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Abstract. A halftoning technique that uses a simple GA has proven
to be very effective to generate high quality halftone images. Recently,
the two major drawbacks of this conventional halftoning technique with
GAs, i.e. it uses a substantial amount of computer memory and pro-
cessing time, have been overcome by using an improved GA (GA-SRM)
that applies genetic operators in parallel putting them in a cooperative-
competitive stand with each other. The halftoning problem is a true
multiobjective optimization problem. However, so far, the GA based
halftoning techniques have treated the problem as a single objective op-
timization problem. In this work, the improved GA-SRM is extended to
a multiobjective optimization GA to generate simultaneously halftone
images with various combinations of gray level and spatial resolution.
Simulation results verify that the proposed scheme can effectively gener-
ate several high quality images simultaneously in a single run reducing
even further the overall processing time.

Keywords: multiobjective genetic algorithm, multiobjective optimiza-
tion, halftoning problem, cooperative-competitive genetic operators.

1 Introduction

The multiobjective nature of most real-world problems makes multiobjective
optimization (MO) a very important research topic. Evolutionary algorithms
(EAs) seem particularly desirable to solve MO problems because they evolve
simultaneously a population of potential solutions to the problem in hand, which
allows to search for a set of Pareto optimal solutions concurrently in a single run
of the algorithm. Many authors have been increasingly investigating MO using
EAs in recent years and the number of applications has been rapidly growing
[1-4]. In the signal processing area, application methods using EAs, especially
genetic algorithms (GAs), are also steadily being developed][5].

In this work, we especially focus on the image halftoning technique using GAs.
Kobayashi et al.[6, 7] use a GA to generate bi-level halftone images with quality
higher than conventional techniques such as ordered dithering, error diffusion
and so on[8]. However, it uses a substantial amount of computer memory and
processing time[6, 7]. Recently, Aguirre et al.[9,10] have proposed an improved
GA (GA-SRM) to overcome these two drawbacks of the conventional halfton-
ing technique with GAs. GA-SRM is based on an empirical model of GA that
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applies genetic operators in parallel putting them in a cooperative-competitive
stand with each other[11-14]. The improved GA-SRM, extended to the halfton-
ing problem, can generate high quality images achieving a 98% reduction in the
population size and an 85%-70% reduction in processing time.

The halftoning problem is a true MO problem in which high gray level and
high spatial resolution must be sought to achieve high quality images. The GA
based halftoning techniques mentioned above, however, treat the problem as a
single objective optimization problem and can generate only one image at a time.

In this work, the improved GA-SRM][9,10] is extended to a multiobjective
optimization GA to generate simultaneously halftone images with various combi-
nations of gray level and spatial resolution. The simulations results show that the
proposed scheme can effectively generate several images in a single run reducing
even further the overall processing time.

2 Halftoning Problem with GAs

Digital halftoning, a key component of an image display preprocessor, is the
method that creates the illusion of continuous tone pictures on printing and
displaying devices that are capable of producing only binary picture elements.
The fast growing computer and information industry requires each time higher
image quality and demands higher resolution devices. The halftoning algorithms
capable of delivering the appropriate image quality for such devices are also
needed.

Kobayashi et al.[6,7] use a GA to generates bi-level halftone images with
quality higher than traditional techniques such as ordered dithering, error dif-
fusion and so on[8]. An input gray tone image of R gray levels is divided into
non-overlapping blocks of n x n pixels, and then the 2-dimensional optimum
binary pattern for each image block is searched using a GA[6,7]. The GA uses
a n X n 2-dimensional binary representation for the individuals. Crossover in-
terchanges either sets of adjacent rows or columns between two individuals and
mutation inverts bits with a very small probability per bit after crossover sim-
ilar to canonical GA[15,16]. Individuals are evaluated for two factors required
to obtain visually high quality halftone images. (i) One is high gray level res-
olution (local mean gray levels close to the original image), and (ii) the other
is high spatial resolution (appropriate contrast near edges)[6,7]. The gray level
resolutions error is calculated by

