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Abstract. A number of authors made the claim that a multiobjective
approach preserves genetic diversity better than a single objective ap-
proach. Sofar, none of these claims presented a thorough analysis to the
effect of multiobjective approaches. In this paper, we provide such anal-
ysis and show that a multiobjective approach does preserve reproductive
diversity. We make our case by comparing a pareto multiobjective ap-
proach against a single objective approach for solving single objective
global optimization problems in the absence of mutation. We show that
the fitness landscape is different in both cases and the multiobjective
approach scales faster and produces better solutions than the single ob-
jective approach.
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1 Introduction

In biological systems, natural selection is carried out on multi-traits that are
usually in conflict. In real life animal breeding, a farmer selects those animals
to cull or mate based on a multi-trait selection index. Yet, in applying artificial
evolutionary systems to solve real life problems, researchers deviate from the
biological phenomena claiming that a biological characteristic may not be the
idle choice for a computational problem. Although this assertion contains some
truth, it is somehow misused. An example for this is the use of very high mu-
tation rates in evolutionary optimization algorithms to overcome the premature
convergence problem due to loss of genetic diversity. As such, it seems that using
very high mutation rates is becoming a common practice that sometimes makes
us wonder whether the process is evolutionary or merely a random search? Mu-
tation rates in biological systems such as human is extremely low (varies between
1 in 10,000 and 1 in 1,000,000 genes within a gamete). The largest mutation rate
is 1 in 10,000 and is associated with neurofibromatosis type I, a cancer of the
nervous system. A natural question which arises here is: why premature conver-
gence did not occur in biological systems? Is it because of Niching, Speciation,



or something else?

Another similar problem exists in genetic programming, where some papers
use large populations in the order of 500-1000 individuals and the artificial evo-
lution is carried out only for a few generations 30-50 to overcome premature
convergence. A debate here is whether 30-50 generations are enough for evolu-
tion to find its way in a population size of 1000 and in very large search spaces.
An obvious question is whether the final result is actually because of evolution-
ary forces or because of luck and random factors.

In an attempt to address some of these questions, we present a multiobjective
evolutionary approach for solving single-objective global optimization problems.
Our objective is not to invent a better method, although we will see that the
proposed method is performing well. Rather, we will show that searching under
multiple evolutionary pressures alone, in the absence of mutation, maintains a
considerable amount of genetic diversity evidenced by the performance of the
proposed approach on three global optimization hard functions. We will also
show that the proposed approach exhibits better scalability. Our analysis will
also cover a comparison to the fitness landscape as well as the evolutionary dy-
namics for multiple and single evolutionary pressures.

The research questions that this paper attempts to answer some of them are:

1. Is multiobjectivity a force that balances the high selection pressure in evo-
lutionary computations?

2. Is multiobjectivity a diversity preserving and/or promoting mechanism?
3. How does the evolutionary dynamics compares between multiple and single

selection pressures?
4. How does the fitness landscape compares between multiple and single selec-

tion pressures?
5. Should the analysis for neutral paths be within a multi-selection pressure

framework in the absence of mutation?

In [7] a multiobjective approach is used for maintaining diversity in genetic
programming. The second objective in this approach was an explicit diversity
measure; therefore it is difficult to judge whether the good results are because
of the multiobjective component (that evolution is searching in two dimensional
objective space) or because the explicit inclusion of a diversity objective. In [4],
a multiobjective approach is used once more for genetic programming. The sec-
ond objective was to minimize the program size, which is an implicit diversity
preserving mechanism. However, as the authors compare a number of different
techniques, it is difficult to isolate the contribution of the multiobjective com-
ponent from other evolutionary operators in the evolutionary method.

Knowles and Corne [8] also proposed the use of multiobjective optimization
to solve single objective problems. They have shown that the multiobjective ap-
proach reduces the number of local optimum. However, their approach requires



either decomposing the original objective or the decision space. Apart from the
fact that the objective of this paper is different, the proposed approach in this
paper does not require decomposing neither the objective nor the decision space.

In our experiments, we avoided using mutation neither comparing our results
against traditional evolutionary algorithms with mutation operator. To this end,
it is important that we differentiate between a diversity promoting mechanism
and a diversity preserving or maintaining mechanism. The former, such as the
use of mutation, is a continuous source of variations to the population. The
latter, does not add variations to the population, but slows down the selection
pressure and maintains the diversity which already exists in the population.

