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Abstract. This work focuses on the working principles, behavior, and
performance of state of the art multiobjective evolutionary algorithms
(MOEAS) on discrete search spaces by using MNK-Landscapes. Its mo-
tivation comes from the performance shown by NSGA-II and SPEA2 on
epistatic problems, which suggest that simpler population-based multi-
objective random one-bit climbers are by far superior. Adaptive evolution
is a search process driven by selection, drift, mutation, and recombina-
tion over fitness landscapes. We group MOEAs features and organize our
study around these four important and intertwined processes in order to
understand better their effects and clarify the reasons to the poor per-
formance shown by NSGA-IT and SPEA2. This work also constitutes a
valuable guide for the practitioner on how to set up its algorithm and
gives useful insights on how to design more robust and efficient MOEAs.

1 Introduction

Epistasis in the context of evolutionary algorithms (EAs) describes nonlineari-
ties in fitness functions due to changes in the values of interacting bits. Epistasis
is recognized as an important factor that makes a problem difficult for optimiza-
tion algorithms and its influence on the performance of single objective EAs is
being increasingly investigated. Particularly, Kauffman’s NK-Landscapes model
of epistatic interactions [1] has been the center of several studies, both for the
statistical properties of the generated landscapes and for their EA-hardness. See
for example [2-5] and there in. Studies on the behavior of single objective EAs
on NK-Landscapes have proved useful to advance our understanding of EA’s
working principles and served to design robust and better algorithms [5].
Contrary to single objective EAs, studies concerning epistasis within the con-
text of multiobjective evolutionary algorithms (MOEAs) are few and its effects
still not well understood. Recently, Aguirre and Tanaka [6] have extended Kauff-
man’s NK-Landscapes model of epistatic interactions to multiobjective MNK-
Landscapes, giving insights into their properties in order to understand how the
parameters of the landscapes relate to multiobjective concepts such as shape of
the fronts, number of non-dominated fronts, number of non-dominated solutions,



accessibility to the true Pareto front, correlation between and within fronts, and
metrics. From a multiobjective random test problem generator standpoint [7],
desirable features of MNK-Landscapes are that the problems are easy to con-
struct and can scale to any number of objectives M, number of bits N, and
number of epistatic interactions K, allowing the creation of sub-classes of com-
binatorial non-linear problems for discrete search spaces in which we can test
the working principles of MOEAs in order to design better and more robust al-
gorithms. Aguirre and Tanaka have also studied the behavior of multiobjective
random one-bit climbers (moRBCs) [8] on MNK-Landscapes and have provided
initial results on the performance of two well known representatives of the latest
generation of elitist MOEAs [9], namely NSGA-II [10] and SPEA2 [11].

This work focuses on the working principles, behavior, and performance of
state of the art MOEAs on discrete search spaces by using MNK-Landscapes.
Its motivation comes from the performance shown by NSGA-II and SPEA2 on
epistatic problems [9, 8], which suggest that simpler population-based moRBCs
are by far superior. Adaptive evolution is a search process driven by selection,
drift, mutation, and recombination over fitness landscapes [1]. We group MOEAs
features and organize our study around these main processes. In most of the lat-
est generation MOEAs [10, 12] selection incorporates elitism and it is biased by
Pareto dominance and a diversity preserving strategy in objective space. Genetic
operators vary according to whether the search space is continuous or discrete.
In discrete search spaces, like MNK-Landscapes, recombination is usually im-
plemented as one-point or two-point crossover and mutation as the standard bit
flipping method. Some approaches also include specialized mutation operators
to perform local search. In addition to these features explicit to the algorithm
design, drift is also an important process that drives evolution and it is implicit
to all stochastic algorithms working on finite small populations, although some-
times highly overlooked. In this paper we study the effects of these important
and intertwined processes in order to understand them better, clarifying the rea-
sons to the poor performance shown by NSGA-II and SPEA2. This work also
constitutes a valuable guide for the practitioner on how to set up its algorithm
and gives useful insights on how to design more robust and efficient MOEAs.

