A Multiobjective Approach to Optimizing Compterized Detection Schemes

Mark A. Anastasio, Student Member, IEEE, Matthew A. Kupinski, Robert M. Nishikawa
and Maryellen L. Giger, Member, IEEE
Department of Radiology
The University of Chicago, Chicago, IL 60637

Abstract

Computerized detection and classification schemes have the
potential of increasing diagnostic accuracy in medical imaging
by alerting radiologists to lesions that they initially overlooked
and/or assisting in the classification of detected lesions. These
schemes, generally referred to as computer-aided diagnosis
(CAD) schemes, typically employ multiple parameters such
as threshold values or filter weights to arrive at a detection
or classification decision. In order for the system to have a
high performance, the values of these parameters need to
be set optimally. Conventional optimization techniques are
designed to optimize a scalar objective function. The task of
optimizing the performance of a CAD scheme, however, is
clearly a multiobjective problem: we wish to simultaneously
improve the sensitivity and reduce the false-positive rate of
the system. In this work we investigate a multiobjective
approach optimizing CAD schemes. In a multiobjective
optimization, multiple objectives are simultaneously optimized,
with the objective now being a vector-valued function. The
multiobjective optimization problem admits a set of solutions,
known as the Pareto-optimal set, which are equivalent in the
absence of any information regarding the preferences of the
objectives. The performances of the Pareto-optimal solutions
can be interpreted as operating points on an optimal ROC
or FROC curve, greater than or equal to the points on any
possible ROC or FROC curve for a given dataset and given
CAD classifier.

I. INTRODUCTION

Computer-aided diagnosis schemes have the potential of
substantially increasing diagnostic accuracy in radiological
imaging [1]. Complicated image features, eye fatigue, and low
conspicuity are factors that may cause a radiologist to miss
a lesion in a mammogram or chest radiograph. One method
for reducing the number of misses is to have two radiologists
read the same image separately. This double-reading method
is not performed routinely because of the added expense and
logistical difficulties in clinical implementation. A CAD
scheme can provide the advantage of having a second reader
when one would otherwise be absent.

As with any complicated pattern recognition system,
CAD schemes typically use multiple parameters such as
threshold values, filter weights, and region of interest (ROI)
sizes to arrive at a detection or classification decision. For the
scheme to have a high performance (high sensitivity and a low
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false-positive rate), the values of these parameters need to be
set optimally. In general, the optimal set of parameters may
change when a component of the imaging chain is modified or
changed. When the number of parameters is large, it becomes
very difficult to manually determine the optimal choice of
parameter values, because some of the values may be correlated
with each other in some unknown manner. In response to these
difficulties, we have previously proposed a genetic algorithm
(GA)-based method for determining the set of parameter values
that maximize the performance of the system [2].

There are problems, however, with using automated
optimization techniques in this capacity. ~ Conventional
optimization techniques, including GAs, are designed to
minimize (or maximize) a scalar objective function. The
task of optimizing the performance of a diagnostic decision
making system is, however, clearly a multiobjective problem:
we wish to simultaneously increase the sensitivity and reduce
the false-positive rate of the system. We are therefore forced
to describe the two objectives by a single (scalar) objective
function, which is commonly created by taking a weighted
sum of the sensitivity and false-positive rate or using area
under the receiver operating characteristic (ROC) curve.
The optimization problem then becomes ambiguous because
there are an infinite number of methods to map a (sensitivity,
false-positive rate) pair to a single scalar number, and it is
usually not clear a priori which mapping will result in an
optimized set of clinically useful parameters.

Recently, we proposed a multiobjective approach for
optimizing the performance of diagnostic classifiers [3].
In a multiobjective optimization, multiple objectives are
simultaneously optimized, with the objective function now
being a vector-valued function. This eliminates the need to
find some ad-hoc function of the multiple attributes to yield
a scalar objective function. It was demonstrated that such an
approach has several important advantages over conventional
scalar optimization approaches, and produces the ROC curve
that best characterizes the classifier performance on the given
training dataset.

In this paper, we employ a multiobjective approach for
optimizing the performance of two rule-based CAD schemes
that have been developed previously in our laboratory.
One of the CAD schemes was designed to detect clustered
microcalcifications (which are indicative of breast cancer) in
digitized mammograms, while the other scheme was developed
to detect breast masses. The performances of the solutions
returned by the optimization of the detection schemes are
observed to define the operating points on an optimal ROC
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or free-response ROC (FROC) curve, describing the limiting
performances achievable by the detection scheme on the
available dataset.

