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Abstract

Nowadays, the solution of multi-objective optimizatioroplems in aeronau-
tical and aerospace engineering has become a standarit@rddtese two fields
offer highly complex search spaces with different sourdedificulty, which are
amenable to the use of alternative search techniques sunbtabkeuristics, since
they require little domain information to operate. From segeral metaheuristics
available, multi-objective evolutionary algorithms (M@&) have become partic-
ularly popular, mainly because of their availability, ea$ease and flexibility. This
paper presents a taxonomy and a comprehensive review adaiqhs of MOEAS
in aeronautical and aerospace design problems. The ren@udies both the char-
acteristics of the specific MOEA adopted in each case, asasde features of
the problems being solved with them. The advantages andwdistages of each
type of approach are also briefly addressed. We also prowded general guide-
lines for using and designing MOEASs for aeronautical anasgggice engineering
problems. In the final part of the paper we provide some piatigpaiths for future

research, which we consider promising within this area.
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1 Introduction

Optimal design in aeronautical/aerospace engineeringyisature, a multiobjective-
multidisciplinary and highly difficult problem. Aerodynaecs, structures, propulsion,
acoustics, manufacturing and economics, are some of th@lilies involved in this
type of problems. Even if a single discipline is considemn@@ny design problems
have competing objectives (e.g., to optimize a wing’s liflalrag or a wing’s struc-
tural strength and weight). During the last three decadesptocess of engineering
design has been clearly improved because of the dominamttiat computational
simulations have played in this area [87] e.g., Computatiéituid Dynamics (CFD)
simulations to perform aerodynamic analysis [67] and Caajianal Structural Dy-
namics/Mechanics (CSD/M) through the use of the Finite ElenMethod (FEM) to
process structural analysis [169]. The increasing demandgdtimal and robust de-
signs, driven by economic and environmental constraintsgawith an increasing
computing power, has improved the role of computationautations, from being just
analytical tools until becoming design optimization tools

In spite of the fact that gradient-based numerical optitiiramethods have been
successfully applied in a variety of aeronautical/aerospisign problems [63, 153]

their use is considered a challenge due to the followingadiffies found in practice:

1. The design space is frequently multimodal and highly lhoear.

2. Evaluating the objective function (performance) fordesign candidates is usu-
ally time consuming, due mainly to the high-fidelity and dimmnality required

in the simulations.

3. By themselves, single-discipline optimizations maywmte solutions which not

necessarily satisfy objectives and/or constraints cemsitlin other disciplines.

4. The complexity of the sensitivity analyses in Multidigaiary Design Optimiza-

1it is worth noting that most of the applications using gratiieased methods have adopted them to find

global optima or a single compromise solution for multiedtjve problems.



tion (MDQ?) increases as the number of disciplines involved becomgsiia

5. In MDO, a trade-off solution, or a set of them, are seard¢bed

Based on the previously indicated difficulties, designererbeen motivated to use
alternative optimization techniques such as Evolutionslgorithms (EAs) [86, 34,
122]. Multi-Objective Evolutionary Algorithms (MOEAS) kia gained an increasing
popularity as numerical optimization tools in aeronautarad aerospace engineering
during the last few years [120, 4, 87]. These populatioredasethods mimic the evo-
lution of species and the survival of the fittest, and comgsreraditional optimization

techniques, they present the following advantages:

e Robustness:In practice, they produce good approximations to optimtd eé
solutions, even in problems with very large and complexgtespaces. Instead
of a single-point search with gradient information, MOE/As& & population of
design candidates (i.e., they perform a multi-point s€aaclal are less prone to
get trapped in local optima. Additionally, they can managa-differentiable,

mixed real-discrete and highly non-linear objective fumuas/fitness landscapes.

e Multiple solutions per run: As MOEAs use a population of candidates, they
are designed to generate multiple trade-off solutions im@le run. Evidently,
the generation of more solutions also involves a higher edgatnal time when
dealing with expensive applications. Thus, the number bftems to be gen-
erated by a MOEA in the applications discussed in this pagredd to be low,

unless surrogate models are adopted.

e Easy to parallelize: The design candidates in a MOEA population, at each gen-
eration, can be evaluated in parallel using diverse panagliJ his can be useful
in problems involving objective functions that are costlyetzaluate (something

common in aeronautical and aerospace applications).

