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Abstract

Real world engineering design problems are usually characterized by the presence of
many conflicting objectives. Therefore, it is natural to look at the engineering design
problem as a multiobjective optimization problem. This report summarizes a survey of
techniques to conduct multiobjective optimization in an engineering design context.

The report starts with discussing some of the difficulties of expressing the value of a
deign and how to characterize different design variables. Thereafter we look more closely
on the design problem in order to reformulate the design problem as a multiobjective
optimization problem.

As engineering design problems often consist of a mixture of numerical simulations,
analytical calculations and catalog selections, there is no easy way of calculating
derivatives of the objectives function. Therefore, non-gradient optimization methods are
better suited for these types of problems. Different types of non-gradient method are
discussed in the report and different ways of developing hybrid methods are presented as
well.

As most optimization problems are multiobjective to there nature, there are many
methods available to tackle these kind of problems. Generally, a multiobjective
optimization problem can be handled in four different ways depending on when the
decision-maker articulates his or her preference on the different objectives; never, before,
during or after the actual optimization procedure. The most common way is to aggregate
the different objectives to one figure of merit by using a weighted sum and the conduct
the actual optimization. There is however an abundance of other ways in which
multiobjective optimization can be conducted, some of them are presented in this report.
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1 Introduction
This survey focuses on different techniques to conduct multiobjective optimization in an
engineering design context. The usage of optimization in engineering is getting larger
every day as the computational capabilities of the computers are increasing. Today
calculations could be performed in a fraction of the time it took just a couple of years
ago. Therefore, the applications for numerical optimization have increased dramatically.
A great part of the design process is and will always be intuitive, however analytical
techniques as well as numerical optimization could be of great value and can permit vast
improvement in designs.

Real engineering design problems are generally characterized by the presence of many
often conflicting and incommensurable objectives. This raises the issue about how
different objectives should be combined to yield a final solution. There is also the
question on how to search for an optimal solution to the design problem. This paper
presents a survey of some methods for optimization of engineering problems and
different ways of developing hybrids among them. Another part of the paper focuses on
how to handle the different objectives. Should the objectives first be aggregated to an
overall figure of merit before we search for an optimal solution? Alternatively, shall we
first search for a set of optimal solution before we articulate our preferences? There are
many methods developed with different answers to these questions; some of them are
discussed here.

First however we start with discussing some of the difficulties of expressing the value of
a deign and how to characterize different design variables, using many ideas and
definitions from Siddall [58]. Thereafter we look more closely on the design problem in
order to formulate it as a multiobjective optimization problem.

1.1 The Concept of value
The concept of value is central to decision theory- the measure about what is good or
desirable about a design. At a first glance, one would say that it is no problem. If two
designs are comparable simply chose the cheapest one. However, consider the designing
of a car; it must not only be cheap but safe, have a long life, be both quite and fast. How
shall we then choose? Which characteristics contribute the most to the overall value of
the design? This is very crucial to decision-making, and in general also to design.

For any given design, the designer has to give the different characteristics such as low
initial cost, long life and good performance a weighting value. This is usually not done
explicitly, but intuitively the designer does that. However, he might not be aware of it.
During the design process, the designer much tradeoff characteristics against each other.
How much is longer life worth in terms of higher manufacturing costs. One purpose of
conducting multiobjective optimization is to make these tradeoffs visible. It would indeed
be an interesting task to estimate what different ratings gave the final design.

Value is an inherit property of the design, which could be defined as that which satisfies
desire. It remains however to be determined whose desires we should try to satisfy, and
how we could articulate them to the designer. It might be hard to value a design even



A survey of multiobjective optimization methods in engineering design

4(34)

when one has the physical artifact; it is even harder to do it in the earlier phases of the
design process. However, in order to employ optimization to support the designer this is
exactly what we have to do. Usually the designer employs a set of modeling and
simulation tools in order to predict the properties of a design.

Often when we say value of a design we refer to the utility value which relates to the
function or usefulness of the design. There is however many other values that the
designer must take into account. Here however, we are just focusing on the function and
usefulness of a design. This is without saying that the others are not important.

1.2 Design variables
Design variables are parameters that the designer might “adjust” in order to modify the
artifact he is designing. There are many types of design variables.

Independent design variables are the actual quantities the designer deals with directly,
such as geometry, material properties, production volume, surface finish, configuration of
components, lubrication properties and many more. Independent design variables are
usually called just design variables or design parameters. Here the term design
parameters will be used.

Dependent variables are variables the designer can not directly assign values to but he
works with them trough the design parameters. The dependent variables are usually
named characteristics or attributes of the design. The value of a design is largely a
function of the characteristics of the design. In optimization, the term objective function
value corresponds to the value of a particular characteristic. An objective function is then
the relation between the design parameters and the value of a particular characteristic. For
a general design problem, it might be very difficult or even impossible to represent this
relation analytically, as the characteristic might be the outcome of a complex simulation.

State variables are an intermediate type of design variables between dependent and
independent design variables.

Operating variables are variables that can be changed after the design has been actually
built. The environmental variables or the external variables are the environmental factors
that affect the design when used. The designer has to determine the working conditions of
the design in order to assess both the environmental and the operational variables.

The designer problem could be formulated as to assign values to the different design
parameters in order to ensure that the state variables and the characteristics are as good as
possible during a wide range of operating and environmental variables. This is indeed an
intricate multiobjective optimization problem.

1.3 The general multi-objective optimization problem
A general multi-objective design problem is expressed by equations (1) and (2).

( ) ( ) ( ) ( )( )T
kfff xxxxF ,...,,min 21=

S  ts ∈x..

(1)
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( )T
nxxx ,...,, 21=x (2)

where ( ) ( ) ( )xfxfxf k,...,, 21  are the k objectives functions, ( )nxxx ,...,, 21  are the n

optimization parameters, and nRS ∈  is the solution or parameter space. Obtainable
objective vectors, ( ){ }Sx ∈xF  are denoted by Y, so YS a:F , S is mapped by F onto Y.

kRY ∈  is usually referred to as the attribute space, where Y∂  is the boundary of Y.  For a
general design problem, F is non-linear and multi-modal, and S might be defined by non-
linear constraints containing both continuous and discrete member variables.