II. BACKGROUND
A. Rule-Based CAD Schemes

Rule-based CAD schemes are generally comprised of three
processing stages. In the first stage, candidate signals (here, a
signal denotes the object one wishes to detect) are identified,
often by using a preprocessing filter such as a matched filter. In
the second stage, a set of features, denoted by the vector £ =
[1, %2, -+, zp) is calculated for each candidate signal. Lastly,
the true signals (or abnormal classifications) are identified by
subjecting the feature vectors Z to the thresholding operation

Co(W) ={Z : z; >w; Vje{l,...,p}}, ¢))

where the parameter vector & = [wy,ws, -, wy] represents
the threshold value for each feature and C, (@) denotes the class
of true (or abnormal) signal features. The class of false (or
normal) signal features is given by C, (%) = S —~ C,(w) where
S is the space spanned by all feature vectors. In general, more
complicated rules can be employed that, for example, threshold
on a combination of features. The performance of the scheme
may also implicitly depend on other parameters not explicitly
used by the rules in Eqn. 1 such as ROI sizes.

The process of optimizing (or “training™) the CAD scheme
involves determining the parameter vector « that maximizes
the performance of the scheme on an unknown independent
dataset. In this work, we assume that the parameter vector &
contains any system parameters (e.g., ROl sizes) that should
be optimized in addition to the threshold values for each rule
given in Eqn. 1. For a given &, the performance of a detection
scheme is described by its true-positive fraction TPF (W)
(sensitivity) and the average number of detected false-positive
signals per-image F'PI(w) (false-positive rate). A useful
construct for describing the overall performance of a detection
scheme is the FROC curve {4]. An FROC curve is generated
by varying one or more of the components of the parameter
vector W, and plotting the corresponding (T PF(w), FPI(w))
values. In this work, we demonstrate that an optimal FROC
curve representing the best possible detection performances on
the given dataset can be constructed by using the performances
of the solutions returned by a multiobjective optimization of
the detection scheme to define the curve.

For a given #, the performance of a classification scheme
is described by its TPF(w) and false-positive fraction
FPF(w) (misclassification probability). To describe the
overall classification performance an ROC curve can be
generated by varying one or more of the components of the
parameter vector W, and plotting the corresponding (T P F (1),
FPF(w)) values. In this work, we demonstrate the generation
of an optimal ROC curve by performing a multiobjective
optimization of a classification scheme.

B. Multiobjective Optimization and ROC or FROC
Curve Generation

The problem of simultaneously minimizing (or
maximizing) the n components of an objective vector function
fa) = [fi(@), -, fa(@)] is called the multiobjective
optimization problem. The solution to the multiobjective
optimization problem is not a single vector w, but rather
a set of vectors {w;} that are equivalent solutions to the
problem in the absence of any a priori information about
the relative merits of the different objectives. A potential
solution to the multiobjective optimization problem is called
non-dominated if there does not exist a solution superior
to it in all of the objectives. Let w* and W be two possible
parameter vectors, with §* = [g1,93,---,9%] = f(&*) and
§=1[91,92,- - gn] = (). The parameter vector 7 is said to
dominate @w* if g; < g7, 4 = 1,...,n,and g; < g} for at least
onei € {1,...,n}. The solution to the multiobjective problem
is the Pareto-optimal set, comprised of all non-dominated
vectors {w}.

When optimizing the performance of a CAD detection
scheme the objective vector f(w) will be compromised
of the two components fi(w) = -—TPF(w;D) and
fa2(w) = FPI(w; D), where D C S denotes the set of features
vectors {Z} that are used to compute f{). When optimizing
the performance of a CAD classification scheme the objective
vector f-'(u“i) will be compromised of the two components
fi(W) = ~TPF(w; D) and fo(w) = FPF(w; D). Without
loss of generality, we have assumed the objective vector is to be
minimized. The Pareto-optimal set will then contain the vectors
{w} that provide the limiting tradeoffs between T PF (w; D)
and FPI(w;D) or TPF(w;D) and FPF(w;D). In other
words, for a given FPI(w;D) or FPF(w;D) value the
Pareto-optimal solution will correspond to the solution
possessing the largest possible T PF(uw; D) value. We thus
observe that the performances of the solutions returned by a
multiobjective optimization of a CAD scheme correspond to the
operating points on an optimal FROC or ROC curve, indicating
the best possible detection or classification performances
achievable by the scheme on a given dataset.

