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Abstract

This paper describes application of a Multiobjective
Genetic Algorithm (MOGA) to optimise the selection of
parameters for an object recognition scheme. The MOGA
applied uses Pareto-ranking as a means of comparing
individuals over multiple objectives. In order to prevent
premature convergence heuristics were added to the
algorithm to encourage speciation. The population
consisted of sub-populations, whose members were able
to migrate to any other sub-population, thus following
the ‘island’ population model. Prior to this work the
Pairwise Geometric Histogram (PGH) object recognition
paradigm required the user to manually select histogram
parameters - a process involving some degree of
experience with the recognition scheme. Here, through
the application of a MOGA we optimise and consequently
automate parameter selection. The overall result of the
algorithm is to select PGH parameters giving a more
compact efficient histogram representation.

1.0 Introduction

One of the primary requirements of a generic object
recognition system is insensitivity to large changes in the
image data due to occlusions and scene clutter. Image
features such as corners, and line segments provide a
good basis for object recognition, because they can be
recovered over a wide range of viewing conditions and
object transformations. These types of features also lead
to successful recognition under conditions of scene
occlusion and clutter because they are defined locally.
Although image features can be characterised to some
extent by intrinsic attributes such as local image gradients
and curvatures the context of the surrounding shape
geometry provides the basis for a much more powerful
descriptor. By selecting appropriate parameters and
storing these measurements in the form of a frequency
histogram, a concise shape descriptor which promotes
robust feature classification can be produced. This
histogram is referred to as a pairwise geometric histogram
because it records geometric measures made between
pairs of image features.

Built into the PGH paradigm arc a sct of parameters
concerning the histogram type and the blur applied to the
axes of the histograms. Presently some of these

parameters are decided using rules of thumb and trial-
and-error. This paper describes the application of a
MOGA in order to determine these parameters in a
principled manner. The significance of this work is that it
enables the process of pairwise object recognition to be
fully automated so that it can reach the full potential for
use on large databases.

2.0 Pairwise Object Recognition

Pairwise geometric histogram (PGH) based algorithms
have been shown to be a robust solution for the
recognition of arbitrary 2D shape in the presence of
occlusion and scene clutter [1], [2], [S] and [6]. The
method is both statistically founded and complete in the
sense that a shape may be reconstructed from its PGH
representation ([7]).

Pairwise  geometric  histograms (PGHs) are a
representation used for the recognition of rigid shape. The
complete algorithm comprises a number of stages:

e  Model image data (during training) and scene image
data (during recognition) are processed by an edge
extraction algorithm and the edge data are
approximated by line segments. (Treating individual
edgels would be equivalent and line approximation is
mainly done for speed).

e Model histograms (during training) and scene
histograms (during recognition) are constructed for
each line segment (reference line) by comparing the
reference line to all other lines and making entries
into a histogram according to the measured relative
angles and perpendicular distances (see Figure 1). To
account for errors in the measurement processes and
to encode the variability in the way a shape may be
segmented into lines, entries are blurred
appropriately when being placed into the histogram.
This representation encodes local shape geometry in
a manner which is invariant to rotation and
translation and is robust to missing data, line
fragmentation and clutter.

e Scene line labelling is performed by finding good
matches between scene histograms and model
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histograms using the Bhattacharyya metric. This
statistical metric has been shown to be appropriate
[13] as PGHs are pdfs of local shape geometry. This
similarity measure adds extra robustness for
matching sparse PGHs (containing many zero
entries), as the metric is multiplicative. It is important
to note that each reference line corresponds to a
single PGH.

® Object classifications are confirmed by finding
consistent labelling within a scene using a
probabilistic Hough transform, as described in [14].