Diversity preserving mechanisms include low selection pressure, large pop-
ulations and as we present in this paper, multi–evolutionary pressures. In the
absence of a diversity promoting mechanism, the only source of diversity is the
initial population. In other words, these methods slow down the side–effect of
the selection pressure but they do not add new variations. By using a good di-
versity preserving mechanism, we may not need high mutation.

In this paper, we present a first attempt to scrutinize the effect of a multiob-
jective approach on the fitness landscape of a problem as well as its contribution
to the diversity in the population. The rest of this paper is divided as follows: in
Section 2, the methods are introduced followed by the experimental setup and
results in Sections 3 and 4 respectively. Conclusions are drawn in Section 5.

2 Methods

A variation of the Self–adaptive Pareto–frontier Differential Evolution (SPDE)
algorithm [1] is used. We present this variation here followed by a similar al-
gorithm using a Breeder Genetic Algorithm (BGA) [9, 10] selection strategy for
single objective evolutionary optimization.

2.1 The multiobjective algorithm: The SPDE Algorithm

SPDE is a variation of PDE [2, 3] where both crossover and mutation rates
self–adapt. In the current paper, we do not allow for mutation. The crossover
rate is inherited from the parents in the same way crossover is undertaken for
the decision variables. Here, a child is generated from three parents as follows

xchild ← xα1 + F × (xα2 − xα3) (1)

where, xα1 , xα2 , xα3 are three different genotypes and F is a step.



If the maximum number of non–dominated solutions in a generation is greater
than the user specified maximum, the following nearest neighbor distance func-
tion is adopted:

D(x) =
(min||x− xi||+ min||x− xj ||)

2
, (2)

where x 6= xi 6= xj . That is, the nearest neighbor distance is the average Eu-
clidean distance between the closest two points. The non–dominated solution
with the smallest neighbor distance is removed from the population until the
total number of non–dominated solutions is retained to the user specified maxi-
mum.

If some variables in the child fall outside their range, a repair rule is used.
The rule is simply to multiply the variable by a random number from a uniform
distribution in the range 0–1 till the variable retains its original bound. A generic
version of the SPDE algorithm used in this paper follows:

1. Create a random initial population of potential solutions. Each variable is
assigned a random value according to a a Gaussian distribution N(µ, σ),
where µ is the mean of the variable’s range and σ is usually taken to be one
sixth of the variable possible range.

2. Repeat

(a) Evaluate the individuals in the population and label those who are non–
dominated.

(b) If the number of non–dominated individuals in the population is less than
3 repeat the following until the number of non–dominated individuals in
the population is greater than or equal to 3.
i. Find a non–dominated solution among those who are not labelled.
ii. Label the solution as non–dominated.

(c) If the number of non–dominated individuals in the population is greater
than the allowed maximum, apply the neighborhood distance function
(Equation 2) until the number of non–dominated individuals in the pop-
ulation is less than the allowed maximum.

(d) Delete all dominated solutions from the population.
(e) Repeat

i. Select at random an individual as the main parent α1, and two in-
dividuals, α2 and α3 as supporting parents.

ii. Select at random a variable j.
iii. Crossover rate: Let the crossover rate for the child be

xchild
c ← xα1

c + F × (xα2
c − xα3

c ) (3)

If the crossover rate is negative, make it positive. If the crossover
rate is greater than 1, let it be 0.5 ∗ (xchild

c − 1).



iv. Crossover: For each variable i
With some probability Uniform(0, 1) > xchild

c or if i = j, do

xchild
i ← xα1

i + F × (xα2
i − xα3

i ) (4)

otherwise
xchild

i ← xα1
i (5)

where each variable i in the main parent, xα1
i , is perturbed by adding

to it a ratio, F ∈ Gaussian(0, 1), of the difference between the two
values of this variable in the two supporting parents. At least one
variable must be changed.

v. If the child dominates the main parent, place the child into the pop-
ulation.

(f) Until the population size is M

3. Until the maximum number of objective evaluations allowed is reached.

Sofar, we did not mention what the second objective is for the multi–pressure
case. In designing our investigation into this problem, we were faced with the
question of how can we transform a single objective unconstrained global opti-
mization problem into a multiobjective one? A number of measures which may
preserve diversity explicitly and are relative to each population is:

1. Entropy of the population (ie. Shannon’s entropy term)
2. Mean variance of variables in the population
3. Information content (as introduced in Section 4.4)

However, we need to find a natural objective which may preserve diversity
implicitly but not a direct measure for diversity. Also, we need to find a measure
on the level of the individual rather than the population level. Assuming a global
minimization problem, a number of options include:

1. Maximizing the reverse of the original objective.
2. Maximizing/minimizing a random value assigned to each chromosome as its

second fitness.
3. Maximizing the age of the chromosome; analogue to reality where the age

reflects the experience.