1 . I
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where azgt) is i-th individual at t-th generation, p(j, k) is the gray level of the

(4, k)-th pixel in the original image block, and p;(j, k) is the estimated gray
level associated to the (7, k)-th pixel from the generated binary block. To obtain
Du(4, k), a reference region around the (j, k)-th binary pixel (for example 5 x 5
pixels) is convoluted by a gaussian filter that models the correlation among
pixels. On the other hand, the spatial resolution error is calculated by
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where ps(j, k) is the local mean gray level around the (j,k)-th pixel (within a
reference region) in the original image block, and ¢(j, k) is the binary level of
the (4, k)-th pixel in the generated image block. These two errors are combined
into one single objective function as

e(@") = W B (@) + weE.(z") (3)

where w,, and w,. are the weighting parameters for gray level and spatial reso-
lution errors, respectively. The individuals’ fitness is assigned by

F@) = e(zl) - e(2l) (4)

where e(mg,)) is the combined error of the worst individual at ¢-th generation. The
high image quality that can be achieved is the method’s major strength. However,
it uses a substantial amount of computer memory and processing time. High
quality, visually satisfactory, halftone images are obtained with 200 individuals
and 200 generations (totally 40,000 evaluations) per image block[6, 7].

Recently, Aguirre et al.[9,10] have proposed an improved GA (GA-SRM)
to overcome these two drawbacks of the conventional halftoning technique with
GAs. GA-SRM is based on an empirical model of GA that applies genetic op-
erators in parallel putting them in a cooperative-competitive stand with each
other[11-14]. GA-SRM is applied to the halftoning image problem using genetic
operators properly modified for this kind of problem(see 4.3). GA-SRM with
parallel adaptive dynamic block (ADB) mutation impressively reduces process-
ing time and computer memory to generate high quality images. For example,
GA-SRM with qualitative ADB using a 2 parent 4 offspring configuration needs
about 6,000-12,000 evaluations per image block, depending on the input image,
to obtain results similar to those achieved by the conventional image halftoning
technique using GAs. These data represent a 98% reduction in the population
size and an 85%-70% reduction in processing time.

3 Multiobjective Optimization (MO)

MO methods deal with finding optimal solutions to problems having multiple
objectives. Let us consider, without loss of generality, a minimization multiob-
jective problem with M objectives:

minimize g(x) = (g1(x), -, gm(x)) (5)
where € X is a solution vector in the solution space X, and ¢1(-),---,gm(+)
the M objectives to be minimized. Key concepts used in determining a set of
solutions for multiobjective problems are dominance, Pareto optimality, Pareto
set, and Pareto front. These concepts can be defined as follows.

A solution vector y € X is said to dominate a solution vector z € X,
denoted by g(y) = g(z), if and only if y is partially less than z, i.e., Vj €
{17"'7M}: gj(y) < gj(z) AEVAS {17"'7M} :gj(y) <gj(z)'
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A solution vector @ € X is said to be Pareto optimal with respect to X if it
is not dominated by any other solution vector, i.e., =3 x’ € X : g(z’) < g(x).
The presence of multiple objectives, usually conflicting among them, gives rise
to a set of optimal solutions. The Pareto optimal set is defined as:

P={zecX[-da'c X :g(z') 2g(x)} (6)

and the Pareto front is defined as:

PF ={g(z) = (91(z), -, gm(x)) |z € P} (7)

The multiobjective nature of most real-world problems makes MO a very
important research topic. The presence of various objectives, however, implies
trade-off solutions and makes these problems complex and difficult to solve. EAs
seem particularly desirable to solve MO problems because they evolve simulta-
neously a population of potential solutions to the problem in hand, which allows
to search for a set of Pareto optimal solutions concurrently in a single run of the
algorithm.