Perpendioular Distance

Relative Angie

Figure 1. PGH entry for a Single Line Comparison

2.1 Pairwise Parameters to be Optimised

When constructing PGHs a choice is made as to the range
of the relative angle 6 and perpendicular distance d,,, as
shown in Figure 1. By virtue of the measurements
recorded in PGHs, this shape representation is invariant
to rotations and translations of the shape data. Depending
upon exactly how angle and distance measures are
defined, other invariance characteristics may also exist.

Prior to constructing geometric histograms it is necessary
to decide on the histogram scale to be used. The choice of
maximum perpendicular distance, d,,, is driven by two
should be
small enough that the PGH represents local shape and is
robust to missing data and occlusion. On the other hand
d ax should be large enough so that shape information is

conflicting requirements. On one hand d,,

present in each PGH so that they are distinct from each
other. Prior to this work a rule-of-thumb used was to
ensure that most of a shape is encoded into each
histogram.

The simplest type of histogram is constructed by
restricting angles to the range O to 7 and distances to 0 to
d ax - This histogram is invariant to reflections of the

shape data about the reference line and is described as
mirror symmetric. Mirror reflection invariance is not
always desirable and can be removed by using the
direction of angles (clockwise or anti-clockwise) to
extend the range of angle measurements to -7 to 7. This
doubles the area of the histogram which in turn doubles
the computation needed for histogram matching but also
increases the sparseness which improves robustness of
matching in cluttered scenes. The area of the histogram

can be doubled again by directing the reference line
towards the point where the line pair intersect and using
this to define a reference frame. Measures of distance can
then be signed depending upon whether they are to the
left or right of the directed reference line, extending the

distance range to —d,, to d .. .

As the histogram size increases so does the amount of
information contained, and the more reliable the resulting
matches. This is achieved at the expense of a loss of
invariance characteristics regarding the expected
behaviour of the data and/or an increase in the required
computation for matching. Objects with mirror symmetry
for example, should be represented with a ‘mirrored
representation in order to reliably identify component
parts of the object in mirrored examples. At present these
histogram types are decided upon by the user, who is left
to decide the trade-off between accuracy, suitability and
speed.

d,

max ‘max max

(a) () ()
Figure 2: Illustration of Histogram Types

Typically there are three fypes of PGHs used (Figure 2):
{(0,d 1042 ), (0, )}, {(—d max » dimax ), (0, 7) } and
{(~d o Fmax ,(0,27)}  known as ‘mirrored’, ‘rotated’

and ‘directed’ histograms respectively, which encode
different degrees of geometric invariance. A fourth
alternative ‘contrast’  {(—d . ,dmy ),(0,47m)} s also

possible but will not be discussed further in this paper. In
order to add robustness to the PGHs a local circular
window is applied centred around the mid-point of the
reference line. The associated histogram is constructed by
making entries for each line truncated within the circular
window. The radius of this window is a continuous
variable and equivalent to the maximum perpendicular
distance d,, value of the associated histogram. The
d o parameter is normally set in agreement with the
object size so that the maximum amount of useful data is
constructed during matching. Its determination is a trade-
off between the local scale of the object and the amount
of clutter in the window. Associated with this parameter is
the size of the bin widths on the perpendicular distance
axis of the PGHs. In this work we will simultaneously
optimise the value of d_, and the histogram type but bin

width will remain constant.

" PGHs have been shown to be applicable to extremely

large databases for hundreds of thousands of objects [6].
The results in [6] are based on an extrapolation of storage
capacity from a much smaller test set. In order to
construct a large recognition system automatically we will



require an automated procedure for selecting the
parametric representation of a line in terms of the free
parameters specifying a PGH - the very nature of this
problem requires us to take multiple competing objectives
into account.

3.0 Multiobjective Genetic Algorithms

Several methods for adapting GAs to cope with the
simultaneous optimisation of a problem over a number of
dimensions have been proposed, including the use of
Pareto-ranking, [10]. The MOGA applied in this work
uses Pareto-ranking as a means of comparing solutions
across multiple objectives. The Pareto-optimal set of a
multiobjective optimisation problem consists of all those
vectors for which their components cannot be all
simultaneously improved without having a detrimental
effect on at least one of the remaining components. This
is known as the concept of Pareto optimality [10], and the
solution set 1s known as the Pareto-optimal set (or non-
dominated sct).