2 Multiobjective MNK-Landscapes

A multiobjective MNK-Landscape is defined as a vector function mapping binary
strings into real numbers f(-) = (f1(-), f2(-),- -+, fm (")) : BY = RM  where M
is the number of objectives, f;(-) is the i-th objective function, B = {0,1}, and
N is the bit string length. K = {Kj,---, Kp} is a set of integers where K;
(i =1,2,---,M) is the number of bits in the string that epistatically interact
with each bit in the i-th landscape. Each f;(-) can be expressed as an average of
N functions as follows

N
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where f;; : BEKi*l — R gives the fitness contribution of bit z; to fi(-), and
zy’j ), zgi’j ), s z%’f ) are the K; bits interacting with bit z; in the string x. The
fitness contribution f; ; of bit z; is a number between [0.0, 1.0] drawn from a
uniform distribution. Thus, each f;(-) is a non-linear function of x expressed by
a Kauffman’s NK-Landscape model of epistatic interactions [1].

For a given N, we can tune the ruggedness of the fitness function f;(-) of the
i-th objective by varying K;. In the limits, K; = 0 corresponds to a model in
which there are no epistatic interactions and the fitness contribution from each
bit value is simply additive, which yields a single peaked smooth i-th fitness
landscape. On the opposite extreme, K; = N — 1 corresponds to a model in
which each bit value is epistatically affected by all the remaining bit values
yielding a maximally rugged fully random i-th fitness landscape. Varying K;
from 0 to N — 1 gives a family of increasingly rugged multi-peaked landscapes.

Besides defining N and K; for each f;(-), it is also possible to arrange the
epistatic pattern between bit z; and the K; other interacting bits. That is, the
distribution D; = {random,nearest neighbor} of K; bits among N. Thus, M,
N, K = {K1,Ks,---,Kp}, and D = {D;,D,,---, Dy}, completely specify a
multiobjective MNK-Landscape. By varying these parameters we can analyze the
properties of the multiobjective landscapes and study the effects of the number
of objectives, size of the search space, intensity of epistatic interactions, and
epistatic pattern on the performance of multiobjective optimization algorithms
on combinatorial discrete search spaces.

3 The Algorithms

In this work we present results by NSGA-II [10], SPEA2 [11], and moRBC(J :
1+1) [8], a multiobjective random one-bit climber using a population for restarts.
Since we refer extensively to NSGA-II and moRBC(d : 1 + 1) is an important
reference for comparison we include a brief description of both algorithms.

3.1 NSGA-II

NSGA-II keeps at the t-th generation a parent population P; and an offspring
population Qy, both of same size pu. The parent population P41 at the ¢ + 1-
th generation is a subset of the best individuals obtained by truncating the
combined population of parents and offspring Ry = P, U Q;. That is, Pi41 C Ry,
where [R¢| = 2p and |Piy1| = p. To obtain Py, Ry is first classified into non-
dominated fronts. The first front F; contains the best non-dominated solutions
Si. The subsequent fronts Fj, j > 1, contain lower level non-dominated solutions
and are obtained by disregarding solutions corresponding to the previous higher
non-dominated fronts, i.e. ;,j > 1, is obtained from the set R —Ufc;ll Si. Once
the classification of non-dominated fronts is over, the parent population P4 is
filled with solutions belonging to the higher fronts, starting with front Fy. If
the whole front F; does not fit, the required number of individuals with best
crowding distance are selected to fill the parent population. Each solution in P



is assigned a rank (fitness) equal to its nondomination level (1 is the best level).
Binary tournament selection with crowded tournament operator, recombination,
and mutation operators are used to create the offspring population Q¢; from
Pi41. During selection, solution & wins a tournament if it has a better rank than
y. If z and y have the same rank, the solution with best crowding distance wins.