Many authors have been increasingly investigating MO using EAs (MOEA)
and the number of applications has been rapidly growing. The list of contribu-
tors to the field is extensive and comprehensive reviews can be found in [1-4].
Fonseca and Fleming[1] and Horn[2] examine major MOEA techniques, Coello
[3] presented a MOEA review classifying implementations from a detailed algo-
rithmic standpoint, discussing the strengths and weaknesses of each technique.
Recently, Van Veldhuizen and Lamont[4] expand upon these reviews.

4 GA-SRM extension to MO

4.1 Concept of GA-SRM

We have presented an empirical model of GA that puts parallel genetic operators
in a cooperative-competitive stand with each other pursuing better balances for
crossover and mutation over the course of a run[11-14]. The main features of
the model are (i) two genetic operators with complementary roles applied in
parallel to create offspring: Self-Reproduction with Mutation (SRM) that put
emphasis on mutation, and Crossover and Mutation (CM) that put emphasis
on recombination (ii) an extinctive selection mechanism, and (iii) an adaptive
mutation schedule that varies SRM’s mutation rates from high to low values
based on SRM’s own contribution to the population.

The parallel formulation of genetic operators allows the combination of cross-
over with high mutation rates avoiding operators’ interferences, i.e. beneficial
recombinations produced by crossover are not lost due to the high disruption
introduced by parallel mutation and similarly the survivability of beneficial mu-
tations are not affected by ineffective crossing over operations. The parallel appli-
cation of genetic operators implicitly increases the levels of cooperation between
them to introduce and propagate beneficial mutations. It also sets the stage for
competition between operators’ offspring.
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Although the parallel formulation of genetic operators can avoid interferences
between operators, it does not prevent SRM from creating deleterious mutations
or CM from producing ineffective crossing over operations. To cope with these
cases we also incorporate in the model the concept of extinctive selection that
has been widely used in Evolutionary Strategies[17]. Through extinctive selec-
tion the offspring created by CM and SRM coexist competing for survival and
reproduction as well. The poor performing individuals created by CM and SRM
are eliminated. The parallel formulation of genetic operators tied to extinctive
selection creates a cooperative-competitive environment for the offspring created
by CM and SRM. GA-SRM based on this model remarkably improves the search
performance of GA[10, 14, 18].

4.2 Multiobjective GA-SRM for Halftoning Problem

To extend GA-SRM to MO for halftoning image generation we follow a coop-
erative population search with aggregation selection[2,19-22]. The population
is monitored for non-dominated solutions; however, Pareto based fitness assign-
ment[23,24] is not directly used. A predetermined set of weights W, which pon-
der the multiple objectives, defines the directions that the algorithm will search
simultaneously in the combined space of the multiple objectives. W is specified
by

W:{wlawza"'7wN} (8)

where N indicates the number of search directions. The k-th search direction w”

is a vector of nonnegative weights specified by

wk:(wfa"'aw&) (9)

where M indicates the number of objectives and its components satisfy the
following conditions

wi>0(j=1,---,M) (10)
M
dwi=1 (11)
Jj=1

We evaluate individuals for the same two factors indicated in 2, (number of
objectives M = 2): (i) high gray level resolution and, (ii) high spatial resolution.
Here we use the same evaluation functions E,, and E., respectively, proposed
in [6,7] to calculate objective values and assign its normalized values to each
individual as indicated by

(t) min
100 x (Ep(x;”) — E
(@) = 2O Enl )~ B (12)
1 E. (t) _ gmin
92(117?)) _ 00 X (Ee(x;”) ) (13)

mar __ min
Ec Ec

where Eme® Emin Fmaz and E™" are maximum and minimum values for E,,
and F., respectively, obtained experimentally using various test images.
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The objective values are calculated once for each individual in the offspring
population. However, we keep as many fitness values as defined search directions.

A combined objective value is calculated for each w® (k =1,2,---,N) by
M
g @) =Y whgi@!) = wlg (@) + whga(al”) (14)
j=1

and the individuals’ fitness in the k-th search direction is assigned by
@) = gt @) - ¢* (@) (15)
(t)

where gF(xy) is the combined objective value of the worst individual in the A-th
search direction at the t-th generation.