2Multidisciplinary Design Optimization, by its nature, che considered as a multi-objective optimiza-

tion problem, where each discipline aims to optimize a paldir performance metric.



e Simplicity: MOEAs use only the objective function values for each desim
didate. They do not require a substantial modification orgeminterfacing for
using a CFD or CSD/M code. This situation substantially cedithe cost related
to code writing and tuning every time a new application isigsyed. Further-
more, designers can easily make use of in-house developkdraiommercial

codes previously validated.

e Easy to hybridize: Along with the simplicity previously stated, MOEAs also
allow an easy hybridization with alternative methods,,exgemetic algorithms,
which additionally introduce specifities to the impleméiata, without influenc-

ing the MOEA simplicity.

e Novel solutions: In many cases, gradient-based optimization techniques con
verge to designs which have little variation even if prodledth very different
initial setups. In contrast, the inherent explorative ¢algaes of MOEASs allow

them to produce, some times, novel and non-intuitive dessign

The important volume of information that has been publistrethe use of MOEAs
in aeronautical and aerospace engineering applicatioaisyrmotivated by the advan-
tages previously addressed) has led us to write this papéchvprovides a review of
this work in an organized and classified manner. As we willlate on, MOEAS have

been used in a variety of design stages and in diverse prgblem

The remainder of this paper is organized as follows. In $a@i some basic con-
cepts on multi-objective optimization are presented. i8e@ briefly describes some
of the MOEAs that have been most commonly used in the speethliterature. Sec-
tion 4 presents a taxonomy of applications of MOEASs in aeutical and aerospace
engineering. Such applications are explained in more ldat&ection 5. After that,
in Section 6, possible future research paths are highlighimally, Section 7 presents

the main conclusions of this review.



2 Basic Concepts

A Multi-Objective Optimization Problem (MOP) can be mattetioally defined as fol-

lows3:
minimize f(z) := [f1(Z), fo(), ..., fx(Z)] (1)
subject to:
g:(Z) <0, i=1,2,....,m (2
wherez = [z1, 22, ... 7xn]T is the vector of decision variableg, : R" — R, i =

1,..., k are the objective functions ang, 7, : R" - R,i=1,..,m,j =1,...,pare
the constraint functions of the problem.

The set of constraints of the problem defines the feasibiemeg the search space
of the problem. Any vector of variableswhich satisfies all the constraints is consid-
ered a feasible solution. In their original version, an EAd&lso a MOEA) lacks a
mechanism to deal with constrained search spaces. This ttasted a considerable
amount of research regarding the design and implementafi@onstraint-handling
techniques for both EAs and MOEAs [23, 108].

Regarding optimal solutions in MOPs, the following defimits are provided:

Definition 1. A vector of decision variableg € IR" dominates another vector of deci-
sion variableg/ € R", (denoted by# < %) if and only if Z is partially less thaw, i.e.,

Swithout loss of generality, minimization is assumed in tbkkofving definitions, since any maximization

problem can be transformed into a minimization one.



Definition 2. A vector of decision variableg ¢ X ¢ R" is nondominated with

— —

respect tov, if there does not exist anoth@&r € X such thatf (z') < f(Z).

Definition 3. A vector of decision variableg* € 7 c R" (F is the feasible region)

is Pareto-optimalif it is nondominated with respect t6.
Definition 4. ThePareto optimal setP* is defined by:

P* = {Z € F|Zis Pareto-optimal

Definition 5. ThePareto front PF* is defined by:

PF* = {f(&) e R*|Z € P*}
The goal on a MOP consists on determining the Pareto optietdi@m the setF of
all the decision variable vectors that satisfy (2) and (3).
Thus, when solving a MOP, we aim to find not one, but the set lotismis repre-
senting the best possible trade-offs among the objectiliessp-called Pareto optimal

set).

3 Multi-Objective Evolutionary Algorithms

It is worth indicating that traditional EAs require some rifmétions in order to deal

with multi-objective optimization problems. The main twmeedhe following:

1. All the nondominated solutions should be considered lbggaod by the se-
lection mechanism. This means that a different notion oéfitnis required for
dealing with multi-objective optimization problems. Thesh popular mecha-
nism to deal with this problem is called Pareto ranking and im&roduced by
Goldberg [51]. This approach assigns a rank to each solbtised on its Pareto
dominance, such that nondominated solutions are all sahglthe same rate.
However, in the early days of MOEAS, several mechanisms aseth on Pareto

optimality were adopted with EAs [24].