In the sense that they are able to solve NP-complete
search problems, genetic algorithms (GAs) have been
recognised to be well-suited to multiobjective
optimisation as described in [11] and [12]. MOGAs do
not impose an ill-informed weighting process on the task
of selecting a single optimal solution but instead the
concept of pareto-ranking can be applied in order to
deliver a set of candidate solutions optimised for different
combinations of criteria. If, however, one particular
solution can be found which dominates all others then this
sofution would have been the optimal choice for any
combined optimisation procedure with arbitrary
weighting. In the absence of a dominant solution all
candidate solutions are ranked in terms of pareto
dominance.

3.1 Justification for Using a MOGA

Advantages of GAs have already been used by computer
vision researchers examples of which are described in [8]
and [9]. GAs are particularly applicable to the problem
addressed in this paper, as our search space is noisy,
discontinuous, impossible to search exhaustively and
contains no derivative information. In order to explain the
selection of our objective functions it is useful to recall
the motivation for application of MOGAs. For a given
scene or model line we have a choice as to the parameters
for the associated PGH. Our algorithm will optimise these
parameters producing optimal sets of lines relative to all
others in the database.

3.2 The Objective Functions

In what follows B denotes the Bhattacharyya match score
between two histograms and is defined as:

g
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where H, and H, are two PGHs of the same type, n

]
the number of bins on the 6 axis and n, the number of

bins on the perpendicular distance axis. B is used as a
measure of similarity between two histograms - two
identical histograms yield B=1, (assuming the
histograms are normalised) and two completely different
histograms give B=0.

Suppose we have a set of PGHs, we want a principled
technique for determining the relative distinctiveness of
each of the histograms in the set. For a given PGH
belonging to such a set this can be achieved by
calculating the match scores between our given PGH and
all others in the set. The distance between the identical
match B =1 and the mean of all the other matches (B#)

will achieve our aim, as the greater this quantity, the more
distinct our given PGH relative to the rest of the set,
hence our first objective, f, is:

fi =max(1-B,)

(other descriptive statistics such as the median were tried
and gave similar results to the mean). In addition, we
want a measure that reflects histogram consistency across
different examples of a given object subject to variable
segmentation/fragmentation.

We will consider different sets of data defined as follows:

e Sets of objects consisting of a fixed known object
together with variants (for example different levels
of segmentation): a variant set.

So for a given histogram this measure will tell us which of
the variant sets that particular PGH was most likely to
have come from. We can achieve this by calculating the
matches between our given histogram and all PGHs in
each variant set (these PGHs are all constructed with the
same fixed parameters, see section 3.5). Recall, each
variant set consists of a set of objects. The best match
between our given PGH and all the PGHs for each object
in each variant set is stored (the inner summation of ' f,)
and then these best matches are summed for each variant
set. The variant set with the highest sum is the winner and
the given histogram is deemed to have come from the
winning variant set. This avoids the difficult problem of
labelling corresponding lines in the database. Thus:

N Ny
f= Z maxj(z max(B,))
j=1 i=1

(where n; is the number of objects in variant set j and N

is the number of variant sets). f, is computationally



intensive as it involves computing the matches between
all histograms in the variant sets for every member of our
GA population.