Conventionally, a CAD scheme is trained prior to ROC
or FROC curve generation by using a conventional (scalar)
optimization technique [2]. An ROC or FROC curve is then
generated by varying one or more components of w and
plotting the corresponding TPF(w; D) and FPI(w;D) or
FPF(w; D) values, respectively. The curves generated by
varying different sets of components of @ will generally be
distinct, representing the different classification or detection
performances achievable by the scheme on the given dataset
D. What is usually desired, however, is the ROC or FROC
curve describing the best possible performances achievable
by the CAD scheme on the given dataset, which can be
used to characterize the overall efficacy of the CAD scheme.
Unfortunately, when the dimension of the parameter vector w
becomes large, the total number of possible ROC or FROC
curves increases as well and it soon becomes a computationally
impractical task to compute them all.
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Furthermore, a suboptimal conventionally-generated ROC
or FROC curve may not be well-behaved in the sense that
T PF(w@; D) does not monotonically increase as F'PI(w; D) or
FPF(w; D) increases. It is well known that the sensitivity and
false-positive rate of a detection task vary inversely, and thus it
is not natural for the sensitivity to decrease as the false positive
rate increases. The problem of generating the optimal ROC
or FROC curve is circumvented when using a multiobjective
optimization technique to train the CAD scheme because the
optimal, well-behaved ROC or FROC curve is produced as a
by-product of the optimization procedure.

C. Multiobjective Genetic Algorithms (MOGAs)

Conventional optimization techniques, including gradient-
based methods and simulated annealing, cannot directly solve
the multiobjective problem because they are not designed
with multiple solutions in mind. To apply these methods, an
aggregating function must first be defined which projects f(w)
to some scalar objective function.

Because genetic algorithms (GAs) maintain a population
of candidate solutions (called chromosomes) at each iteration
in the optimization, they have successfully been extended
to handle multiobjective optimization problems, forming
optimization algorithms that are collectively referred to as
multiobjective GAs (MOGAs) [5]. In this work, we utilize
a MOGA called the Niched Pareto GA (NP-GA), which is
described in detail by Horn er al. [6]. We briefly review the
salient features of this algorithm below. Readers not familiar
with conventional GAs may consult reference [7].

The NP-GA differs from the conventional scalar GA
(CS-GA) in that it uses a modified ranking scheme and
tournament selection mechanism [7]. As with a CS-GA, the
NP-GA begins by randomly generating a set of solutions
{w; ﬁ__”f”, where N,,, denotes the population size. With
a CS-GA, the fitness of each solution w; would then be
calculated by evaluating the scalar objective function f;(20;).
Because the NP-GA seeks to minimize (or maximize) a
vector objective function f(w;), it cannot use the objective
function values directly to assess the fitness of the {u')’,}ivz"f"
but rather utilizes dominance-based ranking to do so. In
dominance-based ranking, the fitness of each solution ; is
made equal to the rank of J;, where the rank of «; corresponds
to the number of solutions in the current population by which
it is dominated. Assigning the fitness in this way ensures that
solutions with the same rank are treated as equally “good”

potential solutions to the optimization problem.

As with the CS-GA, the NP-GA uses a tournament selection
method [7] to select the subset of solutions from the current
population that are to be put through the genetic operations
and subsequently carried over to the future generation. The
rank-based fitness strategy used by the NP-GA, based on the
concept of dominance, incorporates the multiobjective nature
of the problem into the selection mechanism. When the t4om
solutions involved in the tournament have the same rank,
there will not be a clear winner. In this case, a form of fitness
sharing called equivalence class sharing [7] is employed where

the winner of a tied tournament is the solution that has the
smallest niche count, which represents the density of solutions
in objective space about the solution. The niche radius ospare
represents the maximum distance between two solutions that
will result in an increase in their niche counts. A discussion
of the effect of the various NP-GA operating parameters is
presented in reference [3].

