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1. ABSTRACT 

In real world engineering design problems we have to 

search for solutions that simultaneously optimize a wide 

range of different criteria. Furthermore, the optimal 

solutions also have to be robust. Therefore, this paper 

presents a method where a multi-objective genetic 

algorithm is combined with response surface methods in 

order to assess the robustness of the identified Pareto 

optimal solutions.  

The objects of study are two different concepts of 

hydraulic actuation systems, which have been modeled in a 

simulation environment to which the optimization strategy 

has been coupled. The outcome from the optimization is a 

set of Pareto optimal solutions that elucidate the tradeoff 

between the energy consumption and the control error for 

each actuation system.  

With the help of response surface methods sensitivity 

analysis have been performed at different regions on the 

Pareto front. Thus it could be determined how different 

design parameters affect the system at different points on 

the Pareto front.  

2. INTRODUCTION 

Many real-world engineering design problems involve 

simultaneous optimization of several conflicting objectives. 

In many cases, the multiple objectives are aggregated into 

one single overall objective function. Optimization is then 

conducted with one optimal design as the result. Another 

approach is to search the solution space for a set of Pareto 

optimal solutions, from which the decision-maker may 

choose the final design. Pareto-optimality is defined as a 

set where every element is a problem solution for which no 

other solutions can be better in all design objectives. A 

solution in the Pareto optimal set cannot be deemed 

superior to the others in the set without including 

preference information to rank competing objectives. For 

the two-dimensional case, the Pareto front is a curve that 

clearly elucidates the tradeoff between the objectives.  

However, there might be other aspects that are not 

reflected in the objective functions that have to be 

considered as well. One such aspect that is addressed in 

this paper is system robustness. In real world applications, 

we can not rely upon the normative values of the design 

parameters due to effects of for example manufacturing 

tolerances, wear, and environmental changes. Therefore 

this paper presents a method where response surface 

methods are used together with a genetic algorithm for 

Pareto optimization. The optimization results in a set of 

optimal solutions that the designer has to consider. The 

sensitivity analysis then gives insight into how robust 

different solutions are and how different parameters affect 

the optimal performance. To study the sensitivity of 

solutions has hitherto been a neglected topic in 

evolutionary computation. 

The paper starts with presenting a nomenclature for 

the multi-objective design problem together with a 

background on genetic algorithms and the optimization 

method used. Thereafter we discuss response surface 

methods and how they could be applied together with 

Pareto optimization. Then a design problem consisting of 

two different hydraulic actuation concepts is studied with 

the help of simulation models and the proposed 

optimization strategy. Sensitivity analyses are then 

performed and finally, different ways of presenting the 

result of the sensitivity analysis is introduced.  

3. OPTIMIZATION 

A general multi-objective design problem could be 

expressed by equations (1).  
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where xfxfxf k,...,, 21
 are the k objectives 

functions, 
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 are the n optimization 

parameters, and 
nRS  is the solution or parameter 

space.  

The Pareto set is defined by equation (2). 

Considering a minimization problem and two solution 

vectors x, y S. x is said to dominate y, denoted yx ,

if:  
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The space in R
k
 formed by the objective vectors of 

Pareto optimal solutions is known as the Pareto optimal 

front, . It is clear that any final design solution should 

preferably be a member of the Pareto optimal set. Pareto 

optimal solutions are also known as non-dominated or 

efficient solutions.  

3.1. Genetic algorithms 

Genetic algorithms (GA:s) are modeled after mechanisms 

of natural selection. Each optimization parameter (xn) is 

encoded by a gene using an appropriate representation, 

such as a real number or a string of bits. The corresponding 

genes for all parameters x1,..xn form a chromosome capable 

of describing an individual design solution. A set of 

chromosomes representing several individual design 

solutions comprise a population where the most fit are 

selected to reproduce. Mating is performed using crossover 

to combine genes from different parents to produce 

children. The children are inserted into the population and 

the procedure starts over again, thus creating an artificial 

Darwinian environment. For a general introduction to 

genetic algorithms, see Goldberg [6]. 