For each search direction w*, CM creates a corresponding A% ,, number of
offspring. Similarly, SRM creates A%, offspring (see detailed information about
CM and SRM implementation for halftoning problem in 4.3). Thus, the total
offspring number for each search direction is

The offspring created for all N search directions coexist within one single off-
spring population. Hence the overall offspring number is

N
A=) A (17)
k=1

SRM’s mutation rates are adapted based on a normalized mutants survival
ratio. The normalized mutant survival ratio used in [9,10] is extended to

N
Z ﬂgRM
k=1 A

N N
> N Yt
k=1 k=1

where p* is the number of individuals in the parent population of the k-th search
direction P¥(t), p%p,, is the number of individuals created by SRM present in
Pk (t) after extinctive selection, A%y, is the offspring number created by SRM
and A is the overall offspring number as indicated in Eq. (17).

We chose (u, A) Proportional Selection[17] to implement the extinctive selec-
tion mechanism. Since we want to search simultaneously in various directions,
selection to choose the parent individuals that will reproduce either with CM or
SRM is accordingly applied for each one of the predetermined search directions.
Thus, selection probabilities for each search direction w* are computed by

V= (18)

s j:l

0 (pk <i <)
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Fig. 1. Block diagram of the extended multiobjective GA-SRM
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where x;” is an individual at generation ¢ which has the i-th highest fitness

value in the k-th search direction fk(wl(-t)), pF is the number of parents and \* is
the number of offspring in the k-th search direction, and A is the overall number
of offspring.

Note that for each search direction only A\* < X individuals are created.
However, the parent population p* is chosen among the overall A offspring pop-
ulation. In this way information sharing is encourage among individuals created
for neighboring search directions provided that the neighbors’ fitness are com-
petitive with the locals’. Fig. 1 presents the block diagram of the extended
multiobjective GA-SRM.

Once the offspring has been evaluated, a set of non-dominated solutions is
sought for each search direction, i.e. for the k-th search direction non-domination
is checked only among the offspring created for that search direction. Two sec-
ondary populations keep the non-dominated solutions. P.,.(t) keeps the non-
dominated solution obtained from the offspring population at generation ¢ and
P,4s keeps the set of the non-dominated solutions found through the genera-
tions. P45 is updated at each generation with P.,.(t). In the halftoning prob-
lem an image is divided into blocks and the GA is applied to each image block.
Hence, the GA would generate a set of non-dominated solutions for each image
block. Since we are interested in generating simultaneously various Pareto opti-
mal “whole” images, a decision making process is integrated to chose only one
solution for each search direction in each image block. Thus, among the various
non-dominated solutions found for a given search direction, we chose the one
that minimizes the combined error F,, and E. in that particular direction.

4.3 CM and SRM for Halftoning Problem

In the halftoning problem an individual is represented as a n X n two-dimensional
structure. In this work we use the same two-dimensional operators, CM (Crossover
and Mutation) and SRM-ADB (Self Reproduction with Mutation - Adaptive
Dynamic Block), presented in [9,10] to create offspring.
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CM first crosses over two previously selected parents interchanging either
their rows or columns, similar to [6,7], and then it applies standard mutation
inverting bits with a small mutation probability per bit, pgf M), analogous to
canonical GAs. Thus, mutation in CM is of a quantitative nature after which
the number of 0s and 1s may change. It may be worth trying more specialized
approaches to implementing crossover, however this point will not be discussed
in this work.

SRM, on the other hand, first creates an exact copy of a previously selected
individual from the parent population and then applies mutation only to the
bits inside a mutation block. SRM is provided with an Adaptive Dynamic-
Block (ADB) mutation schedule similar to Adaptive Dynamic-Segment mutation
(ADS)[12, 14]. With ADB mutation is directed only to a block (square region)
of the chromosome and the mutation block area £ x £ is dynamically adjusted
to €/2 x £/2 every time the normalized mutants survival ratio v by Eq. (18)
falls under a threshold 7. The block’s side length ¢ varies from n to 2, [n,2].
The offset position of the mutation block is chosen at random for each chro-
mosome. The adaptive mechanism in SRM is designed to control the required
exploration-exploitation balance during the search process.