3.2 moRBC(d:1+1)

moRBC(d : 1+ 1) is a random one-bit climber that at all times keeps one parent
individual from which it creates one offspring. It begins with a randomly created
parent string of length N. Then, a random permutation 7 of the string positions
is generated. A child is created by cloning the parent and flipping the bit at posi-
tion ;, the child is evaluated and replaces the parent if it dominates the parent.
Child creation, evaluation, and (possibly) parent replacement are repeated for
all m;, 1 <4 < N. If no parent replacements were detected a dominance local
optimum has been found and moRBC(é : 1 4+ 1) RESTARTS the search. Testing
continues by going back to create a new permutation 7. This process ends once
a given number of evaluations has been expended. A Population of up to § solu-
tions non-dominated by the parent and amongst themselves are kept during the
process. moRBC(d : 1 + 1) RESTARTS the search by replacing the parent with
one individual chosen from the collected Population. If Population is empty,
the parent is replaced with a random string created anew. Additionally, the
non-dominated solutions found throughout the search are kept in an Archive of
limited capacity. The procedures that update the Population and the Archive
use NSGA-IT’s diversity preserving mechanism in objective space, where non-
dominated individuals with better crowding distance [10](p.236) are preferred
in case the Population/Archive has reached its capacity. Duplicate solutions are
not allowed in the Population or in the Archive.

4 Metric, Test Problems, and Parameters

In this work we use the hypervolume metric H proposed by Zitzler [13] to eval-
uate and compare the performance of the algorithms. Let 4 be a set of non-
dominated solutions. The metric H calculates the volume of the M-dimensional
region in objective space enclosed by the elements of .4 and a dominated reference
point, hence computing the size of the region A dominates. The hypervolume
can be expressed as

H(A) = U2 (Vi = niZi Vi) ()

where V; is the hypervolume rendered by the point x; € A and the reference
point. The hypervolume is among the few recommended metrics for comparing
non-dominated sets [14] and there is some theoretical evidence [15] that the max-
imization of the hypervolume constitutes the necessary and sufficient condition
for the solutions in objective space to be maximally diverse Pareto optimal so-
lutions of a discrete, multiobjective, optimization problem. The reference point
to calculate the hypervolume is set to [0.0,---,0.0].



In our study we use MNK-Landscapes with M = {2,3,5} objectives, N =
{20, 50,100} bits, vary the number of epistatic interactions from %0 to %50 of
N simultaneously in all objectives (K7, -+, Ky = K), and set random epistatic
patterns among bits for all objectives (D1, - -+, Dy = random). For each combi-
nation of M, N and K, 50 different problems randomly generated are employed.

NSGA-II and SPEA2 use a population size of 100 individuals, two point
crossover for recombination with probability p, = 0.6, and bit flipping mutation
with probability p,, = 1/N per bit. moRBC(d : 1 + 1) also uses a population
§ = 100 individuals. For all algorithms, the number of evaluations is set to 3x 10°
and the Archive size is set to 100.

5 Performance by conventional NSGA-IT and SPEA2

First, we present results by conventional NSGA-IT and SPEA2 on scalable MNK-
Landscapes for various values of M, N, and K, in order to have a broad view
of the performance of these algorithms on combinatorial multiobjetive epistatic
problems. Fig. 1 plots the Archive’s average hypervolume over the number of
epistatic interactions K for N = {20, 50,100} bits landscapes. The average hy-
pervolume of the true Pareto front obtained by enumeration is also included for
N = 20 bits landscapes. Vertical bars overlaying the mean hypervolume curves
represent 95% confidence intervals.

From Fig. 1 (a), note that on N = 20 bits landscapes the trend of the
hypervolume of the true Pareto front for any value of M is to rapidly increase
with K, from K = 0 to small values of K, and to remain high for medium and
large K. A similar trend is expected for the hypervolume of the true Pareto
front on landscapes with higher values of N. Looking at results by NSGA-II
and SPEA2, in Fig. 1 (a) we can see that the hypervolume of the solutions
found by these algorithms approach the hypervolume of true Pareto front on
N = 20 bits landscapes only for K < 15%N. Increasing the number of bits
N, we see that the value of the hypervolume of the non-dominated solutions
found by the algorithms decreases continuously from K > 8%N for N = 50 and
from K > 5%N for N = 100 bits. See Fig. 1 (b) and Fig. 1 (c), respectively.
These decreasing values are against the expected trend of the hypervolume of
the true Pareto front and indicate that the search performance of the algorithms
is worsening significantly as K increases.