**
2

*
1 ,...,, kfff  will be used to denote the individual minima of each respective objective

function, and the utopian solution is defined as ( )T

kfff **
2

*
1 ,...,,=*F . As F*

simultaneously minimizes all objectives, it is an ideal solution that is rarely feasible.
Figure 1 provides a visualization of the nomenclature.

In this formulation, minimize F(x), lacks clear meaning as the set {F(x)} for all feasible x
lacks a natural ordering, whenever F(x) is vector-valued. In order to determine whether
F(x1) is better then F(x2), and thereby order the set {F(x)}, the subjective judgment from
a decision-maker is needed.

One property commonly considered as necessary for any candidate solution to the
multiobjective problem is that the solution is not dominated. The Pareto set consists of
solutions that are not dominated by any other solutions. A solution x is said to dominate y
if x is better or equal to y in all attributes, and strictly better in at least one attribute.
Considering a minimization problem and two solution vectors x, y∈S. x is said to
dominate y, denoted yx f , if:

{ } ( ) ( ) { } ( ) ( )yxyx jjii ffkj    and    ffki <∈∃≤∈∀ :,...,2,1:,...,2,1 (3)

The space in Rk formed by the objective vectors of Pareto optimal solutions is known as
the Pareto optimal frontier, P. It is clear that any final design solution should preferably
be a member of the Pareto optimal set. Pareto optimal solutions are also known as non-
dominated or efficient solutions.
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Figure 1: Parameter/solution and attribute space nomenclature for a two dimensional problem
with two objectives.

If the final solution is selected from the set of Pareto optimal solutions, there would not
exist any solutions that are better in all attributes. It is clear that any final design solution
should preferably be a member of the Pareto optimal set. If the solution is not in the
Pareto optimal set, it could be improved without degeneration in any of the objectives,
and thus it is not a rational choice.

2 General optimization methods
Optimization methods could be divided into derivative and non-derivative methods, se
Figure 2. This survey focuses on non-derivative methods, as they are more suitable for
general engineering design problems. One reason is that non-derivative methods do not
require any derivatives of the objective function in order to calculate the optimum.
Therefore, they are also known as black box methods. Another advantages of these
methods are that they are more likely to find a global optima, and not be stuck on local
optima as gradient methods might do.

Optimization
methods

Derivative
methods

Non-derivative
methods

Simulated
Annealing

Genetic
algorithms

Random
search

Tabu
search

Complex/
simplex

Figure 2: A classification of optimization methods in derivative and non-derivative methods with
examples of some common non-derivative methods.
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For a general design problem, it is hard to express your objective functions in terms of the
design variables directly, as already mentioned. A variety of computer-aided engineering
tools is available today, which allow the designer to estimate the performance of the
design in an early stage of the design process. Such design tools might include CAD
packages, FEM software, CFD solvers, self write simulation codes, commercial multi
purpose modeling and simulation packages such as Matlab, spread sheet programs such
as Excel, and many more. Typically, the objective function constitutes of a mixture of
numerical simulations, analytical calculations as well as catalog selections among other
things. Therefore, there is no straightforward way of calculating the derivatives of the
different objective functions.

Apart from the methods mentioned in Figure 2, there are also other promising techniques
to conduct engineering optimization, for instance neural network optimization and
response surface approximations, as well as Taguchi methods and other statistical
methods. However, here just the methods in Figure 2 would be discussed further.

2.1 Genetic algorithms
Genetic algorithms (GAs) and the closely related evolutionary strategies are a class of
non-gradient methods which has grown in popularity ever since Rechenberg [52] and
Holland [33] first published their work on the subject in the early 70’s. For a more
comprehensive study of genetic algorithms, see Goldbergs splendid book [25] on the
subject.

The basic idea of GAs is the mechanics of natural selection. Each optimization parameter,
(xn), is coded into a gene as for example a real number or string of bits. The
corresponding genes for all parameters, x1,..xn, form a chromosome, which describes each
individual. A chromosome could be an array of real numbers, a binary string, a list of
components in a database, all depending on the specific problem. Each individual
represents a possible solution, and a set of individuals form a population. In a population,
the fittest are selected for mating. Mating is performed by combining genes from
different parents to produce a child, called a crossover. Finally the children are inserted
into the population and the procedure starts over again, thus representing an artificial
Darwinian environment, depicted in Figure 3 below. The optimization continues until the
population has converged or the maximum number of generations has been reached.
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Initialize
population

Select parents
for mating

Create offspring,
crossover and mutation

Fitness 
evaluation

Insert offspring 
into population

Stop criteria
meet ?

Figure 3: An algorithm for a simple genetic algorithm.

The popularity of genetic algorithms has grown tremendously under recent years and they
have been applied to a wide range of engineering problems, see for example [6, 20, 37,
41, 42, 56]. There are also an abundance of different type of genetic algorithms such as
simple GA’s, steady state GA’s, GA’s with multiple populations, GA with crowding and
sharing techniques, and many, many more, see [3] for a complete set of references. The
different GA’s all have different features in order to solve different type of problems.
There are also a number of multiobjective genetic algorithms which aims at converging
the population on the Pareto optimal front instead of on just one single optimal point.
Different types of multiobjective genetic algorithms will be discussed further on.

GA’s are very robust and can handle all type of fitness landscapes and mixture of real and
discrete parameters as well as catalog selections, see Senin et al. [56].

2.2 Simulate annealing
Simulated annealing (SA) was first presented by Kirkpatrick [40] in the early 80’s. SA
simulates the natural phenomena of annealing of solids in order to optimize complex
systems. Annealing of solids are accomplished by heating up a solid and allowing it to
cold down slowly so that thermal equilibrium is maintained. This ensures that the atoms
are obtaining a minimum energy state.

The algorithm starts with an initial design. New designs are then randomly generated in
the neighborhood of the current design according to some algorithm. The change of
objective function value,  (∆E), between the new and the current design is calculated as a
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measure of the energy change of the system. If the new design is superior to the current
design (∆E<0) it replaces it, and the procedure starts over again. If the new design is
worse than the current, it might still be accepted according to the Boltzmann probability
function (4).