The effect of ADB’s mutation on the distribution of Os and 1s within an
individual could be of a qualitative or quantitative nature. It has been verified
in [9,10] that for the halftoning problem ADB with qualitative mutation shows
superior performance than ADB with quantitative mutation (i.e. bit flipping
mutation). Since qualitative mutation do not change the number of 0s and 1s
within an individual it has an impact only on the spatial resolution error E.,
while quantitative mutation has an impact on both E,, and E. in Eq. (3) and
(14). Thus, qualitative mutation is less disruptive and can take better advantage
of the high correlation among contiguous pixels in an image[25] contributing to
a more effective search. Therefore, in this work we use ADB with qualitative
mutation, which is implemented as a bit swapping process. Note that there is
no need to set a mutation probability in qualitative mutation since all pairs of
bits within the mutation block are simply swapped.

5 Experimental Results and Discussion

We observe and compare the performance of four kinds of GAs generating
halftone images: (i) a simple GA that uses CM and proportional selection, similar
to [6,7], (denoted as cGA) (ii) an extended cGA using the same multiobjective
technique described in 4.2 (denoted as a moGA), (iii) a GA with SRM that uses
CM, SRM and (p,A) proportional selection[9,10] (denoted as GA-SRM), and
(iv) the extended multiobjective GA-SRM (denoted as moGA-SRM).

The GAs are applied to SIDBA’s benchmark images in our simulation. The
size of the original image is 256 x 256 pixels with R = 256 gray levels. An image
is divided into 256 non-overlapping blocks, each one of size n xn = 16 x 16 pixels.
For each block, the algorithms were set with different seeds for the random initial
population.
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We define 11 search directions, N = 11, setting W = {w!,w?,- -, w!l} =
{(0.0,1.0),(0.1,0.9),---,(1.0,0.0)}. With w! = (0.0,1.0) the search focuses ex-
clusively in E.’s space and with w!'! = (1.0,0.0) in E,,’s; whereas with w*,
2 < k <10, the search focuses in the combined space of E. and E,,. moGA and
moGA-SRM generate simultaneously one image for each direction in a single
run. On the other hand, to generate the 11 images with either cGA or GA-SRM
an equal number of separate runs are carried out, each one using a different w*
as weighting parameter. Unless stated otherwise, the GAs are set with the pa-
rameters detailed in Table 1') and the experimental image used is “Lenna”. The
values set for crossover and mutation probabilities in ¢cGA are the same used in
[6,7]. The image quality attained by the cGA with a 200 parent population and
the same 7' = 4 x 10* evaluations used in [6, 7] are taken as a reference for com-
parison in our study. The number of generations performed for each algorithm
is calculated as T'/A.

Table 1. Genetic algorithms parameters

Parameter cGA moGA GA-SRM moGA-SRM
Selection Proport. |(u, A) Proport.|(u, A) Proport.|(u, A) Proport.
Ma’t/[’ng (xi)wj)) 7’3&] (ZEi,ZEj), 7’3&] (mt7$])7 175] (xi)wj)7 7’#]

e 0.6 0.6 1.0 1.0
(OM) 0.001 0.001 0.001 0.001

pk o Ak - 1:1 1:2 1:2
PV S - - 1:1 1:1
T . . 0.40 0.40

Table 2 shows the average in all image blocks of the non-normalized com-
bined errors ef(x) = Wi E,,(z) + Wi E.(x) by cGA(200) after T evaluations for
each search direction w”, 1 < k < 11, under column W, For the other algorithms
under W we present the fraction of T' at which the algorithm reach similar im-
age quality (for cGA(200) these values are all 1.00 and are shown right below
the combined error). Column TW indicates the overall evaluations needed to
generate the 11 images. Since the cGA generates one image at a time, it needs
117?) evaluations to generate all 11 images. The first moGA row show results
by the multiobjective simple GA with a u* = 18 parents and a A\*¥ = 18, A = 198
offspring configuration. moGA simultaneously generates the 11 images and needs
approximately 2.4373) to guarantee that all images would have at least the same
quality as ¢cGA(200). moGA’s second row show results by moGA with a p* =4
parents and a A\F = 4, A\ = 44 offspring configuration. In this case population size
reduction in moGA accelerates a little bit more the overall convergence and still
produces better images than ¢GA(200). It should be noticed that population