In the following we focus on NSGA-IT and especially look into the effects of
selection, drift, recombination, and mutation.

6 Selection and Drift

The main processes that drive evolution are selection, drift, mutation, and re-
combination. In this section we observe the effects of selection and drift, which
decrease genetic variation being the homogenization of the population an ex-
treme consequence of it. Selection features are made explicit during the design
of the algorithms. In most of the latest generation MOEAs selection incorporates
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elitism and it is biased by Pareto dominance and a diversity preserving strategy
in objective space. On the other hand, drift is a process implicit to all stochastic
algorithms working on finite small populations.

6.1 Elitism

Elitism is considered an important component of the selection process in state
of the art evolutionary multiobjective optimizers. In order to have a clear idea
of its contribution to the performance of MOEASs on epistatic problems this sec-
tion compare results by NSGA-II(u+)) and moGA (p,A). NSGA-II implements
elitism by keeping for the next generation the best (1) individuals from the joined
population (u+A) of parents and offspring. On the other hand, moGA (u,\) re-
places the parent population (u) by its offspring population (A) at each genera-
tion. moGA(u,\)’s other features are the same used by NSGA-IL

Fig. 2 shows results by NSGA-II(100+100) and moGA(100,100) for M =
{2, 3,5} objectives on N = 100 bits landscapes. From this figure we can see that
if elitism is not included there is a severe deterioration in performance for all
values of K and M, except for M = 5 and K = 5. Note that the performance
by moGA(100,100) falls sharply from K = 10%N to K = 15%N in M = 2
objectives. The fall in performance is even more pronounced for M = 3 and
M = 5 objectives. These results are in accordance with the expectation that
elitism is a very important feature for multiobjective combinatorial optimization.
However, elitism can also bring about undesired side effects that could severely
affect the efficacy and efficiency of the algorithms. Throughout the following
sections we discuss some of them.

6.2 Genetic Drift

Genetic drift is a phenomenon that emerges from the stochastic operators of
selection, recombination, and selection. It refers to the change on bit (allele)
frequencies due to chance alone especially in small populations. In single objec-
tive EAs it is well known that genetic drift is one important factor that affects
negatively the performance of EAs especially if a strong selection pressure is
used, such as truncated selection (p,A) without elitism where p < A. See [5],
for example. The presence of elitism, for instance in the form of truncated selec-
tion (u + A) used by NSGA-II, would increase selection pressure making elitist
algorithms even more prone to the effects of drift.

In this section we enhance NSGA-II by preventing fitness duplicates from the
population in order to observe the effect of genetic drift on the performance of the
algorithm. In the enhanced algorithm, called NSGA-II®?, if several individuals
have exactly the same fitness in all objectives then one is chosen at random and
kept. The other equal fitness individuals are eliminated from the population.
Fitness duplicates elimination is carried out before truncating the population
from (p+ A) to (u) individuals. This process aims to effectively eliminate clones
without the need to compare hamming distances, postpone genetic drift, and
remove an unwanted source of selective bias.



To explain and understand better the effects of duplicates on the perfor-
mance of multiobjective algorithms, Fig. 3 shows cumulative bar diagrams of
the average number of individuals per non-dominated front over the number of
epistatic interactions K. Results by the conventional NSGA-IT and by the en-
hanced NSGA-II¢? that eliminates duplicates are presented for the top five fronts
in M = {2,3,5} objectives. In the case of conventional NSGA-II, the figure also
shows with lines the number of duplicate individuals ¢ in the whole population
(£ + A) before truncation, in the first non-dominated front (F;) also before trun-
cation, and in the truncated population (u1). For NSGA-II°? results are presented
after elimination of duplicates. Horizontal lines indicate the truncation site.