( ) 




 ∆−=∆

T

E
EP exp

(4)

P is the Boltzmann probability of accepting the new design and T is the current
“temperature” of the system. A random number in the range {0..1} is generated, and if it
is less than P the new design replaces the current design. The temperature is simply a
control parameter in the same units as the objective function. As the annealing processes
proceeds the temperature is decreased according to a cooling scheme. The temperature
controls the probability that a worse design is accepted. This allows the algorithm to
avoid local optima in the beginning of the search when the temperature is high. At the
end of the search, when the temperature is low the probability of accepting worse designs
is very low. Thus, the search converges to an optimal solution.

An advantage of SA is that it can handle mixed discrete and continues problems. The
parameters settings for a SA algorithm determines how new solutions should be generate,
the initial temperature and what the cooling scheme should be. Recent applications of SA
include [10, 11, 57].

2.3 The Complex method
The Complex method was first presented by Box [7], and later improved by Guin [27].
The method is a constraint simplex method developed from the Simplex method by
Spendley et al [59] and Nelder Mead [50]. Similar related methods goes under names
such as Nelder-Mead Simplex and flexible polyhedron search. These methods also have
similar properties.

In the Complex method, a complex consisting of several possible problem solutions (sets
of design parameters) is manipulated. Each set of parameters represents one single point
in the solution space. Typically, the complex constitutes of twice as many points as the
number of optimization parameters. The main idea of this algorithm is to replace the
worst point by a new and better point. The new point is calculated as the reflection of the
worst point through the centeroid of the remaining points in the complex. By varying the
reflection distance from the centeroid it is possible for the complex to expand and
contract depending on the topology of the objective function. The starting points are
generated randomly and it is checked that both the implicit and the explicit constraints are
fulfilled. The optimal solution is found when all points in the complex have converged.

An example of the complex method is shown in Figure 4 below for a two dimensional
parameter space. The circles in the graph indicate the objective function value for
different solutions, with the best value in the middle.
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Figure 4: The progress of the Complex method for a two dimensional example, with the optimum
located in the middle of the circles.

The complex method has been applied to a wide range of problems such as physics [54],
structural engineering [30], fluid power system design [1, 37], aerospace engineering
[42], and many others [23, 45, 46]. The Complex method was originally developed for
problems with continues variables but Haque [30] has shown that the complex method
could also be applied to mixed continues and discrete variable problems.

2.4 Random search
Random search method is a generic term for methods that rely on random numbers to
explore the search space. Random search methods are generally easy to implement, and
depending on the implementation they can handle mixed continues and discrete
problems. However, they usually shows quit slow convergence. Here just one among
many methods is described.

2.4.1 Random walk
Random walk is an iterative procedure where the next point xt+1 is calculated as

Sxx ⋅+=+ αtt 1 (5)

where α is a step size parameter and S is a random generated unit vector in witch to
search. If xt+1 has a better function value than xt , xt+1 replaces xt . Otherwise a new search
direction S is generated until a better solution is found. If no better solution can be found
the step size is reduced and new search directions is generated. The search is considered
to be converged when no better solutions can be found and the step size is reduced
beyond a prescribed value.

2.5 Tabu search
Tabu search (TS) is a recent addition to non-derivative optimization algorithms
developed by Glover [24] in 1989. TS is an adaptive heuristic strategy that was primarily
design for combinatorial optimization. It has been applied to a wide range of problems
however, mostly of combinatorial nature.

In the Tabu search method is flexible memory cycles (tabu lists) are used to control the
search. At each iteration we take the best move possible that is not tabu, even if it means
an increase in objective function value. The idea is that when we reach a local minimum
we wish to escape via a different path.
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A short term memory is implemented as a list of previously visited solutions that are
classed as tabu. Whilst a solution is contained within thetabu-list it cannot be returned to.

The tabu restrictions stop the search from returning to the local optima and the new
search trajectory ensures that new regions of the search space are explored and the global
optimum located. Intermediate and long term memory cycles are used to intensify and
diversify the search to ensure that the entire solution space is adequately explored before
the search is terminated. The direction and length of each movement are calculated by
employing local hill climbing techniques.

Tabu search can handled both continues and discrete parameters. Recent applications of
TS include [5, 14, 32].

2.6 Hybrid methods
Clearly the different methods have different advantages and it is therefor attractive to
produce hybrid methods. Yen et al. [70] classified hybrid genetic algorithms in four
categories, which are suitable for classifying other hybrids as well.

1. Pipelining hybrids

2. Asynchronous hybrids

3. Hierarchical hybrids

4. Additional operators

2.6.1 Pipelining hybrids
The simplest and most straightforward way of implementing hybrids is to do in
sequentially. First, one starts with exploring the whole search space with a method that is
like to identify global optima but perhaps with slow convergence. After identifying
promising regions, one could switch to a method with higher convergence rate in order to
speed up the search. This could be accomplished by combining for instance a GA with a
gradient-based algorithm, see [69].

2.6.2 Asynchronous hybrids
In asynchronous hybrids different methods work on different subsets of the solution
space. The different methods might work on a subset of a shared population for some
iterations. If the individuals from such a subset outperform the ones in the shared
population, they are allowed to immigrate into it. With this approach, a method that
converges slowly could be combined with one that converges faster, or a method that
performs well on one subset of the search space could be combined with method that
performs well on another subset. The same idea is employed in genetic algorithms with
multiple populations, then in order to find multiple solutions in multi modal spaces.

2.6.3 Hierarchical hybrids
In hierarchical hybrids, different optimization methods are applied at different levels of
the optimization. On an overall level, you can apply a robust optimization strategy to find
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an optimal layout. At lower levels, where the system might be less complex and sensitive
it might more appropriate to employ for instance pure analytical methods.

2.6.4 Additional operators
In the literature the are many examples of hybrids between different optimization
methods where operators from one method are added to or even replacing the standard
operators of the other method. For instance, Yen et al. [70] has introduced a simplex
method as a new way of generating children in a genetic algorithm. At each iteration a
certain percentage of the population is generated by employing a simplex method on
group of promising individuals. The rest of the population is generated using the usual
genetic operators. This has improved both the convergence speed as well as the ability to
find the absolute optima.