Finally we desire as compact a representation as possible
and therefore want to minimise the area of the histograms.
For this work the bin width of the histograms is fixed and
the only variable parameters for area are the

perpendicular distance, d,,, (which is also the radius of

the circular window used for constructing the PGH) and
the type. So the final objective function minimises the
histogram area. A scale factor of 1, 2 and 4 for mirrored,
rotated and directed histograms respectively (Figure 2)
was used reflecting the associated area, (since rotated
histograms have twice the area of mirrored and directed
twice the area of rotated). Hence we have:

f3 = min(histogram area)

3.3 The Representation

In our encoding scheme an individual is represented as
shown below in Figure 3. The HISTOGRAM in the
above encoding is a PGH constructed from a reference
line belonging to some object in a variant set. The TYPE
and d ., refer to the histogram, being the histogram type

and maximum perpendicular distance respectively.

HISTOGRAM TYPE d

Figure 3: Encoding Scheme for an Individual

3.4 Algorithm Description

The population consisted of sub-populations each of
which was stored as an array of individuals. Figure 4
below, shows pseudo code for the MOGA. The number of
individuals in each sub-population was equal and did not
change. Initially the sub-populations were randomly
generated and each individual assigned a fitness based on
its pareto-rank. Fitness was then assigned by taking the
compliment of the pareto-rank with the sub-population
size - for example, suppose our sub-population was of
size 10 and we had one-non-dominated individual
(assigned Pareto-rank 1) then its fitness would be 9, and
so on. By summing the fitness across all individuals
within a sub-population we could assign a fitness that sub-
population. The sub-populations were then randomly
paired for crossover and mutation to be performed,
producing two new sub-populations. The individuals in
the new sub-populations were evaluated and similarly the
new sub-populations were assigned a fitness. Initially
Stochastic Universal Sampling, (as described in [15]) was
used for deciding which sub-populations to keep. It was
found that a more efficient technique for selection was
simply to compare the fitness of the old sub-populations
(prior to crossover and mutation) and the newly created
sub-populations. If the new sub-population was fitter, it

was kept and the old one disregarded (and vice-versa).
Finally for each sub-population the individuals were
sorted in descending order according to their fitness
(Grouping() in Figure 4), the reason for which is now
described as we discuss the crossover and mutation
operators.

for(run=0;run<max_runs;run++)

Initpop();
for(gen=0;gen<max_gen;gen++)

Crossover();
Mutation();
Pareto();
Fitness();
Grouping();
Selection();

}
Figure 4: Pseudo Code for MOGA

3.5 Crossover and Mutation Operators

In order for crossover to function as desired we needed to
ensure that two good sub-populations produced fit/fitter
offspring, the mating restrictions required for this are now
explained. Crossover was performed by randomly
selecting a pair of sub-populations and two crossover
points (corresponding to rows of the arrays). Suppose we
had N individuals in each sub-population. Two crossover

points were used, the first was % and the second was
generated randomly. The range of the random crossover
point was restricted to lie in (%Y, 5>N). due to the

Grouping() function of Figure 4, this ensured at least 50%
of the best individuals were always kept. Two new sub-
populations were then produced by replacing the bottom
50% of sub-population 2 with the top 50% of sub-
population 1, and similarly for the random crossover
point. Different crossover points were used to increase the
diversity of the sub-populations.

Mutation consisted of creating a sup-population of
randomly generated individuals and calculating the
Bhattacharyya score between each member of that
random set with every member of the sub-population
(Figure 6).

Before crossover After crossover
sub-pop 1 sub-pop 2 sub-pop 1’ sub-pop 2'
N 1
inda inde ind a ind e
indb ind f :\> indb ind f
" D
indc ind g inde v indg
ind d ind h ind f 4| inda
v

Figure 5: Crossover Operator used




For a given individual of the random set, the match score
with every member of the sub-population was calculated
and if all scores were less than the corresponding
individuals fitness on the first objective then the random
individual replaces the bottom-most individual in the sub-
population (and the replacement continues upwards). This
ensures that the population diversity is maintained and
that premature convergence did not occur. This process
could also be considered as goal-attainment on the first
objective.