Looking at results by NSGA-II in Fig. 3, the following observations are
relevant. (i) The number of duplicates increases as we increase the epistatic
interactions K. (ii) The presence of duplicates reduces increasing the number
of objectives M. (iii) Most duplicates belong to the first non-dominated front
and a large number remain after truncation, especially for large K. Conversely,
looking at the size of the cumulative bars by NSGA-II®? in Fig. 3, we can
deduce that the average number of duplicates eliminated at each generation by
NSGA-II*? is only a small fraction of the whole (u + A) population and it is
similar for all K and M. For example, for M = 2 note that in NSGA-II the
number of duplicates augment from 8% to 90% of the truncated population (u)
and from 18% to 60% of the whole population (u + A) increasing K from 0 to
50, respectively. By contrast, the average number of duplicates in NSGA-II*? is
around 9% for all K. The number of duplicates observed in NSGA-II*¢ could
be taken as the homogenization effect of drift and selection at each generation,
whereas the number of duplicates in NSGA-II should be taken as the amplified
effect of drift and selection throughout the generations.

Duplicates hinder exploration and selection as well. If duplicates are not elim-
inated at each generation they accumulate rapidly decreasing the likelihood that
the algorithm will explore a larger number of different candidate solutions during
a run. Also, since the chances of selecting a given genotype are multiplied by the
number of clones of that genotype present in the population, duplicate genotypes
end up with higher selective advantage than unique genotypes. This unwanted
selective bias is not based in actual fitness and cannot be avoided by ranking
procedures, scaling mechanism, or even truncated deterministic mechanisms. A
reduced explorative capability combined with an unwanted selective bias can
considerably affect the possibility of finding better non-dominated solutions.

Fig. 4 shows the hypervolume by NSGA-I1°?(100+100) that eliminates du-
plicates and by the conventional NSGA-II(1004+100) to illustrate the effect of
duplicates on the performance of the algorithms. From this figure, we can see
that elimination of duplicates improves the performance of NSGA-II in two and
five objective landscapes for K; > 5 and 3 < K; < 35, respectively. In three
objectives landscapes we see almost no improvement by eliminating fitness du-
plicates. Note that the largest overall performance difference between NSGA-II¢?
and NSGA-II is for M = 2 objective landscapes, where precisely the accumula-
tion of duplicates in the conventional NSGA-II is the highest as shown in Fig.
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3. Now, since more duplicates are observed for M = 3 than M = 5 objectives,
an interesting question is why do we see almost no improvement for M = 3
although we see it for M = 57 We answer this question in the next section.

6.3 Selection Bias by Front Level and Objective Space Diversity

The number of epistatic interactions K and the number of objectives M are
important factors that determine the density of non-dominated fronts in mul-
tiobjective landscapes [6]. First, the number of non-dominated solutions in the
top non-dominated fronts reduces as K increases. Second, fixing the bit string
length (size of the search space) and increasing the number of objectives M we
have landscapes with fewer but more dense non-dominated fronts. Third, the
effect on front’s density by M is stronger than the effect by K. These properties
are clearly reflected in the distribution of solutions per front by NSGA-II*? in
Fig. 3. Note that for NSGA-II°? the number of individuals in the first front
decreases as K increases. However, increasing M the number of individuals in
the first front increases and fewer fronts fit in the population.

A consequence of front’s density is that it could restrain selection, especially
during mating. Taking as an example the way selection is made in NSGA-II, see
3.1, Pareto non-domination level will be important for mating mostly in M = 2
objectives where several fronts fit within the truncated population, except for
K = 0. Increasing M, fewer but more dense fronts would increase the relative
importance of crowding of solutions within a front over non-domination level
as criterion to bias selection, especially if most individuals within the truncated
population belong to the same front.