Additionally, there are many different types of multi-

objective genetic algorithms. For a review of genetic 

algorithms applied to multi-objective optimization, readers 

are referred to work by Deb [4].  

The optimization method used in this paper borrows 

some major ideas from the multi-objective GA (MOGA) 

presented by Foseca and Fleming [5]. In MOGA each 

individual is ranked according to their degree of 

dominance. The more population members that dominate 

an individual, the higher ranking the individual is given. An 

individual's ranking equals the number of individuals that it 

is dominated by plus one. Thus individuals on the Pareto 

front have a rank of 1 as they are non-dominated.  

3.2. The proposed optimization method 

In this paper the multi-objective struggle genetic algorithm 

(MOSGA), see Andersson et al. [1] and [2], was used for 

the Pareto optimization. MOSGA combines the struggle 

crowding genetic algorithm presented by Grueninger and 

Wallace [7] with Pareto-based ranking. In the struggle 

algorithm the child replaces the most similar individual in 

the entire population, but only if it has a better fitness. This 

replacement strategy counteracts genetic drift that can spoil 

population diversity. The principle of the MOSGA 

algorithm is outlined below.  

Step 1: Initialize the population.  

Step 2: Select individuals uniformly from population. 

Step 3: Perform crossover and mutation to create a child. 

Step 4: Calculate the rank of the new child, and a new 

ranking of the population that considers the 

presence of the child. 

Step 5: Find the most similar individual, and replace it 

with the new child if the child's ranking is better. 

Step 6: Update the ranking of the population if the child 

has been inserted.  

Step 7: Perform steps 2-6 until the mating pool is filled.  

Step 8: If the stop criterion is not met go to step 2 and 

start a new generation.

The likeness of two individuals is measured using a 

distance function. The method has been tested with 

distance functions based upon the Euclidean distance in 

both the attribute as well as parameter space. A mixed 

distance function combining both the attribute and 

parameter distance has been evaluated as well. The result 

presented in his paper was obtained using an attribute 

based distance function. 

4. RESPONSE SURFACE METHODS 

The approach presented in this paper is a statistically 

based method witch combines design of experiments 

(DoE), [3] with response surface methodology (RSM), see 

Myers and Montgomery [9]. RSM is a method for 

constructing approximations of the behavior of a system 

based on results at various points in the design space. The 

resulting surfaces, usually linear or quadratic, are fitted to 

these points. Often statistical methods such as design of 

experiments are used to determine where in the design 

space these points should be located in order to obtain 

best possible fit. In this paper we use quadratic 

polynomials to create the response surface, see equation 

(3). Equation (3) is also called the Response surface 

Equation (RSE). 
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y is the response, i.e. the function value we want to 

approximate in this case the objective functions. However, 

any other system characteristics could be estimated as 

well. b0 is a constant term and bi are the coefficients of the 

linear terms, better known as the main effect. bii are the 

coefficients of the pure quadratic terms and are known as 

quadratic effects, whereas bij are the coefficients of the 

cross products, which are also called second order 

interactions.  



   

By examining the coefficient of the RSE it could be 

seen how the different parameters affect each objective 

function and knowledge about the underlying causes of the 

trade-off between the objectives could be gained. A more 

formal method of gaining such knowledge is to study the 

sensitivities of each response with respect to the different 

parameters. Here the gradients of the estimated surfaces are 

used as sensitivity measure, see equation (4). 
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5. THE DESIGN PROBLEM 

The objects of study for the design problem are two 

different concepts of hydraulic actuation systems. Both 

systems consist of a hydraulic cylinder that is connected to 

a mass of 1000 kilograms. The objective is to follow a 

pulse in the position command with a small control error 

and simultaneously obtain low energy consumption. 

Naturally, these two objectives are in conflict with each 

other. A low control error implies high acceleration and 

retardation which consumes more energy. The problem is 

thus to minimize both the control error and the energy 

consumption from a Pareto optimal perspective.  

