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Abstract 
 

 

During the past few decades, many global 
optimisation and multi-objective evolutionary 
algorithms (MOEAs) have been developed. 
Those algorithms have shown very useful in 
enabling system design automation and globally 
accurate modelling. However, there is a lack of 
systematic benchmark measures that may be 
used to assess the merit and performance of these 
algorithms [1],[2],[3],[7],[8]. Such benchmarks 
should be consistent with those used in 
measuring conventional optimisation algorithms, 
should be simple to use and should result in little 
program overhead. This paper attempts to 
formalise, and to promote discussions on, this 
issue. In this paper, benchmarks in terms of (i) 
optimality; (ii) solution spread measure; (iii) 
optimiser overhead will be presented. 

1 INTRODUCTION 
No widely accepted benchmarks for performing 
comparative analyses of evolutionary algorithms currently 
exist. Benchmark problems studied in 
[4],[5],[7],[10],[12],[13],[14],[15] have proposed some. 
However, almost no comparative studies of techniques 
that substantiate the suitability in general test problems 
[2]. At present, researchers use various experimental 
methods and performance measures, resulting difficulties 
in thorough comparison and little formal discussion on 
these issues. Another difficulty associated with present 
benchmark problems is that they require theoretical 
solutions which are an obstacle as for some test problems 
and real-world applications theoretical solutions do not 
exist or impossible to compute. 

Currently proposed benchmarks are either very difficult to 
compute like Generational Distance or Overall 
Nondominated Vector Generational and Ratio [14] as 
they require the true Pareto front which is often 
unavailable. Benchmarks like Coverage [16] can give 
extremely misleading information [10]. The benchmark 

Attainment Surface Sampling  [10] is informative, but it 
can be quite troublesome when comparing existing 
algorithms with any new algorithm because the user n eeds 
to program existing algorithms where misinterpretation 
and wrong implementation may occur. 

In this paper, we attempt to formalise benchmark 
measures to evaluate effectiveness and efficiency of 
evolutionary algorithms on multi-objective optimisation 
problems. The end result is not to show which algorithm 
is better or the best, but rather to promote the use of 
benchmarks when measuring the effectiveness and 
efficiency of a particular evolutionary algorithm. For a 
thorough discussion of evolutionary algorithms for multi-
objective optimisation, refer to [1],[2],[6],[12]. 

This paper is organised as follows. Section 2 describes the 
proposed benchmarking methods. In Section 3, an 
example of the benchmark results is shown. Finally, 
conclusions are drawn in Section 4. 

2 PROPOSED BENCHMARKING 
METHODS 

A method for benchmarking MOEAs that will be easy 
and efficient is proposed in this paper. The benchmarks 
defined here are not exclusive and more benchmarks can 
be added in the future. This method basically is to give an 
MOEA a score for each benchmarks based on a particular 
test problem and setting. When testing a new MOEA 
against existing ones, only the new MOEA needs to be 
tested. Alternatively, a particular MOEA may be tested 
against different parameters settings using these 
benchmarks. Here the proposed benchmarks are not 
restricted to test problems only, and can be extended to 
any real-world application. 

We propose to use an approximate Pareto front rather 
than the true Pareto front when it is impossible to 
compute the true Pareto front. The approximate Pareto 
front is obtained by running a few different MOEAs on a 
particular test problem T1 and retrieved all the non-
dominated solutions based on all the results given by the 
MOEAs. This approximate Pareto front for test problem 
T1 should be made freely available by means of placing it 
on a website for everyone to download or by email upon 



request. In this way, comparison of MOEAs on T1 can be 
done easily and efficiently. The following Average 
Relative Accuracy Index (ARAI) is used to gauge how 
‘accurate’ the approximate Pareto front is. As a guideline 
any value less than 0.02 should be sufficient. 

ARAI = ∑ ∑
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where N is the number of solutions found, m is the 
number of objectives, jf and jf  are the lower and upper 

bounds of f j. 
Based on a Pareto front, the following multi-objective 
benchmarking problems may be addressed. First, how 
close are the solutions found to the front? Second, are the 
solutions well spread out? Last but not least, what is the 
efficiency of the algorithm or number of function 
evaluations required? Below are the proposed benchmarks 
that endeavour to answer these questions. 

2.1  OPTIMALITY 

Optimality represents the relative closeness of an 
objective vector found, $f0 , to the approximated ideal 
objective vector f0. This measure is defined here as: 

Optimality = 
a
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where 0f  and 0f  are the lower and upper bounds of the 
f0 and N is the number of Pareto optimal solutions found. 
In this case, the 2-norm (Euclidean metric) is being used 
i.e. a=2. Therefore, it is the normalised Euclidean distance 
between each vector in $f0  and the nearest member of f0. 