From a feasibility study to investigate the three options, the first option was
the worst in terms of computational time because there was a large number of
pareto–optimal solutions at each generation. Therefore, the neighborhood func-
tion needs to be applied a large number of times to cut down the number of
pareto–optimal solutions to the user predefined number. The second was per-
forming well but the third gave the best performance in terms of the quality of
solutions and processing time. In this paper, we report the results obtained by



the third option of maximizing the age.

The age of a chromosome is a fixed value assigned to the chromosome at the
time it is created. For the first generation, the year of birth index starts with 1.
Each time a chromosome is generated in the initial population, the year of birth
index is incremented with 1. By the time the initial population is initialized, the
year of birth ranges from 1 to the population size. In subsequent generations,
the year of birth is increased by one; that is, all solutions to be generated in a
subsequent generation will share the same year of birth, which is population size
+ generation number.

A possible explanation for the good performance of the age over other ob-
jective functions is, the age allows old solutions (presumably not so good) to be
maintained in the population, thereby maintaining diversity and slowing down
the selection pressure.

2.2 The single objective algorithm

A similar algorithm to SPDE is used with two variations; the first is instead
of maintaining at most P pareto–optimal solutions - which we do not have any
more - we maintain the top P best solutions similar to the BGA strategy. The
second variation is we dropped the condition of placing the child into the popu-
lation if it dominates the parent. We simply place the child into the population.
If we place the child into the population only when it is better than the parent,
we got very bad results because it increased the evolutionary pressures.

3 Test suite and experimental setup

We tested the performance using three global optimization problems; these are:
De Jong, Griewangk, and Rastrigin functions [5, 6]. The three functions are given
below.

1. De Jong’s F1 function:

f(x) =
∑

x2
i , i = 1 . . . n,−5.12 ≤ xi ≤ 5.12

De Jong’s F1 function is a unimodal function with a unique minimum at
x1 = x2 = 0. It should be simple for a genetic algorithm as well as any
hill–climbing algorithm with a proper neighborhood operator.



Fig. 1. De Jong function in one and two dimensions.

2. Griewangk’s function:

f(x) =
∑ x2

i

4000
−

∏
cos

xi√
i

+ 1, i = 1 . . . n,−600 ≤ xi ≤ 600

In this function, the local optima are above the parabola level, which is pro-
duced by the summation term. The more we increase the search range, the
flatter the function. This function is supposed to be difficult for a genetic
algorithm because the product term causes the variables to be highly inter-
dependent.

Fig. 2. Griewangk function in one and two dimensions.



3. Rastrigin’s function:

f(x) = A× n +
∑

(x2
i −A× cos(2× π × xi)), i = 1 . . . n,−5.12 ≤ xi ≤ 5.12

This function is based on De Jong’s F1 with the addition of the cosine
term which creates a large number of local minima. The amplitude of the
function’s surface is controlled by the parameter A. When A is 10 (as in
our experiments) the domain is highly multimodal. The local minima are
located at a rectangular grid with size 1. With increasing distance to the
global minimum the fitness values of local minima become larger.

Fig. 3. Rastrigin function in one and two dimensions.

In the rest of this paper, we will refer to the single and multiobjective algo-
rithms as algorithm1 and algrotihm2 respectively. The objective of our experi-
ments is to analyze the differences between searching under single and multiple
evolutionary pressures. We would also like to find if multiobjectivity preserves
reproductive diversity. Therefore, in all of our experiments, we use the same
initial populations for both algortihm1 and algorithm2. Mutation is not used in
any experiment to avoid any source of diversity.

Each problem is run with 10, 20, 30, 40, and 50 variables to measure the
scalability of each algorithm. A population size of 100 is used and the step size
F is 0.1. The maximum number of pareto–optimal solutions for algorithm2 and
the number of solutions cloned for algorithm1 are 50. The maximum number of
objective evaluations is 1 million and the evolutionary run is terminated once
this maximum is reached. Each experiment is run 10 times and the same ten
seeds were used for all experiments.



