most other approaches. We also experimented with different crossover

rates, on these five test problems, to find their best solutions. The crossover

rates are found to be very sensitive to the solutions. However, in all cases,

the crossover rate which results in a large number of non–dominated solutions

also gives the best approximation to the pareto–front.
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Figure 1: Right: The performance of the PDE algorithm compared with PAES98
and SPEA on the five test problems. Left: The distribution of the number of
non–dominated solutions found by PDE in each problem.
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Figure 2: The percentage outperformed by PDE and the other algorithms for test
problem 1. The x–axis represents the crossover rate for our algorithm and the y–axis
represents the percentage outperformed by each algorithm.
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Figure 3: The percentage outperformed by PDE and the other algorithms for test
problem 2. The x–axis represents the crossover rate for our algorithm and the y–axis
represents the percentage outperformed by each algorithm.
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Figure 4: The percentage outperformed by PDE and the other algorithms for test
problem 3. The x–axis represents the crossover rate for our algorithm and the y–axis
represents the percentage outperformed by each algorithm.
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Figure 5: The percentage outperformed by PDE and the other algorithms for test
problem 4. The x–axis represents the crossover rate for our algorithm and the y–axis
represents the percentage outperformed by each algorithm.
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Figure 6: The percentage outperformed by PDE and the other algorithms for test
problem 5. The x–axis represents the crossover rate for our algorithm and the y–axis
represents the percentage outperformed by each algorithm.
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Figure 7: The minimum–average–maximum number of objective evaluations in each
crossover operator for each problem.