Two different ways of controlling the cylinder are 

studied. In the first more conventional system, the cylinder 

is controlled by a servo valve, which is powered from a 

constant pressure system. In the second concept, the 

cylinder is controlled by a servo pump. Thus, the systems 

have different properties. The valve concept has all that is 

required for a low control error, as the valve has a very 

high bandwidth. On the other hand, the valve system 

associated with higher losses, as the valve constantly 

throttles fluid to the tank.  

The different concepts have been modeled in the 

simulation package Hopsan [8]. The models of each 

component consist of a set of algebraic and differential 

equations taking aspects such as friction, leakage and non-

linearities into account. The system models are depicted in 

Figure 1 and Figure 2 respectively.  

The servo valve system consists of the mass and the 

hydraulic cylinder, the servo valve and a proportional 

controller that is controlling the motion. The servo valve is 

powered by a constant pressure pump and an accumulator, 

which keeps the system pressure at a constant level. The 

optimization parameters are the sizes of the cylinder, valve 

and the pump, the pressure lever, the feedback gain and a 

leakage parameter that is necessary to dampen the system. 

Thus, this problem consists of six optimization parameters 

and two objectives. 

Figure 1: The servo valve concept for hydraulic actuation. 

Figure 2: The servo pump concept of hydraulic actuation. 

The servo pump concept contains fewer components, 

the cylinder and the mass, the controller and the pump. A 

second order low-pass filter is added in order to model the 

dynamics of the pump. The servo pump system consists of 

only four optimization parameters. 

5.1. Optimization results 

Both systems where optimized in order to simultaneously 

minimize the control error f1 and the energy consumption 

f2. The control error is obtained by integrating the 

absolute value of the control error and adding a penalty 

for overshoots, see equation (5). The energy consumption 

is calculated by integrating the hydraulic power, expressed 

as the pressure multiplied with the flow, see equation (6). 
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The optimization is conducted with a population size 

of 30 individuals over 200 generations. The parameters 

are real encoded and BLX crossover is used to produce 

new offspring.  



   

As a Pareto optimization searches for all non-

dominated individuals, the final population will contain 

individuals with a very high control error, as they have low 

energy consumption. It is possible to obtain an energy 

consumption close to zero, if the cylinder does not move at 

all. However, these solutions are not of interest, as we want 

the system to follow the pulse. Therefore, a goal level on 

the control error is introduced. The optimization strategy is 

modified so that solutions, which are below the goal level 

on the control error are always preferred to solutions that 

are above it regardless of their energy consumption. In this 

manner, the population is focused on the relevant part of 

the Pareto front. In order to elucidate the properties of the 

different systems, the obtained Pareto optimal fronts are 

depicted in the same graph, see Figure 3. 

In order to achieve fast systems, and thereby low 

control errors, large pumps and valves are chosen by the 

optimization strategy. A large pump delivers more fluid, 

which enables a higher speed of the cylinder. However, 

bigger components consume more energy, which explains 

the shape of the Pareto frontiers.  
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Figure 3: The Pareto frontiers for both concepts. 

It is evident that the final design should preferably be 

on the overall Pareto front, which elucidates when to 

change between concepts. The servo pump system 

consumes less energy, and is preferred if a control error 

larger then 0.05ms is acceptable. The servo valve system is 

fast but consumes more energy. If lower control error then 

0.05ms is desired, the final design should preferably be a 

servo valve system. In order to choose the final design, the 

decision-maker has to study the tradeoff between the 

control error and the energy consumption and select a 

solution point that matches his or her preferences.  

However, first a sensitivity analysis should be 

conducted in order to gain further insight into the 

properties and robustness of individual solutions.  

5.2. Sensitivity analysis 

For both systems, five points evenly spread on the Pareto 

front were used as center points for the designed 

experiments. For each of these points the MODE software 

[10] was used to create a design setup using the D-

optimality criterion, see Myers and Montgomery [9]. 

Based on these design points a second order response 

surface was created, which emulates the performance of 

each system at the selected center points.  