Thus, a value of zero indicates $f0  = f0 and any values 

above zero indicates that $f0  deviates from f0. 

2.2  SOLUTION SPREAD MEASURE 

While it is desirable to find more Pareto-optimal 
solutions, it is also desirable to find the ones scattered 
uniformly over the Pareto frontier in order to provide a 
variety of compromise solutions to the decision maker. 
Solution Spread Measure (SSM) represents the 
distribution of the solutions along the Pareto front. This 
benchmark is proposed in [4]: 
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where N is the number of solutions found along the Pareto 
front so there are (N-1) consecutive distances, di is the 

distance (in objective space) between each solution, d  is 
the arithmetic mean of all di and df and dl are the 
Euclidean distances between the extreme solutions and 
the boundary solutions of the obtained non-dominated set. 
Thus, a low performance measure characterises an 
algorithm with a good distribution capacity. 

2.3 OPTIMISER OVERHEAD 

Alternative to or in addition to the ‘total number of 
evaluations’, the ‘total CPU time ’ may be used in a 
benchmark test. This would be useful in indicating how 
long an optimisation or simulated evolution process 
would take in real world and to indicate the amount of 
program overhead as a result of the optimisation 
manipulations such as those by EA operators. More 
quantitatively, the optimiser overhead may be calculated 
by [5]: 

Optimiser Overhead = 
PFE

PFETotal

T
TT −

  (2.4) 

where TTotal is the total time taken and TPFE is the time 
taken for pure function evaluations. Thus, a value of zero 
indicates that an algorithm is efficient and does not have 
any overhead. However, this is an ideal case and is not 
practically reachable. 

3 EXAMPLE 
To illustrate the proposed benchmarks, an example is 
shown here. The 3 MOEAs used are NSGA-II (Non-
dominated Sorting GA -II) [4], (1+1)-PAES (Pareto 
Archived Evolution Strategy) [9] and NUS_MOEA 
(Multi-Objective Evolutionary Algorithm Toolbox) [11]. 
All the objective functions are to be minimised and 
similar settings are used for all the MOEAs. Table 3.1 
shows the test problem description, Table 3.2 shows the 
benchmark results and Figure 3.1 shows the solutions 
found by the MOEAs. The benchmark measures are based 
on the approximate Pareto front for ZDT6 and have an 
Average Relative Accuracy Index of 0.00119. 

For this example, clearly NSGA -II is a better algorithm 
for this test problem as it has better scores across all the 
benchmarks. As for the other two, the benchmarks shows 
that (1+1)-PAES has a better optimality measure and 
optimiser overhead but the distribution of the solutions 
are not as good as NUS_MOEA. So we can deduce that 
for analysing a MOEA one should not just rely on a single 
benchmark and gauge the MOEA. Instead, we should 
look at all the benchmarks and from there it will give us a 
better picture of the MOEA characteristics. 

 

 

 

 

 



 

Table 3.1: Test Problem Description 

Problem n Variable Bounds  Objective Functions 

ZDT6 [16] 10 [0,1] f1(x) = 1 – exp(-4x1)sin6(6πx1) 

f2(x) = g(x)[1 – (f1(x)/g(x))2] 

g(x) = 1 + 9[( ∑ =
n
i 2 xi)/(n-1)]0.25 

 

Table 3.2: Benchmark result on ZDT6 

 Optimality Solution Spread 
Measure 

Optimiser Overhead 

NUS_MOEA  0.07758855 1.023002539 443.07 

NSGA-II 0.003928746 0.574980214 6.2954 

(1+1)-PAES  0.006022287 1.344196807 11.910 

 

 

Figure 3.1: MOEAs result on ZDT6 

 

4 CONCLUSIONS 
By having a mechanism to measure the effectiveness and 
efficiency of a MOEA, we would be able to select wisely 
which MOEA and parameter settings to use in 
applications. The next milestone will be to develop 
benchmarked MOEAs for applications to control system 
design automation. Understanding that more than 90% of 
industrial control systems are in a form of multi-PID and 
many process control system are performed in a 
predictive control manner, it is proposed to harness these 
to unleash the power of both schemes.  In particular, the 
powerful breeding technique of evolutionary algorithms is 
to be applied to search and discover novel and optimal 
control structures, aiming at the root structural level and 
not just parameters effectively to improve plant stability 
and maximise plant profitability, for improved cost-
effectiveness, quality and creativity. 
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