From the same Fig. 3, we can see that in fact the truncated population
of NSGA-IT*? would mostly come from the first front for M = {3,5}. Thus, in
both cases during mating the criterion to bias selection would be mainly crowding
factor since most solutions would be ranked with the same non-domination level.
However, there is a difference between M = 3 and M = 5 given by truncation.
Truncation would reinforce diversity in objective space by purging individuals
with high crowded factor if the number of individuals in the front is larger
than the population size. Note that for M = 3 in NSGA-II®? the number of
individuals in the first front F} is close to the size of the truncated population
(u), for most K, and thus the algorithm does not have a chance to purge highly
crowded individuals. On the other hand, for M = 5 the number of individuals
in the first front is greater than the truncated population size (u), for all K,
and truncation can contribute purging highly crowded individuals. This suggests
that the increase in performance for M = 5 but not for M = 3 is because the
algorithm by means of truncation is preserving diversity better for M = 5.

7 Recombination and Mutation

EAs to function effectively must balance the processes of evolution that de-
crease genetic variation with those that increase it. In previous sections we have
restricted our discussion to selection and drift, which decrease genetic variation.



In the following we focus on the effectiveness of recombination and mutation,
mechanisms that increase genetic variation. We also discuss issues that hinder
exploration under elitist selection and try ways to make mutation more effective.

7.1 Recombination

In this section we observe the effect on performance of (not) using recombination.
Fig. 5 shows results by NSGA-II°?(100+100) and M®¢(100+100). M¢? is an
NSGA-II*? algorithm with recombination turned off using mutation as the sole
variation operator, i.e. p. = 0.0 and p,,, = 1/N per bit. From Fig. 5 note that
NSGA-II*? that includes recombination and mutation performs better than Me?
that uses only mutation for K < 1, K < 3, and K < 7 for M = {2,3,5}
objectives, respectively. For other values of K we do not see any contribution to
performance by including recombination. In fact, we can see that mutation alone
performs better for some values of K, especially in landscapes with M = 2.

Results by recombination are in accordance with the effects of epistasis on
multiobjective landscapes. In [6] it is shown that for small values of K non-
dominated solutions of top fronts are highly correlated in decision space (geno-
type), in objective space (phenotype), and between spaces. However, this cor-
relation decreases rapidly by increasing K, being its fall faster for smaller M.
For small K, recombination of high fitness individuals would likely produce high
fitness offspring. However, as the number of epistatic interactions K increases
the likelihood that offspring would be far from the parents in objective space
also increases considerably. The properties of MNK-Landscapes offer no much
hope for blind mating and recombination, i.e. just taking any two individuals
from the best non-dominated front in the population and recombining them. In
the literature there are some reports suggesting that mating based on proxim-
ity in decision or objective space could help recombination in MOEAs. It will
be interesting to asses in the future the benefit of these approaches on scalable
espistatic landscapes. How helpful are them as we increase K7

7.2 Elite’s Age and Mutation Explorative Range

An undesired side effect of elitism combined with a short explorative range by
recombination and/or mutation is cyclically exploring same points. To explain
this it is useful to see the probability of recombination p. governing the appli-
cation of two operators. One is recombination followed by mutation (p.) and
the other one is mutation alone (1 — p.). In this section we focus on elitism and
mutation and do not consider the case of recombination followed by mutation.
Conventional NSGA-II, for example, uses a (u + A) selection where elite
solutions could remain in the population indefinitely. Additionally, mutation
rate is often set to p,, = 1/N, which means that mutation will explore solutions
in average one bit away from the parent in decision space. In this case, eventually
after some generations offspring created from elite solutions would likely not be
different from offspring created before, even in the case of perfect sampling (no
drift). The expected time for mutation to start sampling again same points from
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Fig. 6. Elite’s age and mutation explo-
rative range. H over K by NSGA-II*¢,
Me®4e that eliminate old elite individuals,
and aM®? that also uses age to guide
mutation. N = 100 bits landscapes.



an elite individual would be a function of the number of occasions the same
elite individual has been selected for reproduction, the rate at which mutation
is applied alone given by the probability 1 — p., and the bit string length N.