The results are analyzed by looking at the values for 

the normalized coefficients and see how they vary as we 

move along the Pareto front. In Figure 4 the normalized 

coefficients for the servo Pump system are plotted for the 

five points on the Pareto front. Point one is a point with a 

low control error, i.e. to the left on the Pareto curve, 

whereas point five has a large control error and lies far out 

to the right on the Pareto curve, see Figure 3.  

For each location on the Pareto front, all coefficients 

of the response surface equation are plotted as a point in 

the graph, which are then connected with straight lines. 

Coefficient values close to zero evidently indicate that the 

corresponding parameter has little influence of the 

response. Whereas points which have a high magnitude 

indicate coefficients that are important.  

The abbreviations for the parameters are: pump 

displacement, (Dp), cylinder area (A1), control gain (Ga), 

and leakage coefficient (Kc). For the servo valve system 

ther is also the valve spool diameter (Sd).  

There is a lot of insight that could be gained by 

studying such a graph. First we can conclude that in point 

1 where the control error is small, the feedback gain is the 

most important parameter, whereas in point 5 the pump 

size is the most important parameter, this is true for both 

control error and energy consumption. Thus it could be 

seen how the relative importance of system parameters 

varies as we move along the Pareto front. If we study the 

control error graph we can also see that the second order 

terms are largest in point 1, which indicating that the 

smaller we make the control error the more sensitive the 

solution gets. By comparing the coefficients for the 

different responses we can also se the underlying causes 

to the trade-off between the objectives. In Figure 4, this 

could be exemplified by that a larger pump (larger Dp-

value) gives a smaller control error but a lager energy 

consumption. A more thorough investigation of the impact 

of the parameters on the objectives could be gained by 

calculating the sensitivities by deriving the response 

surface equation according to equation (4). In Figure 5 

this is done for the servo pump system.  
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Figure 4. RSE coefficients for the servo pump system at five 

different points on the Pareto front. 

The sensitivity graph in Figure 5 shows what impact a 

small change in parameter value has on the objectives as 

we move along the Pareto front. It could be seen that for 

systems with low control error the feedback gain (Ga) is the 

most important parameter, for both energy consumption 

and control error. However, as we move to the right on the 

Pareto front the gain loses in importance and the size of the 

pump gets more important. We can also see how an 

increased pump size leads to lower control error but larger 

energy consumption. A perhaps more illustrative way of 

showing how the different parameters influence the 

objectives are shown in Table 1. 

Table 1. Sensitivity table for the servo pump system 

1 2 3 4 5 1 2 3 4 5

-   Dp   +

-   A1   +

-   Kc   +

-   Ga   +

Control error Energy consumption
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Figure 5. Sensitivities for the servo pump system at five different 

points on the Pareto front. 

The columns in the table indicate the different points 

on the Pareto front. Each row shows how an increase in 

the corresponding parameter affects the control error and 

the energy consumption. A straight line indicates no 

effect, whereas the lines with a gradient indicate in what 

direction and how much the objectives changes as the 

corresponding parameter is increased. The curved lines 

indicates points where we have significant second order 

effects and where the system is more sensitive.  

The sensitivity table contains all the information from 

the graphs presented earlier condensed to one table. It can 

thus be seen how the importance of the parameters varies 

along the Pareto front and where the second order effects 

are largest.  

To summarize the information from the servo pump 

system it has been shown that the displacement and the 

control gain are the most influential parameters and that 

the faster the system the more sensitive it is to parameter 

changes. The same sensitivity analysis has been 

performed for the servo valve system. The results could 

be seen in Table 2.  



   

Table 2. Sensitivity table for the servo pump system 

1 2 3 4 5 1 2 3 4 5

-   Dp   +

-   Sd   +

-   Kc   +

-  A1  +

-   Ga   +

Control error Energy consumption

The servo valve system has a more complex behavior 

and the trade-off between the parameters is not as clear as 

in the servo pump system. Furthermore, the second order 

effects are much greater then for the servo pump system, 

particularly for the control error. Thus it could be argued 

that this system is not as robust. 