There are many additional hybrids of SA and GA algorithms for instance [71] where
among other things the replacement is done according to a simulated annealing scheme.
The thermodynamic genetic algorithm [48] is also an example of such a hybrid.

Gunel and Yazgan [28] have presented a method where they combine a random search
strategy with the complex method. The basic idea of this method is to modify the
reflection strategy of the complex method. If the new reflected point is still the worst
point it is not moved against the centeroid as in the normal Complex, but a random
strategy is employed in order to generate the new point.

2.7 Short notes on comparisons of the different methods
There is no simple answer to which optimization methods is the best for any given
problem. It is all a matter of opinion; very much depending on the nature of the problem
and the availability of different optimization software that fits the problem statement.

In most comparison studies different methods come out on top depending on the problem
and how well the different methods have been tuned to fit that particular problem.
Comparative studies of different types of non-derivative methods could be found in for
instance [6, 29, 37, 47]. An interesting question that one should keep in mind when
comparing different methods are the time spent on optimizing the different methods
before they are compared. If a method is five percent faster then another one, but takes
three times as long to implement and parameterize, it might not be worth the effort.

GA’s seems to be most suitable to handle multi modal function landscapes and to identify
multiple optima in a robust manner. GA:s are however associated with a high
computational cost. Moreover, GA:s are more complicated and harder to implement and
parameterize then the other methods. This is however compensated for by the huge
number of GA software that are available in almost any programming language. As GA’s
have be around for such a long time they also have the broadest field of applications.

Simulated annealing and Tabu are growing in popularity and gaining ground on GA’s
mostly on combinatorial optimization problems. SA could actually be seen as a subset of
GA’s with a population of one individual and a changing mutation rate. Both SA and
Tabu search are robust methods slightly less computational expensive then genetic
algorithms.
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In order shorten the computation time the methods could be implemented on parallel
CPU:s. This have been successfully implemented for both genetic algorithms as well as
simulated annealing.

The Complex method and other related methods are very fast, but not as robust as the
other methods. Robust then referring to that they are more likely to get stuck in local
optima. Moreover, they can just find one optimal solution. However, the complex method
is easy to implement and understand and to parameterize, which makes it very user-
friendly. Studies like [1, 6, 37] shows that these types of methods could be very
promising for engineering optimization. In [6] the flexible polyhedron search comes out
on top in a comparison with the other methods.

3 Different ways to perform multiobjective
optimization

As mentioned earlier real engineering design problems are usually characterized by the
presence of many conflicting objectives that the design has to fulfill. Therefore, it is
natural to look at the engineering design problem as a multiobjective optimization
problem (MOOP). References to multiobjective optimization could be found in [36, 61]
and with engineering applications in [17, 51].

As most optimization problems are multi objective to there nature, there are many
methods available to tackle these kind of problems. Generally, the MOOP can be handled
in four different ways depending on when the decision-maker articulates his or her
preference on the different objectives, never, before, during or after the actual
optimization procedure. These different possibilities are shown in Figure 5.
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Figure 5: A classification of some methods for multiobjective optimization.

Although the classification gives a far from complete description of all available
optimization techniques it constitutes a good frame work for discussing the most common
methods suitable for engineering optimization.

3.1 No preference articulation
These types of methods do not use any preference information. Examples are the Min-
Max formulation and global criterion method [36, 51, 61].

The Min-Max formulation is based on minimization of the relative distance from a
candidate solution to the utopian solution F*, see Figure 1. The distance between a
solution vector and the utopian vector is typically expressed as a Lp-norm. Thus, the
optimization problem is formulated according to equation (6).
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The exponent p gives different ways of calculating the distance. The most frequently used
values for p are 1 for the simples formulation, 2 for the Euclidean distance, and ∞ for
Tchebycheff norm.

In the min-max formulation, no preference information from the decision-maker is
necessary. However, the output is just one point on the Pareto front, which the DM has to
accept as the final solution. By changing the exponent in the distance formulation and by
giving the single objectives different weightings, different points on the Pareto front
could be found. However, then preference information from the decision-maker is
needed.

This formulation is not widely used in engineering design. For interactive methods
however, Min-Max formation might be used together with other techniques to find
multiple points on the Pareto front.

3.2 Priori articulation of preference information
The most common way of conducting multiobjective optimization is by priori articulation
of the decision makers preferences. This means that before the actual optimization is
conducted the different objectives are some how aggregated to one single figure of merit.
This can be done in many ways; some of which are described here.

3.2.1 Weighted-sum approaches
The most easy and perhaps most widely used method is the weighted-sum approach. The
objective function is formulated as a weighted L1-metric, see equation (7). For an
interesting discussion on weighted sum approaches, see Steuer [61].
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By choosing different weightings, iλ , for the different objectives, the preference of the

decision-maker is taken into account. As the objective functions are generally of different
magnitudes, they might have to be normalized first. Although the formulation is simple,
the method is somewhat ad-hoc, as there is no clear relation between the weightings and
the obtained solution. How to determine the weightings from the decision-makers
preferences is also an ad-hoc procedure. Another drawback for this method is that with
convex combinations of the different objectives, as in (7), it is not possible to locate
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solutions at non-convex part of the Pareto-front. The weighted-sum approaches are
discussed later when this approach is employed in order to sample multiple points on the
Pareto optimal front.

3.2.2 Non-linear approaches
Although many methods might be referred to as non-linear, hence all the ones mentioned
hereafter, we here refer to higher order of Lp-metrics formulations and their equals.
Equation (8) below represents one such approach used by for instance [2, 43].
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In this formulation each objective are normalized by fj0, which represent the value of j:th
objective for the best known solution so far. The expression could be further normalized
by dividing with k, yielding unity as the value for the present best solution. For
consistence the whole expression could be raised to the power of 1/p. The exponent p
expresses how much an improvement in fi is worth and how much a poorer value

penalizes the over all objective function. The graph in Figure 6 below depicts ( )p
ii ff 0

as a function of fi. The graph could be looked upon as an inverted utility function.

fifi0

1

fi

fi0

p

Figure 6: The form ( )p
ii ff 0  as a function of fi. for p=3.