III. METHODS

We employed the multiobjective approach to optimize two
CAD schemes that have been developed in our laboratory.

A. CAD scheme for microcalcification detection

We first employed the NP-GA optimization method
to optimize a CAD scheme for the detection of clustered
microcalcifications which has been developed in our
laboratory [8]. Our CAD scheme consists of three major steps.
In the first step, the original mammogram is pre-processed
by linear filtering to increase the signal-to-noise ratio of
the microcalcifications. This is accomplished by use of a
difference-image technique or the wavelet transform. The
potential microcalcifications are identified in the second step by
use of gray-level thresholding and morphological filtering. The
third step involves extracting various features of the identified
signals to reduce the number of false detections. The signals
that remain after feature analysis are subjected to a clustering
routine, which groups the detected microcalcifications into
clusters.

Five parameters important for signal extraction (w;) and
false positive elimination (w, ---ws) were identified in the
signal extraction and feature analysis steps of our CAD scheme
to be included in the optimization. The set of features D,
used to compute T PF(if; D) and FPI(w; D), was extracted
from a database of 39 mammograms that was obtained with
a conventional screen-film (Kodak Min R/OM) system. A
standard single-point crossover with an application rate of 50%
and standard mutation with an application rate of 10% were
employed by the NP-GA as the genetic operations [7]. A t4om
value of 3 and a G447 Value of 0.35 were found (empirically)
suitable for the problem.

One of the solutions returned by the NP-GA was chosen
to represent a typical solution that might be returned by a
CS-GA optimization [2]. An FROC curve was then generated
by treating the w; component of « as an independent decision
variable which was used to sweep out the curve. We hereafter
refer to this curve as the “conventional FROC curve” because
this was the method of FROC curve generation reported
in a previous study [2]. Other decision variables have not
previously been identified that produce better conventional
FROC curves. The conventional FROC curve was compared to
the FROC curve returned by the NP-GA.

B. CAD scheme for mass detection

The computerized mass detection scheme currently being
developed at the University of Chicago includes a preprocessing
step of bilateral subtraction [9] followed by a classifier acting
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as a post-processing step. With this CAD scheme, a series of
potential lesion sites are located using the bilateral subtraction
algorithm. Each potential lesion site is analyzed and features
are extracted from it. These features are used by a classifier
to determine whether that suspicious area is an actual lesion or
a false-detection. This classification step should preferentially
reduce the number of false detections returned by the initial
detection algorithm while keeping most of the true detections
[10].

We have implemented a rule-based classifier for use in the
mass detection scheme. The optimal threshold values for this
classifier have been determined using the NP-GA. A total of
four features relating to the potential lesion contrast (w, ), edge
sharpness (wq,w4), and circularity (w3, w4) were used in this
study. The set of features D, used to compute T'PF'(w; D)
and FPF(w;D), was extracted from the 118 true-positive
detected lesions and the 10,697 total false detections returned
by the initial detection algorithm using a database of 60 cases
(with 4 images per case). A standard single-point crossover
with an application rate of 30% and standard mutation with an
application rate of 5% were employed by the NP-GA as the
genetic operations (7]. A t4om, value of 3 and a o5p4r¢ Value of
0.1 were found (empirically) suitable for the problem,

Again, one of the solutions returned by the NP-GA was
chosen to represent a typical solution that might be returned by
a CS-GA optimization. An ROC curve was then generated by
treating the w; component of @ as an independent decision
variable which was used to sweep out the curve. We hereafter
refer to this curve as the “conventional ROC curve”. Other
decision variables have not previously been identified that
produce better conventional ROC curves. The conventional
ROC curve was compared to the ROC curve returned by the
NP-GA.

IV. RESULTS

A. CAD scheme for microcalcification detection

The FROC curve produced by the NP-GA and the
conventional FROC curve are shown in Fig. 1. The CS-GA
optimization solution corresponded to the operating point
(TPF(w; D) = 0.85, FPI(w; D) = 0.21). It is seen that the
NP-GA generated FROC curve is everywhere greater than or
equal to the conventional FROC curve. Other conventional
FROC curves generated using parameters wp-ws as the
independent decision variables produced curves that did not
span both the low- and high-FPI(w;D) regions of FROC
space and/or were lower than the w; generated curve.