4 Results

In Figure 4, the average and standard deviation of the best solutions found in
the ten runs are reported for the three problems with the different number of
variables. It is clear from the figure that the quality of solutions obtained by
algorithm2 is much better than those obtained by algorithm1. The scalability
of algorithm2 is notably better than algorithm1. The figure demonstrates that
searching under multiple evolutionary pressures produced better solutions than
searching under single evolutionary pressures.
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Fig. 4. The average best solution found in ten different runs for the three differen
problems with dimensions of 10, 20, 30, 40, and 50.

To scrutinize the effect of multiobjective evolutionary search and contrast it
with the single–pressure evolutionary search, we will present a detailed analysis
in the following sections using the Griewangk function. The results are consistent
on the other problems.

4.1 Convergence

Figure 5 presents the best and average fitness over 300 generations for both
algorithm1 and algorithm2. Premature convergence is very clear for algorithm1,
where the best and average fitness stagnated very early in the search. The very
bad solution quality is also clear from the figure. For algorithm2, we can see
that some runs reached the global optimum. It is also apparent that the aver-
age fitness is not decaying over time, but fluctuating; therefore, this entails that
the algorithm is exploring the search space better caused by the multiobjective
pareto selection method. Convergence in algorithm2 occurred between 150 and



250 generations.

Fig. 5. The best (on left) and average (on right) solutions found in ten different runs
for the Griewangk’s problem with 10 variables for single (top graphs) and multiple
(bottom graphs) pressures.

4.2 Population trajectories and Diversity

In Figure 6, we present the progress of genotype diversity in the evolution.
We define genotype diversity as the average distance between all genotypes in a
population and the population centroid. We also present the population trajec-
tories represented by the change of the population centroid overtime.

We measured the average correlation coefficient between the diversity and
the movement of the population over the ten runs. For the multiple pressure
algorithm, the correlation was 0.79 for the first 200 generations and 0.78 for the
single pressure algorithm over the first 50 generations. This may entail that the



0 50 100 150 200 250 300
0

20

40

60

80

100

120
A typical run for Single−pressure Evolution

Generations

M
o

ve
m

e
n

t 
o

f 
p

o
p

u
la

tio
n

 c
e

n
tr

o
id

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450
A typical run for Single−pressure Evolution

Generations

A
ve

ra
g

e
 d

is
ta

n
ce

 f
ro

m
 p

o
p

u
la

tio
n

 c
e

n
tr

o
id

0 50 100 150 200 250 300
0

50

100

150

200

250
A typical run for Multi−pressure Evolution

Generations

M
o

ve
m

e
n

t 
o

f 
p

o
p

u
la

tio
n

 c
e

n
tr

o
id

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500
A typical run for Multi−pressure Evolution

Generations

A
ve

ra
g

e
 d

is
ta

n
ce

 f
ro

m
 p

o
p

u
la

tio
n

 c
e

n
tr

o
id

Fig. 6. The population trajectories (on left) and diversity measure (on right) for a
typical run using the Griewangk’s function for single (top graphs) and multiple (bottom
graphs) pressures.

more the population shifts in the space, the more diversity it maintains.

The previous conclusion may not be entirely true. The population movement
- measured by the change of the population centroid - can simply take place
by deleting or injecting an outlier which will also affect the diversity measure.
Therefore, we measured the average correlation coefficient between the popu-
lation diversity and the best and worst solution for each algorithm. For algo-
rithm1, the population diversity was highly correlated with the best and worst
solutions (0.95 for each case). For algorithm2, however, the population diversity
was highly correlated with worst solution (0.88) and less with the best (0.72).
These findings can also be seen in Figure 7, which depicts a typical run. It is
clear that the average fitness is closer to the worst solution than to the best for
algorithm2. However, since the worst solution is not fluctuating and is monoton-
ically decreasing, it cannot cause the oscillation that we see with the diversity
and centroid’s movement.
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Fig. 7. A typical evolutionary run showing the best, average, and worst fitness for
single pressure (left graph), and multiple pressures (right graph).

4.3 Fitness Landscape: fitness histograms

A fitness landscape is defined by the genotype representation, the fitness
function, and the operators used to generate solutions in the neighborhood. In
Figure 8, we present the fitness histogram for a hill–climbing algorithm, algo-
rithm1, and algorithm2. In hill–climbing, the algorithm starts with a random
solution, mutate it by adding a Gaussian random value N(0, 10), if the resul-
tant solution is better than the old one, it replaces it; otherwise a new solution
is generated. The average ± standard deviation for the best solutions obtained
by the hill–climbing algorithm in 10 runs are 0.550 ± 0.089. The corresponding
numbers for algorithm1 and algorithm2 are 11.678 ± 3.978 and 0.365 ± 0.326
respectively. It is clear that algorithm1 was much worse than the hill–climbing
algorithm while algorithm2 is better than both.