Anderson et al [2] employed this formulation as well as the House of Quality method in
order to capture the preferences of a set of decision-makers.

3.2.3 Fuzzy logic approaches
The concept of fuzzy sets is based on a multi-valued logic where a statement could be
simultaneously partly true and partly false. In fuzzy logic, a membership function µ
expresses the degree of truthfulness of a statement, in the range from µ=0, indicating that
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the statement is false to µ=1 for truth. This is in opposite to binary logic where a
statement can be only false or true.

In an optimization problem the membership function enables us to associate a normalized
value to each objective µi(fi(x)), which expresses the degree of satisfaction of the
considered objective i. The value of fi(x) is fuzzified by µi to yield a value in the rang
{0,1}, which quantifies how well a solution satisfies the requirements. Examples of two
membership functions are depicted in Figure 7 below.
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Figure 7: Typical member functions for two characteristics of a fluid power system.

In Figure 7 we consider a fluid power system design, where we want to keep the losses
low, say 50W is acceptable whereas 60W is not. We also want to have a constant system
pressure of 150 bar. The corresponding membership functions could then look like in
Figure 7. A membership function can have any shape. However, in the literature
piecewise linear functions are the most common.

Ones the fuzzification has been performed the actual value of each objectives have been
transformed into logical values. These values have to be aggregated to one in order to get
an overall value for the design. In binary logic this is accomplished by the AND operator.
However, in fuzzy logic the AND operator could be implemented by several different
rules. The most common ones are the min operator and the product operator. The min
operator returns as an output the minimum value of the µi on which is operates. As in
binary logic, if one µi equals zero the output is zero. The product operator returns the
product of all individual operators. This formulation is also compatible with the one of
binary logic. The overall objective function could consequently be expressed as:

( ) ( )( ) ( )( ) ( )( )( )xxxx kkfuzzy fffF µµµ ,...,,min 2211=  or (9)
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The overall fuzzy optimization problem is formulated according to equation (11).

( )xfuzzyF  max

S   s.t. ∈x

(11)
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Examples of fuzzy approaches to multiobjective optimization could be found in [11, 12,
72].

3.2.4 Utility theory
Utility theory forms the basics of decision making and dates back to von Neumann and
Morgenstern (1947), although the basic reference can be found in [38]. The utility
function ( ) ( ) ( )( ) ( )( )xFxxx UfffU i =,...,, 21  is a function that maps the value of the design

as a scalar, i.e. RRU k a: . ( )( )xii fU  expresses the value of the design as a function of

the attribute expressed by fi(x) as shown in Figure 8. To the left the utility, and thereby
the value, of the design increases as the characteristic increases.

fi(x)

Ui

fi(x)

Ui

1.0

Arbitrary utility function “low is better” utility function

Cost ($) 300

Figure 8: Typical utility functions.

Utility functions are usually expressed as exponential functions, such as

( )( ) ( )xx jcf
jj beafU −= . The constants a and b are usually chosen so that Uj(fjmin)=1 and

Uj(fjmax)=0, see Figure 8 right.

An extensive interaction with the decision-maker is needed in order to determine the
utility function for each attribute. A formal method that allows this is presented in [66].

However, in order achieve an overall utility function a set of assumptions has to be made.
For instance, it is usually assumed that the different utilities are mutually independent. In
order to aggregate the different objectives it is usually assumed the utility functions are
either additive or multiplicative. Simplified this could be expressed as

( )( ) ( )( )∑
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=
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1

xxF . Ones the overall utility function is

formulated the optimization problem is formulated as to maximize that utility. If ( )( )xFU
really captures how the decision-maker values a design, a maximization of the overall
utility would yield the best solution according to the decision-maker.

Utility Theory is mathematically very rigorous. Ones the “right” utility functions has
been determined and the assumption holds, it could be guaranteed that the solution found
is the one with highest value to the decision-maker. However, deriving the individual
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utility functions and aggregating the overall utility function is hard for a simple problem,
and for a complex multi-attribute problem, it might even be impossible. There are
however examples on how utility theory is employed to solve design problems, [67].

Many of the other methods are related to utility theory, as they try to find easier ways of
expressing the utility functions. For instance, the weights in the weighted-sum approach
could be seen as the local gradients of the utility function. The non-linear formulation
constitutes a simple utility function, and acceptability functions are a convenient way of
expressing utility type functions adopted to suit engineering design problems.

3.2.5 Acceptability functions
The method of acceptability functions has been developed by Wallace et al [68] and Kim
and Wallace [39]. The method is a goal-oriented design evaluation model that employees
the same goals and targets that are commonly used in engineering design to evaluate the
performance of each solution.

The acceptability function represents the subjective probability that a designer will accept
a design based upon each objective. This is explained in Figure 9, where the acceptability
function for a car engine is expressed as function of the fuel consumption.
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probabilistic fuel 
consumption, p(z)

fuel consumption, z, (l/100 km)
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Figure 9: Acceptability function as well as probability density functions for an engine design
problem.

a(z) is the acceptability function which defines the probability that different levels of the
performance characteristic z will be acceptable. A car engine with a fuel consumption
less than 6 liter/100 km have a probability of 1.0 of being accepted, whereas a design
with a fuel consumption of 12 liter/100 km is surely rejected. The function p(z) is a
probability density function of unit area which quantifies the design’s performance for the
characteristic z. This formulation allows the designer to quantify a design’s performance
either deterministically or probabilistically. In the deterministic case the probability
density function is an infinite spike, with the area equals to one. The probability, Pi, of
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accepting the design based upon the i:th characteristic is expressed in (12), and the
overall probability of accepting the design based on all objectives are calculated by
multiplying the individual probabilities (13).
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Based on these equations the optimization problem is formulated according to equation
(14) below.

( )xaccP  max

S   s.t. ∈x

(14)

This formulation has been successfully employed in a number of studies.