A way to avoid this undesired cycles and enhance exploration is to put an
age limit to elite solutions and bias selection accordingly. To observe the effects
of age of elite solutions we create M¢?® from NSGA-II®?. M®4? increases by one
the age of an elite solution each time it is selected for reproduction. Age is
also incremented by one at each generation. Before truncation, fitness duplicates
and individuals with age greater than N are eliminated from the population. It
uses mutation with probability p,, = 1/N per bit but does not use crossover
(p. = 0.0) for simplicity. The rationale for this is that selecting N times the elite
individual for reproduction will suffice to sample a good number of solutions that
lay within the average explorative range set by the mutation rate, i.e. one-bit
neighbors. Of course, mutation with p,, = 1/N will sometimes flip more than
one bit, none at all, or sample the same bit more than once during the N trials.

We also verify whether a local search-like strategy would be more effective
than the conventional bit flipping mutation strategy. To do that we create aMe?®
from Me¢9, aM®?® in addition to eliminating duplicates and very old elite in-
dividuals, it also uses the age to guide mutation. The bit string of length N
is subdivided in S segments of length L, N = S x L. For elite individuals,
age greater than one, mutation flips one bit at the position indicated by j + 4,
j =8 x [rand() mod S] and i = [age mod N] mod L, i.e. the mutation segment
is chosen at random and the bit within the segments is given by the age of the
individual. This kind of mutation makes sure that only one bit will be flipped
and increases the chances of exploring most one-bit neighbors of an elite individ-
ual as its age approaches N. In our experiments N = 100 and S = L = 10. For
individuals whose age is one standard flipping mutation is applied (p. = 0.0).

Fig. 6 shows results by the mutation-only algorithms M¢?(100+100) and
aM®?2(100+100) together with results by NSGA-II®?. Looking at results by Me?®
we can see that preventing old elite individuals increases substantially the perfor-
mance of NSGA-II*? for all number of objectives M and most values of epistatic
interactions K. Note that in this case there is no more a performance advan-
tage offered by recombination in small K landscapes, except for M = § and
K < 1. Looking at results by aM®??(100+100) also note that eliminating old
elite individuals combined with local search-like mutation strategy informed by
age further improves performance, especially for medium and high K.

8 Comparison with moRBC

Finally, we compare the performance of conventional NSGA-II, the enhanced al-
gorithm aM?¢?, and the population-based multiobjective random one-bit climber
moRBC(4 : 14 1). Results are shown in Fig. 7. From this figure we can see that
the performance of conventional NSGA-II is worse by several standard devia-
tions than the performance of moRBC(d : 1 + 1), for all values of K and M.
In contrast, note that the performance of aM®?® approaches the performance
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of moRBC(d : 1+ 1) in M = 2 and M = 3 objectives. However, for M = 5
objectives moRBC(d : 1 + 1) still performs better.

9 Conclusions

In this work we have studied the effects of selection, drift, recombination, and
mutation in MOEAs on discrete search spaces by using MNK-Landscapes. We
have shown that enhancing selection and postponing drift by eliminating fit-
ness duplicates and removing old elite individuals help to increase substantially
the performance of MOEAs. We also observed that recombination adds to the
performance of standard bit flipping mutation only for small values of epistatic
interactions. However, any gain by recombination is largely surpassed by doing
a more effective exploration with short-ranged mutation alone. Enhancements in
selection, postponing drift, and explorative efficiency have considerably increased
the robustness of MOEAs across several classes of epistatic problems and num-
ber of objectives. Yet, these enhancements are not enough to surpass the perfor-



mance of simpler population-based multiobjective random one-bit climbers and
we should look for ways to design better MOEAs. Results in this work strongly
suggest that elitism combined with an efficient short-range explorative capability
by mutation is highly effective and likely to be a required feature of MOEAs. The
advantages, if any, of elitism combined with mutation using larger explorative
ranges should be investigated in the future. In addition, it would be interesting
to look into special mating strategies for recombination to further clarify its role
in multiobjective discrete search spaces.
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