B. CAD scheme for mass detection

The ROC curve produced by the NP-GA and the
conventional ROC curve are shown in Fig. 2. The CS-GA
optimization solution corresponded to the operating point
(TPF(w;D) = 0.75, FPF(w; D) = 0.08). It is seen that
the NP-GA generated ROC curve is everywhere greater
than or equal to the conventional ROC curve. Note that the
conventional ROC curve does not span both the low- and
high-F PF(w; D) regions of ROC space. Other conventional
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Fig. 1 Conventional FROC curve (dashed-lines) and the FROC curve
produced by the NP-GA optimization (solid line). The CS-GA
solution is represented by the circle. The conventional FROC curve
was then generated by varying the w; component of the scalar
optimized 0 as described in the text.
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Fig. 2 Conventional ROC curve (dashed-lines) and the ROC curve
produced by the NP-GA optimization (solid line). The CS-GA
solution is represented by the circle. The conventional ROC curve was
then generated by varying the wi component of the scalar optimized
17 as described in the text.

ROC curves generated using parameters wp-wy as the
independent decision variables also produced curves with this
problem.

V. DISCUSSION

As seen in Figs. 1 and 2, the NP-GA generated FROC
and ROC curves are everywhere greater than or equal to the
conventional FROC and ROC curves. Prior to generating the
conventional FROC curves, a solution of a scalar optimization
of the scheme was identified. The conventional FROC
and ROC curves were then obtained by varying certain
components of the optimized parameter vector . In general,
the conventional curves generated in this manner will be
suboptimal because the scheme was naturally trained to
operate at only one point on the curves. The other operating
points on the curves will generally correspond to w vectors
that are dominated, and thus suboptimal. The NP-GA avoids
this problem because each solution returned by the NP-GA
corresponds to a non-dominated operating point on the FROC
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or ROC curve, which produces an optimal FROC or ROC when
the non-dominated set is Pareto-optimal.

In addition to being suboptimal, the conventional ROC
curve shown in Fig. 2 covers only a restricted range of the
FPF(w;D) axis, and thus does not provide a complete
description of the classification performance. A similiar
behavior was observed for the FROC curves of the detection
scheme when the we-ws parameters were used as decision
variables. This behavior is not surprising because a rule-based
CAD scheme does not project the input data onto a single
decision variable that can be thresholded to detect or classify
a signal. Rather, the rules in Eqn. 1 are independently applied
and the results logically combined to arrive at a detection or
classification decision. When a subset of the parameter vector
o is not used to generate the ROC or FROC curve, certain
regions of the ROC or FROC space may remain inaccessible,
as is clearly demonstrated by Fig. 2. The need to choose an
appropriate decision variable which can sweep out the ROC or
FROC curve is removed when using the NP-GA.

Note that in Fig. 1 the conventional FROC curve is not
a monotonically increasing curve. We know, however, that
the sensitivity and false-positive rate of a detection scheme
should vary inversely, implying that the slope of the FROC
curve should be positive. The solutions returned by the NP-GA
are non-dominated, and hence, by definition, the FROC (or
ROC) curve obtained by connecting the operating points of the
NP-GA solutions necessarily has a positive slope at all points.

In this paper, we have addressed the issue of characterizing
the performance of a CAD scheme on a training dataset.
When the amount of training data is limited and/or is not
representative of the global data distribution, the ROC or FROC
curve generated using the training data may not be an accurate
estimate of the general detection performance. To generate a
“test” ROC or FROC curve using an independent dataset, the
performances of the non-dominated solutions returned by the
NP-GA optimization should be re-evaluated on the independent
dataset. The test ROC or FROC curves generated in this way
can be used by statistical tests, such as the jackknife test, to
provide an estimate of the general system performance [2].

VI. CONCLUSION

Conventional methods of CAD optimization optimize to a
single operating point from which an ROC or FROC curve is
generated by varying a subset (typically only one) of the CAD
parameters. Using the NP-GA, we are able to optimize the
entire ROC or FROC curve instead of just a point in ROC or
FROC space. Assuming the optimization is complete, the curve
returned by the NP-GA is optimal in the sense that no other
ROC or FROC curve is better for the given dataset and detection
scheme. This allows one to fully characterize the performance
of a CAD scheme on a specified dataset.
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