The outcome of utility function, fuzzy logic and acceptability function formulations may
look very much alike. However, they have different theoretical backgrounds. Utility
functions are based on a very rigorous utility theory, acceptability functions are based on
utility theory and probability in contradiction to the fuzzy logic approach. It seems like
acceptability functions more closely relate to the way design problems are usually
formulated and it offers a structured way of handle uncertainties in design.

3.2.6 Goal programming
Goal programming dates back to the early sixties [8, 9], however more recent references
could be found in [8, 9, 61, 65]. In goal programming (GP) the objectives are formulated
as goal criteria that the decision maker wants each objective to possess. The criteria could
be formulated in the following ways. We want the objective to be:

1. Greater than or equal to

2. Less than or equal to

3. Equal to

4. In the range of

Usually a point that satisfies all goals is not a feasible solution. The goal programming
problem is to find the point in S whose criterion vector “best” compares with the utopian
set, i.e. has the smallest deviation from the utopian solution. Different types of goal
programming methods uses different ways of determine witch point in S compares best
with the utopian solution set.

The Archimedean GP uses a weighted L1-metric to determine the “best” solution. The
objective function is thus reformulated as a weighted sum of undesired deviations from
the utopian solution.

In lexicographic GP or preemptive GP, the goals are grouped according to priorities. In
the first stage a set of solutions that minimize the deviation to the goal with highest
priority is obtained. Then in the second stage this set of solution is searched to find a
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subset that minimizes the deviation from the second most important goal. The process
continues until only one single point is left as the final solution.

Although the idea behind goal programming is very attractive, to minimize the deviation
from an utopian solution set, there are a set of problems marred to GP. If the initial set of
weights in the Archimedean approach does not yield a satisfying solution, they weights
has to be changed in order to yield a better solution. There is however no clear relation
between the weights and the solution found as you might end up in new vertices in both
the solution space S, as well as in the utopian set. In lexicographic GP lower priority
goals might have no influence of the generated solution, as a single point might be found
without having to consider all goal criteria.

3.2.7 Lexicographic approaches
In lexicographic approaches, the decision-maker determines an order in which the
objectives have to be optimized. Like in a dictionary where A precedes B, the decision-
maker determines that objective i precede objective j. This implies that solutions are
ordered by first evaluating them based on the foremost objective. If a set of solutions
have comparable values in the foremost objective, the comparison continues on lower
level objectives until the solutions can be distinguished. The disadvantage with
lexicographic approaches is that not all objectives might be considered. Lexicographic
methods are not so commonly used by them self in engineering design, but jointly with
other techniques, such as in goal programming or as a part of a selection mechanism in
genetic algorithms.

3.3 Progressive articulation of preference information
This class of methods is generally referred to as interactive methods. They rely on
progressive information about the decision-makers (DM) preferences simultaneously as
they search through the solution space. Interactive methods are very common within the
field of operations research.

These methods works according to the hypothesis that the DM is unable indicate ‘a
priori’ preferences information because the complexity of the problem. However, the DM
is able to give some preference information as the search moves on. The DM then learns
about the problem as he/she faces different possible problem solutions. Advantages of
these types of methods are:

• there is no need for ‘a priori’ preference information,

• only local preference information is needed,

• it is a learning process where the DM gets a better understanding of the problem,

• as the DM takes an active part in the search it is more likely that he/she accepts the
final solution.

The disadvantages are:

• The solutions are depending on how well the DM can articulate his preferences

• A high effort is required from the DM during the whole search process.
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• The solution is depending on the preferences of one DM. If the DM changes his
preferences or if there is a change of DM, the process has to be restarted.

• The required computational effort is higher then in the previous methods.

These methods usually progresses by changing weights in different type of Lp-norm
formulations, by progressively reducing the search space or by changing the search
direction based on input from the decision-maker. Many of these methods are unsuitable
as they build on assumptions on linearity and differentiability of the objective and
constraint functions. Here two examples are discussed in some more detail.

3.3.1 STEM Method
The STEM-Method or STEP-method was first presented by Benayoun et al [4]. In STEM
and related methods, preference information from the DM is used to reduce the solution
space successively. The general optimization problem is reformulated as a Lp-norm
problem (min-max formulation), with bounded and weighted objectives.
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h is the iteration counter, and p is the parameter in the Lp-norm, usually equaling 1 or ∞.
The weights are needed in order to solve the min-max formulation and to equalize the
magnitude of the different objectives. The weights are not crucial to the outcome of the
optimization as the final solution is obtained by means of bounds on the objective rather
then variation of weightings. In the literature methods of calculating the weights are

given. The problem is solved resulting in an objective vector f
~

. f
~

 is compared with the

ideal solution *F . If some components of f
~

 are acceptable but some are not, the
decision-maker must decide on a relaxation on at least on of the objectives. This means

that the upper bound for the j:th objective are adjusted to jj ff ∆+~
. The solution space

Sh+1 is reduced by the new constraint jjj fff ∆+≤ ~
. The weighting of the j:th objective is

set to zero and the optimization problem of is solved again, this time in the reduced
solution space. After the second iteration, the decision-maker might be satisfied with the
obtained solution, or he/she has to relax the boundaries of another function and start over
again. Thus, the algorithm proceeds through progressively reducing the solution space by
introducing new constraints on the different objectives.

3.3.2 Steuer method
There are a set of methods that sample a progressively smaller subset of the non-
dominated set by employing progressively changing weights in weighted sum
approaches.  Here Steuer and Choo [62] exemplifies these types of methods.
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The algorithm converges in a predetermined number of iterations t. In each iteration the
decision-maker has to chose between P alternative non-dominated solutions. Typically,
the number of iterations t equals to the number of objectives k, and Ptk. First we obtain
the ideal solution F*. The algorithm progresses by minimizing a weighted Tchebycheff
metric of the distance between a set of proposed solutions and the ideal solution. For the
weightings, a dispersed set of weighting vectors λ∈Λ, are employed.
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During the progress of the algorithm the iteration counter h increases, and the range
[ ]h

i
h
i ul ,  in which the weighting vector λ is allowed to vary is decreased. This leads the

algorithm to focus in on a subset of the non-dominated set. The decision-maker interacts
with the algorithm to guide it towards a portion of non-dominated set that he/she prefers.
The steps below outlines the algorithm.