DGA-SRM search only in one direction at a time and the population related parame-
ters p®, A¥, A%, and A& L), should be read without the index k

D The entire number of evaluations required by the single objective GAs to generate
all 11 images are given by the sum of the evaluations expended in each direction

91n the case of multiple objective GAs, due to the concurrent search, the maximum
number of the evaluations among all search directions determines the overall number
of evaluations needed to generate all 11 images
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reductions in cGA accelerates convergence but it is affected by a lost of diversity
and the final image quality is inferior than cGA(200)’s[6, 7]. moGA benefits from
the information sharing induced by selection (see explanation below for Fig. 2)
and can tolerate population reductions. Compared with cGA, the results by
moGA represents an enormous reduction in processing time and illustrates the
benefits that can be achieved by including multiobjective techniques within GAs.

Table 2. Evaluations to generate high quality images (Lenna)

W = {wl,wz,---,w”}
Algorithm W [ w2 [ @® [0 [P [0 [w [ w? [P [wlPwT| TW
combined error 121.0{111.4|100.6(89.5|78.2|66.9(55.5|44.2|32.8|21.5|10.1 -
cGA(200) 1.00 | 1.00 | 1.00 |1.00{1.00{1.00{1.00{1.00|1.00{1.00|1.00| 117

moGA(18,198) | 1.43[2.43]1.65[1.27[1.21]1.00[0.86[0.76]0.70[0.65[0.72]2.43T%
moGA(4, 44) 1.12 | 2.30 | 1.44 |1.36]1.20(1.020.85/0.79{0.73|0.66|0.79|2.30T">
GA-SRM(2,4) [0.40[0.23[0.15 [0.13[0.12]0.11]0.10]0, 09]0.09]0.08[0.08]1.58T2
moGA-SRM (9,198)] 1.12 | 1.07 | 0.58 [0.44[0.30]0.270.24/0.23[0.22[0.21]0.21[1.127%
moGA-SRM (2,44) | 1.56 | 1.03 | 0.50 |0.30{0.20]0.16/0.15/0.13{0.12{0.12{0.12|1.56 T
moGA-SRM*(2,44)] 0.96 | 0.92 | 0.40 [0.31]0.22][0.170.15[0.14{0.13[0.13[0.13][0.96 T

Row GA-SRM(2,4) presents results by GA-SRM with a 2 parents and 4
offspring configuration. GA-SRM even with a very scaled down population con-
figuration considerably reduces processing time to generate high quality images
for all combinations of weighting parameters. GA-SRM, for this particular im-
age, would need approximately 1.58T2) to generate all 11 images. Note that
GA-SRM sequentially generating the 11 images is faster than moGA.

The first moGA-SRM row show results by the multiobjective proposed GA-
SRM with a u* = 9 parents and a \* = 18, A = 198 offspring configuration.
Compared with moGA we can see that the inclusion of SRM notoriously increases
the multiobjective algorithm’s performance needing no more than 1.127%) to
generate the 11 images, which is faster than GA-SRM. Results by a scaled down
population configuration is shown in row moGA-SRM(2,44) that represents a
p* = 2 parents and a A\¥ = 4, A\ = 44 offspring configuration. The population size
reduction in moGA-SRM accelerates convergence in all but one search direction
(see under w') and the overall evaluation time is similar to GA-SRM. From GA-
SRM and moGA-SRM results we see that parallel mutation SRM can greatly
improve the performance of single objective as well as multiobjective genetic
algorithms in the halftoning problem.