Fig. 8. The fitness histogram for the Griewangk’s function using hill climbing (left
graph), single pressure (middle graph), and multiple pressures (right graph).



4.4 Fitness Landscape: information contents

A rugged landscape is expected to have large fitness values between neighbor-
hood points while a smooth landscape will have small differences in the fitness
values. In this section, we employ [11] information theoretic measures for analyz-
ing the fitness landscape. We use three measures defined in [11]; the information
content, the partial information content, and the information stability. The first
measure provides an insight into the variety of shapes on, or local neighborhood
of, the landscape. The second measure gives an insight into the modality of the
path. The third measure captures the upper bound of the magnitude of the
landscape optima.

In Table 1, we provide the information contents, partial information con-
tents, and expected number of optima for single pressure and multiple pressures
evolutionary algorithms. We considered the evolutionary algorithm as a black
box which generates a sequence of solutions. This makes it easy to apply these
measures.

Table 1. The information contents and partial information contents for the Griewangk
function using single pressure and multiple pressures methods.

Method ε Information Partial Information Expected Number
Contents Contents of Optima

Single 0 0.0034 0.0006 3302
pressure 0.10 0.0017 0.0002 1398

0.50 0.0016 0.0002 1216
10.0 0.0008 0.0001 450
90.0 0.0001 0.0 40
100.0 0.0000 0.0 0

Multiple 0 0.4261 0.2171 1085560
pressure 0.10 0.0629 0.0182 91162

0.50 0.0592 0.0141 70633
10.0 0.0321 0.0061 30361
100.0 0.0051 0.0006 2957
210.0 0.0002 0.0000 42
220.0 0.0000 0.0000 0

The expected number of local optima is simply half the partial information
content multiplied by the size of the sample. When ε was zero, algorithm2 has
the highest information content and partial information content.

It is worth mentioning that ε is a tolerance factor which flattens the land-
scape. When ε is zero, the measure is very sensitive to any variations and when
ε is high, most of the landscape is flat. Information stability is the value of ε
where the information content measure in the third column of the table reaches
0. It is clear from the table that the highest information stability is achieved



with the multiple pressure algorithm, where ε is around 220.

4.5 A fair comparison

It may sound that the previous comparison was not that fair since the sin-
gle pressure algorithm did not have obvious diversity preserving mechanism. To
show that this is not entirely true, we did experiments with the single pressure
algorithm while varying the selection pressure. The selection pressure is varied
as follows. We used the breeder genetic algorithm strategy in the previous exper-
iments by cloning the best 50 individuals and generating additional 50 children
by breeding among them. Here, to reduce the selection pressure, we define a
parameter ξ which represents the best ξ individuals. When ξ is 10, we clone
50 individuals from current population. These 50 are formed from the best 10
individuals and the other 40 are chosen at random without replacement. When
selecting parents from these 50, we simply select parents at random regardless
of their fitness.

Table 2. The results under different selection pressures using the single pressure algo-
rithm.

ξ Best solution

1 10.365± 5.770
2 10.564± 4.456
3 9.780± 5.759
4 9.880± 5.793
5 8.090± 2.470
6 9.998± 5.151
7 11.353± 5.520
8 10.181± 3.580
9 9.960± 5.234
10 11.528± 3.745
20 12.484± 4.426
30 12.473± 4.441
40 12.218± 4.951
50 11.987± 5.536

We varied ξ between 1 and 10 in a step of 1 then up to 50 in a step of 10.
The results are given in Table 2. Surprisingly, the best result obtained when ξ
was 5; that is, select the best five solutions to clone as parents then select the
rest of the parents at random. This corresponds to a very low selection pressure,
which entails that searching under single pressure is very sensitive to the selec-
tion pressure. Recalling from Section 4.3, the multi–pressure algorithm is still



much better than the single pressure algorithm.

5 Conclusion

In this paper, we presented a multiobjective approach for solving single ob-
jective optimization problems. We have shown that the multiobjective approach
preserves genetic diversity better than the single objective approach in the ab-
sence of mutation. The former also gave the best results. When analyzing the
behavior of both algorithms, we found that the fitness landscapes for both al-
gorithms are different. The multiobjective approach also gave the highest infor-
mation contents.
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