Before Mutation
sub-pop random set
ind 1 rand 1 ind 1 ,{A
ind2 rand 2 ('__J‘> ind 2 8,
IS
ind 3 rand 3 nd3 | g
ind4 rand 4 ind 4 8,
{i=1,..,4)
After Mutation
if ind 1
B, <ind1.0bj_1 &&
B, <ind20bj_1 8& :’> a2
B, <ind3.obj_1 && ind 3
B, <ind4.obj_1
rand ¢

Figure 6: Mutation Operator used

3.6 Algorithm Modifications

The second objective function, f,, is computationally

intensive as it involves computing the matches between
all histograms in the variant sets. In order to speed up the
algorithm an exhaustive match for a given histogram with
all histograms (constructed using fixed parameters, here
we used d,, =500 and ‘rotated’ histograms) in the
variant sets was only calculated on the initial run;
thereafter a random histogram is selected from a given
variant set, an the sum of match scores is calculated. If for
any given model the match score is greater than that
calculated from the initial exhaustive search, that
histogram replaces the existing one. Thus we relied on the
iterative nature of the MOGA to perform a stochastic
search.

4.0 The Experiments

The four data sets used are shown in Figure 8. In each of
the sets the leftmost object is that shown in Figure 7. The
first set consists of variants having the original line length
shortened or lengthened by a different scale factor.

B
&)

Figure 7: Test Objects Used

The second set consists of six objects the first is the
original stegosaurus, the following two are the first with
increasing levels of Gaussian noise added. The last three
stegosaurus objects are the first three mirrored around the
midpoint of the objects length. The third data set consists
of objects having increasing levels of Gaussian noise
added to the lines. Finally the triceratops set contains
objects all having different levels of segmentation, giving
a polygonisation effect.

SOL AL AL

Figure 8: Data Sets 1-4

5.0 Results and Discussion

The MOGA applied consisted of 10 sets of 58 individuals
and was run for 100 generations. Figure 9(a) shows a
distribution of match scores for a randomly generated
initial population of PGHs. This data was generated by
calculating the match scores between all histograms
having a similar type and then binning the results. The
data distribution shown in Figure 9(a) has mean = 0.415
and variance = 0.013. Similarly, the histogram shown in
Figure 9(b) shows a typical distribution of match scores
for a final population, this distribution has mean = 0.275
and variance = 0.015.

By comparing Figure 9(a) and Figure 9(b) we can see that
the effect of the MOGA is to produce histograms that
have, on average, a lower match score across their
associated populations, confirmed by the lower mean of
Figure 9(b). This is due to the first objective function
optimising on histogram distinctiveness, and thus the
MOGA has produced sets of PGHs containing less
redundant information than the initial populations. It can
also be seen by comparing Figures 9(a) and (b) that the
MOGA has reduced the number of PGHs having high
match scores, this is another indication of how the amount
of redundancy in the representation has been reduced and
the distinctiveness increased. The overall effect of the
MOGA is that it produces sets of PGHs, (consisting of
individuals with associated pairwise parameters), that
represent the line data more efficiently.



{a) Initial Distribution

(b) Final Distribution
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Figure 9: Match Score Distributions

6.0 Conclusion

In this work we have applied a Pareto-based MOGA to
parameter selection for the PGH object recognition
paradigm. Heuristics were applied in the crossover and
mutation operators to avoid speciation and the need for
sharing. By carefully selecting our data sets we have
shown that the optimisation technique works irrespective
of many common problems such as noise, missing data
and segmentation. The overall effect of applying the
MOGA is the optimisation of a set of pairwise parameters
which are at present decided by the user. We are therefore
making the construction of PGHs a fully automatic,
optimised process. The algorithm produces distinct,
efficient histogram definitions for subsets of lines in our
database. In future work we intend to investigate the
incremental learning capacity of the system, by
successively adding new objects to the database. This is
not a trivial problem as the set of optimal histograms is
defined recursively by all others in the database. Finally
we will examine the effect of adding clutter to the objects
in the database.
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