We observe that moGA(2,44), which uses CM but not SRM, only for w'!
produces faster convergence than moGA-SRM (e' = 0.0E,, + 1.0E,). It seems
that CM alone is particularly useful for searching in E.’s search space. However,
when the search involves both E,,’s and E.’s spaces the interaction of CM and
SRM produce better results. We conduct an experiment in which we favor CM’s
offspring over SRM’s only in the w! direction. In row moGA-SRM*(2,44) we
show results using a configuration that creates offspring in w! direction only
with CM, i.e. ALy, =4, Mgy = 0and A5, =2, Ak, =2for 2 < k < 11. This
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has the effect of accelerating convergence in w' search direction and therefore
reducing the overall evaluation time to 0.967".

E,, and E. represent fitness landscapes with different degree of difficulty for
the GAs. E,,’s landscape is smoother than E.’s and the GAs are expected to
converge faster in E,,’s direction. This is corroborated by the results obtained
by the GAs. In Table 2 we can see that for w® with k > 6, E,,’s directions,
the algorithms need less time to converge. It should be specially noticed that
moGA-SRM for those directions finds high quality images in less than 0.27". This
behavior and the results by the last experiment mentioned above suggest that
it may be worth trying dynamic configurations so that more resources could be
assigned to those directions that require more time to converge accelerating the
overall time needed to generate images simultaneously.

Table 3. Actual percentage of evaluations expended in each search direction

W = {wl,wz,“ .7w11}
Algorithm W W [ WP WP [ WP [ [w | ] w [w?]w!
c¢GA(200) 100.0{100.0/100.0{100.0{100.0{100.0{100.0{100.0{100.0{100.0|100.0
moGA(18,198) 13.0(22.1|15.0|11.5({11.0| 9.1 | 78 | 6.9 | 6.4 | 59 | 6.5
moGA(4,44) 10.21209(13.1124(109| 93 | 7.7 | 7.2 | 6.6 | 6.0 | 7.2

GA-SRM(2,4) 40.0123.0|15.0 13.0|{12.0|{11.0 {10.0| 9.0 | 9.0 | 8.0 | 8.0

moGA— SRM(9,198)|10.2| 9.7 | 53 | 4.0 | 2.7 | 25 | 22|21 20|19 | 19
moGA — SRM(2,44) |14.2| 94 | 45| 27 | 1.8 |15 |14 |12 | 1.1 | 11| 11

moGA — SRM*(2,44)| 8.7 | 84 | 36 | 2.8 |20 | 15|14 |13 | 12|12 |12

In Table 2 moGA’s and moGA-SRM’s rows show the evaluations expended
by the algorithm in all search directions. The actual percentage of the evalua-
tions expended in each search direction is shown in Table 3. From this table it
can be seen that with the multiobjective algorithms there is a substantial reduc-
tion of the actual number evaluations for each search direction. These reductions
are explained by the information sharing induced by the selection process. As
mentioned in 4.2 and indicated by Eq. (19), the individuals with higher fitness
in a specific direction are selected as parents. Thus, the individuals chosen to be
parents for the k-th search direction at generation ¢ may have been created for
neighboring directions at generation t-1. To verify this point we also observe the
composition of the parent population for each search direction. Fig. 2 shows the
average distribution for some of the w* directions after 0.17" and T evaluations,
respectively. For example, in Fig. 2(a), the parent population of w is in average
composed by 18% of individuals coming from w?, 30% from w* itself, and 13%
from w®. From these figures we can see that each search direction benefits from
individuals that initially were meant for other neighboring directions. This infor-
mation sharing pushes forward the search reducing convergence times. Looking
at Fig. 2(a) and Fig. 2(b) we can see that the information sharing is higher
during the initial stages of the search.