For this system the cylinder area, the spool diameter, 

and the gain are the most influential parameters. However 

the way they influence the system changes as we move 

along the Pareto front. In the first three points the trade-off 

is due to the pump size, (Dp), larger pump gives a small 

control error but large energy consumption. However as we 

move along the Pareto front the system gets slower and less 

fluid are taken from the pump and more from the 

accumulator. Thus pump size has no longer any influence. 

Then the Trade-off is shifted towards spool diameter and 

gain. It can bee seen how an increased spool diameter and 

gain reduces the control error but gives an increased energy 

consumption.   

6. DISCUSSION AND CONCLUSION 

In this paper a multi-objective genetic algorithm is used to 

optimize two different hydraulic actuation systems. The 

outcome of the optimization is a set of Pareto optimal 

designs, where the tradeoff of the conflicting objectives is 

clearly visualized. The resulting Pareto optimal frontiers 

elucidate the advantages of the different concepts and, 

advice the decision-maker which concept to choose 

depending on his or her preferences. If a very fast system is 

desired, a servo valve system should be chosen. However, 

if a slower system is acceptable a servo pump system is 

more favorable as it consumes more energy. Furthermore, 

the algorithm suggests when to switch between the 

concepts. 

Then sensitivity analysis is performed in order to gain 

more information about the properties and the robustness of 

each concept. The sensitivity analysis tells us what effect a 

small change in a parameter value has on the objectives 

depending on the location on the Pareto front. For the servo 

pump example it has been shown that for a fast system the 

control gain is the most important parameter, but for a 

slower system the pump size is the most important one. 

This type of information could be very useful as it tells the 

designer where to focus his efforts. When designing large 

systems, sensitivity analysis could guide the designer 

towards parts or sub-systems that have the greatest 

influence on the performance of the system.   

The method presented in this paper combines modern 

optimization techniques with response surface methods 

and supports the engineer when a design is based on 

simulation models. It visualizes the tradeoff between the 

objectives and points out which parameters that has the 

greatest influence on the results. However, the main 

benefit is not in finding an optimal and robust solution, 

but in learning more about the properties of the system 

being designing and about the behavior of the system 

model. By conducting optimization together with a 

thorough sensitivity analysis much more knowledge could 

be gained out of our simulation models. Furthermore, the 

ability to assess the sensitivity of the optimal solutions 

makes the method more suitable for real world 

engineering design applications where robustness is 

always a critical issue. This is an area towards which more 

research needs to be directed in the future. 

7. REFERENCES 

[1] Andersson J., Multiobjective Optimization in Engineering 

Design � Application to Fluid Power Systems, Dissertation, 

Thesis No. 675, Linköping University, Linköping, Sweden, 

2001. 

[2] Andersson J., Krus P. and Wallace D., �Multi-objective 

optimisation of hydraulic actuation systems�, ASME 

Design Automation Conference, Baltimore, Sept. 11-13, 

2000. 

[3] Box G., Hunter W., Hunter S., Statistics for Experiments, 

John Wiley & Sons, 1978. 

[4] Deb K., 2001, Multi-objective Objective Optimization 

using Evolutionary algorithms, Wiley and Sons Ltd. 

[5] Fonseca C. M. and Fleming P. J., �Multiobjective 

optimization and multiple constraint handling with 

evolutionary algorithms - Part I: a unified formulation,� 

IEEE Tran. on Systems, Man, & Cybernetics Part A, vol. 

28, pp. 26-37, 1998. 

[6] Goldberg D., Genetic Algorithms in Search and Machine 

Learning, Reading, Addison Wesley, 1989. 

[7] Grueninger T. and Wallace D., �Multi-modal optimization 

using genetic algorithms�, Technical Report 96.02, 

CADlab, MIT, Cambridge, 1996. 

[8] Hopsan, �Hopsan, a simulation package - User's guide�, 

Technical report LiTH-IKP-R-704, Dept. of Mech. Eng., 

Linköping University, Linköping, Sweden, 1991. 

[9] Myers R., and Mongomery D, Response Surface 

Methodology, John Wiley & Sons 1995. 

[10] Umetrics, the MODE software, http://www.umetrics.com/