Step 1: Find the ideal solution F*, set h=0.

Step 2: Generate 50�k λ vectors, and filter them to obtain the 2�P most diverse vectors.

Step 3: Solve the 2�P weighted Tchebycheff problems to obtain 2P non-dominant
solutions.

Step 4: Filter them to achieve the P most diverse solutions.

Step 5: Present the decision-maker with the P solutions and let him/her decide on one.

Step 6: Contract the intervals for the weighting vector components, based on the
preferred solution.

Step 7: Repeat step 2-6 until h=t.

3.4 Posteriori articulation of preference information
There are a number of techniques which enables to first search the solution space for a set
of Pareto optimal solutions and present them to the decision-maker. The big advantages
with these type of methods is that the solution is independent of the DM’s preferences.
The analysis has only to be performed ones, as the Pareto set would not change as long as
the problem description are unchanged. However, some of these methods suffer from a
large computational burden. Another disadvantage might be that the DM has too many
solutions to choose from. There is however methods that supports in screening the Pareto
set in order to cluster optimal solutions, see [49, 53].

In the following, a set of approaches is presented which are conceivable for engineering
design problems.

3.4.1 Multiple run approaches
This section discusses the most common approaches to obtain a sample set of points of
the Pareto-optimal front. By sampling a set of discrete points on the Pareto front the
decision maker could get a feeling for the form of the front and thereby the possible
trade-off between objectives. Excluded are methods that require the objective function to
be differentiable.
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3.4.1.1 Weighted sum approaches
In the weighted sum approaches the optimization problem is formulated according to
equation(17).
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Multiple optimization runs are conducted with different weighting vectors λ in order to
locate multiple points on the Pareto front. This method is the simplest and most
straightforward way of obtaining multiple points on the Pareto-optimal front. However,
this method is associated with some mayor drawbacks. Depending on the scaling of the
different objectives and the shape of the Pareto front, it is hard to select the weightings to
ensure that the points are spread evenly on the Pareto front [16]. Another problem occurs
when the solution space is non-convex. In that case can not all the Pareto-optimal
solutions be obtained by solving equation (17) for any λ∈Λ. For a more detailed
description of this problem se Steuer [61].

In order to be able to locate points on non-convex parts of the Pareto front the weighted
Lp-norm problem could be solve instead. The weighted Lp-norm problem is actually a
generalization of the weighted sum formulation, see equation (18) below.
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p is an integer satisfying 1 ≤ p ≤ ∞. With an appropriate value on p all Pareto optimal
points could be obtained. However, such a value for p is unknown in advance. Moreover,
a high value of p increases the difficulty of solving the optimization problem. In the
extreme case where p = ∞ the problem is known as the weighted minmax formulation.

3.4.1.2 e-constraint approach
In the e-constraint method one objective i, is selected for optimization and the others are
reformulated as constraints, i.e.
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By progressively changing the constraint values, ej different points on the Pareto-front
could be sampled. By calculating the extremes of the Pareto-front the range of different
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objective functions could be calculated and constraint values selected accordingly. The
method enables an even spread on the Pareto-front as long as the Pareto-front is
continues, i.e. that there exist a Pareto-optimal solution with fj=ej.

3.4.1.3 Normal boundary interaction
Normal-boundary interaction (NBI) is presented in [15]. It is assumed that the global
minima of the objectives, F*, is known. First, the convex hull of the individual minima
(CHIM) is established. In the two-dimensional case, this is the line connecting the
individual minima. The basic idea of the algorithm is to find the intersection of the
boundary of the feasible set and the normal to the CHIM. Figure 10 makes this statement
more clear.

Y �Y

f1

f2

f1
*

*f2

n̂
CHIM

Figure 10: The basic idea behind normal-boundary interaction.

The algorithm enables an easy way of establishing an evenly spread set of points on the
Pareto front, by starting the search from points evenly spread on the CHIM. However, if
the Pareto front has a very complex shape the method might identify non-Pareto optimal
solutions as well as local Pareto optimal solutions.

3.4.1.4 Multiobjective simulated annealing
There have been some work done in multiobjective simulated annealing [63] where the
non-dominated solutions found so far in search are stored in a separate array. For each
new point that are examined the set of non-dominated points is updated to include the
new point if it is non-dominated and to exclude the points that the new one dominates.
However, this is quit a new field where lot of research still has to be done. The same
principle might be applicable to other methods as well, as for instance Tabu-search.

3.4.2 Multiobjective genetic algorithms
Lately there has been a large development of different types of multiobjective genetic
algorithms, which is also reflected in the literature. The big advantage of genetic
algorithms over other methods is that a GA manipulates a population of individuals. It is
therefore tempting to develop a strategy in which the population captures the whole
Pareto front in one single optimization run. For an overview on genetic algorithms in
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multiobjective optimization, see Fonseca and Fleming [18]. Literature surveys and
comparative studies on multiobjective genetic algorithms are also given in [13, 34, 64,
73].

Fonseca and Fleming have divided multiobjective genetic algorithms in non-Pareto and
Pareto based approaches.

3.4.2.1 Non-Pareto based approaches
The first multi-objective genetic algorithm was VEGA (Vector Evaluating Genetic
Algorithm) developed by Schaffer [55]. VEGA uses the selection mechanism of the GA
to produce non-dominated individuals. Each individual objective is designated as the
selection metric for a portion of the population. However, it is reported that the method
tends to crowd results at extremes of the solution space, often yielding poor coverage of
the Pareto frontier.

Fourman [22] presents a genetic algorithm using binary tournaments, randomly choosing
one objective to decide each tournament. Kurasawe [44] further developed this scheme
by allowing the objective selection to be random, fixed by the user, or to evolve with the
optimization process. He also added crowding techniques, dominance, and diploidy to
maintain diversity in the population.

All of these Non-Pareto techniques tend to converge to a subset of the Pareto-optimal
frontier, leaving a large part of the Pareto set unexplored. Preferably, one wants to
maintain diversity so that the entire Pareto frontier is elicited. Additionally, maintaining
diversity will tend to improve robustness in multi-objective problems by ensuring that
there is a genetic variety for mating mechanisms to operate upon [26, 31].