Fig. 3 illustrates typical transitions of the non-normalized combined error
e(x) over the number of evaluations for some of the search directions by the
GAs. The plots are cut after 7' evaluations. From these figures it can be visually
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Fig. 2. moGA-SRM’s average parent population distribution

appreciated the higher convergence velocity and higher convergence reliability
(lower errors) by the algorithms that include SRM, GA-SRM and moGA-SRM.
In general, moGA is faster than the cGA, but their final image quality tends to
be the same. Also, it should be noticed that results by moGA and moGA-SRM
are achieved simultaneously in one run (thus, 7' for these algorithms indicates
the evaluations expended in all search directions).

e(X(‘))

120}

——— MOGA-SRM(2,44) -
----- GA-SRM(2,4)
—— moGA(4,44)

-------- cGA(200)

—— MOGA-SRM(2,44)
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1 —— moGA(4,44) P
1008 e CGA(200) . R

0.5T T 0.5T T

Fig. 3. Error transition for various w”

Fig. 4 show the original image “Lenna” and the images generated by two
conventional halftoning techniques: ordered dithering (screen) and error diffu-
sion[8]. Fig. 5 show some of the simultaneously generated images by moGA-
SRM. From these figures we can see that moGA-SRM generates more pleasant
images to the human observer than traditional techniques. Another point to be
remarked is that traditional halftoning techniques can generate only one image.
On the other hand, among the images generated by moGA-SRM there is a grad-
ual difference according to spatial and gray level resolution, which makes the
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(a) original image (b) ordered dithering (screen) (c) error diffusion

Fig. 4. Lenna’s original and generated images by two conventional techniques

9 11

w5 w w
Fig. 5. Lenna’s simultaneously generated images by moGA-SRM*(2,44) after 0.96T

GA based halftoning technique more flexible to users’ requirements as well as
more robust to constraints imposed by displaying and printing devices.

With regards to processing time, running software implementations of the
algorithms in a Pentium III processor (600 MHz), to generate one image con-
ventional techniques need only few seconds while GA-SRM (also implemented in
software) needs about 8 minutes. Note that GA based techniques in this study
process one block at a time always starting with random initial populations.
Due to the high correlation among neighbor blocks of an image, reductions on
processing time are expected by using previously generated image blocks in the
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initial populations of the subsequent blocks. However it is clear that, from a
processing time standpoint, in order to apply GA based halftoning techniques
on-line they must be improved further to reduce as much as possible the number
of evaluations needed to generate higher quality images. Also, the GA’s final
implementation for industrial application must be in hardware.

Finally, we should also say that similar results were obtained for other SIBDA’s
benchmark images.

6 Conclusions

In this work we have extended an improved GA (GA-SRM) to a multiobjective
optimization GA (moGA-SRM) for the image halftoning problem aiming to si-
multaneously generate halftone images with various combinations of gray level
and spatial resolution.

GA-SRM is based on an empirical model of GA that puts parallel genetic op-
erators in a cooperative-competitive stand with each other. To extend GA-SRM
we follow a cooperative population search with aggregation selection preserving
the fundamental features of the cooperative-competitive model. We compare the
performance of four genetic algorithms generating halftone images: (i) a single
objective simple GA (cGA), (ii) a single objective GA-SRM, (iii) a multiobjective
simple GA (moGA), (iv) the proposed multiobjective GA-SRM (moGA-SRM).

From our experimental results we observe that multiobjective techniques ben-
efit from information sharing and can greatly reduce processing time to generate
simultaneously high quality images. To generate 11 images moGA requires only
about 21% of the evaluations used by cGA. The cooperative-competitive model
for parallel operators helps to increase the performance of single and multi ob-
jective GAs in this problem reducing even further processing time. GA-SRM
requires about 15% and moGA-SRM about 9% of the evaluations used by cGA.

As future works, important issues to be explored related to the halftoning
problem are (i) the effect of the definition of the weights set on the algorithm’s
stability and convergence, (ii) dynamic and parallel hierarchical configurations
for moGA-SRM in order to accelerate the overall time needed to generate im-
ages simultaneously. Also, we are planning to continue studying moGA-SRM’s
behavior in a wider range of problems that include more than two objectives[18]
and use it in other real world applications.
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