3.4.2.2 Pareto based approaches
Goldberg [25] introduced non-dominated sorting to rank a search population according to
Pareto optimality. First, non-dominated individuals in the population are identified. They
are given the rank 1 and are removed from the population. Then the non-dominated
individuals in the reduced population are identified, given the rank 2, and then they are
also removed from the population. This procedure of identifying non-dominated sets of
individuals is repeated until the whole population has been ranked, as depicted in Figure
11. Goldberg also discusses using niching methods and speciation to promote diversity so
that the entire Pareto frontier is covered.



A survey of multiobjective optimization methods in engineering design

27(34)

f1

f2

1

1

1

2

4

3

3

1

2

2

Figure 11: Population ranking based upon non-dominated sorting.

The non-dominated sorting GA (NSGA) of Srinivas and Deb [60] implements Goldberg’s
thoughts about the application of niching methods. In NSGA, non-dominated individuals
in the population are identified, given a high initial individual score and are then removed
from the population. These individuals are considered to be of the same rank. The score is
then reduced using sharing techniques between individuals with the same ranking.
Thereafter, the non-dominated individuals in the remaining population are identified and
scored lower than the lowest one of the previously ranked individuals. Sharing is then
applied to this second set of non-dominated individuals and the procedure continues until
the whole population is ranked.

Sharing is performed in the parameter space rather than in the attribute space. This means
that the score of an individual is reduced according to how many individuals there are
with similar parameters, regardless of how different or similar they might be based on
objective attributes.

In the multi-objective GA(MOGA) presented by Foseca and Fleming [19, 21] each
individual is ranked according to their degree of dominance. The more population
members that dominate an individual, the higher ranking the individual is given. An
individual’s ranking equals the number of individuals that it is dominated by plus one (see
Figure 12). Individuals on the Pareto front have a rank of 1 as they are non-dominated.
The rankings are then scaled to score individuals in the population. In MOGA both
sharing and mating restrictions are employed in order to maintain population diversity.
Fonseca and Fleming also include preference information and goal levels to reduce the
Pareto solution set to those that simultaneously meet certain attribute values.
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Figure 12: Population ranking according to Fonseca and Fleming.

The niched Pareto GA (NPGA) by Horn et al. [35] is Pareto-based but does not use
ranking methods. Rather, Pareto domination tournaments are used to select individuals
for the next generation. For binary tournaments, a subset of the population is used as a
basis to assess the dominance of the two contestants. If one of the contestants is
dominated by a member in the subset but the other is not, the non-dominated one is
selected to survive. If both or neither are dominated, selection is based on the niche count
of similar individuals in the attribute space. An individual with a low niche count is
preferred to an individual with a high count to help maintain population diversity.

Zitzler and Thiele [73] developed a multi-objective genetic algorithm called the
strengthen Pareto evolutionary algorithm (SPEA). SPEA uses two populations, P and P’.
Throughout the process copies of all non-dominated individuals are stored in P’. Each
individual is given a fitness value, fi, based on Pareto dominance. The fitness of the
members of P’ is calculated as a function of how many individuals in P they dominate
(20).

( ) 1+
=
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fi
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The individuals in P are assigned their fitness according to the sum of the fitness values
for each individual in P’ that dominate them plus one (see Figure 13). Lower scores are
better and ensure that the individual spawns a larger number of offspring in the next
generation. Selection is performed using binary tournaments from both populations until
the mating pool is filled. In this algorithm, fitness assignment has a built-in sharing
mechanism. The fitness formulation ensures that non-dominated individuals always get
the best fitness values and that fitness reflects the crowdedness of the surroundings.
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Figure 13: Population ranking according to Zitzler and Thiele.

Other methods such as the one presented by Tamaki [64] builds on the methods described
above and adds features such as elitism together with the usage of multiple populations.

4 Discussion and conclusions
Engineering design is clearly about making many decisions often under uncertainty and
with multiple conflicting criteria. In this paper, methods have been discussed where the
design problem is reformulated as a multiobjective optimization problem. In order to
solve such a problem a variety of different optimization methods are available. As we can
not assume that derivatives of the objective functions to be known in the general case, we
have to trust non-derivative optimization methods. Ones we have explored the objective
space and identified promising regions, we might change to other optimization techniques
in order to refine the search. As each optimization method has different properties suited
for different type of problems, there is no simple answer to which method to use for a
particular problem. However, if the problem is very complex with a mixture of continues
and discrete variables and simultaneously their is no knowledge about the objective
space, a robust method such as genetic algorithm might be the best choice.

As the design problem is multiobjective these objectives somehow has to be combined in
order to yield one final solution. It is not likely that there exist a solution, which
simultaneously minimizes all the objectives. The paper discusses pros and cons of
different ways of articulating the decision-makers preferences in order to obtain the final
solution.

By priori articulation of the decision-maker’s preferences, an objective function is
formulated which yields a scalar value that expresses the value of a candidate solution.
These methods span from quick and dirty methods to methods that are more rigorous.
Depending on the problem different approaches might be suitable. If the optimization is
very time consuming,it might be a good idea to invest more time in the objective function
formulation. For other problems, it might be adequate to start with a “quick and dirty”
formulation to get a feeling for the problem before conducting the “real” optimization.
Naturally, the decision-makers ability to articulate his or her preferences has to be taken
into account as well. Depending on the problem and the decision-maker, a formal
iterative approach might be more suitable.
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However, in order to avoid the subjective judgment of the decision-maker the
optimization could be performed with out any preference information. In the posteori
articulation methods the search for an optimal set of solutions are based on Pareto
optimality. This means to find the set of solutions where there for each solution does not
exist any other solution which is better in all other attributes. I.e. solutions for which
improvement in one attribute always leads to degeneration in another attribute. The
Pareto-optimal set consists of all solutions according to any rational decision-maker. Here
the search for an optimal set of solutions is separated from the final decision. The
decision-maker is presented with a set of solutions from which he has to choose, and the
hypothesis is that when the trade of between the objectives is visible it would be easier to
chose. However, this might not hold as the number of objectives increases and
visualization becomes harder. This is an interesting field for further research.
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