2. EAstend to converge to a single solution if run long enqbglcause of stochas-
tic noise [51]. Therefore, a mechanism to maintain divensitrequired. This
component is known as trdensity estimatorFitness sharing [52] was the ear-
liest density estimator, but many others have been propmsadime, including
clustering [189], entropy [41], adaptive grids [81] andwding [32], among

others.

MOEAs can be classified in several ways [24]. However, forghposes of this
survey, we decided to adopt a simple high-level classibicatinat considers only two
types of MOEASs: (a) Non-Pareto-based and (b) Pareto-bdseifirst group contains
MOEAs that do not adopt the concept of Pareto optimality irtiselection mech-
anism, whereas the second comprises those MOEAs that adogtbPoptimality in
their selection mechanism. Some of the most popular noet®ased MOEAs are

the following:

e Lexicographic method The user ranks the objectives of the problem in a de-
creasing order and the optimization proceeds from hightwter order objec-
tives, one at a time. Once an objective is optimized, the aito improve as
much as possible the following objective(s) without desiegthe quality of the
previous one(s) [24]. This sort of approach normally getesra single nondom-
inated solution, but if instead of using a fixed objectivetesrost important, it

is randomly chosen, several solutions can be generatecinuon

e Aggregating functions All the objectives are added up into a single (scalar)
value which constitutes the objective to be optimized. Siobjectives tend to
be defined in very different ranges, a normalization is ndigmaquired. Also,
weights tend to be assigned to each objective in order toalpfieferences from
the user [24]. Varying the weights during the run allows, @mgral, the genera-

tion of different nondominated solutions in one run [71,.59]

e Population-based methodsA number of sub-populations (usually as many as
the number of objective functions of the problem) are getieerfrom a main

population of an EA. Each sub-population optimizes a singiective function



and then all the sub-populations are merged and mixed. Thésathat, when
performing crossover, individuals that are good in one cibje will recombine
with individuals that are good in another one [149]. Thig edrapproach pro-
duces several nondominated solutions in a single run, tygittally misses good
compromises among the objectives because of the way in vitd@¥iduals are

selected in each population [24].

Among the Pareto-based methods, there are two sub-cldlssesn-elitist MOEAs
and the elitist MOEAs. Non-elitist MOEASs do not retain thendominated solutions
that they generate and could, therefore, lose them aftdyiagghe evolutionary oper-
ators. Elitist MOEAS retain these solutions either in areaxal archive or in the main
population.

The most representative non-elitist MOEASs are the foll@yin

e Nondominated Sorting Genetic Algorithm (NSGA): It was proposed by Srini-
vas and Deb [160]. It is based on several layers of classditatof the indi-
viduals. Before selection is performed, the populationaisked on the basis
of nondomination: all nondominated individuals are cffisdiinto one category
(with a dummy fitness value, which is proportional to the dafian size, in or-
der to provide an equal reproductive potential for thes&iddals). To maintain
the diversity of the population, these classified individuaae shared with their
dummy fitness values. Then this group of classified indiviglissignored and
another layer of nondominated individuals is considerdee ffrocess continues
until all individuals in the population are classified. S¥rindividuals in the first
front have the maximum fitness value, they always get a higilection proba-

bility than the rest of the population.

e Niched-Pareto Genetic Algorithm (NPGA): Proposed in [62]. It uses a tour-
nament selection scheme based on Pareto dominance. Tleeidessiof the
algorithm is the following: Two individuals are randomlyaden and compared
against a subset from the entire population (typicallyyarb10% of the popula-

tion). If one of them is dominated (by the individuals randpohosen from the



population) and the other is not, then the nondominatedididal wins. When
both competitors are either dominated or nondominated {here is a tie), the

result of the tournament is decided through fitness sha&gp [

e Multi-Objective Genetic Algorithm (MOGA): Proposed in [46]. In this ap-
proach, the rank of a certain individual corresponds to tiralver of individuals
in the current population by which it is dominated. All nomdioated individuals
are assigned the lowest possible rank (i.e., one), whildmizted ones receive as

rank the number of individuals that dominate them plus one.
Among the most popular Pareto-based elitist MOEAs, we haeddllowing:

e Strength Pareto Evolutionary Algorithm (SPEA): Introduced in [189]. It uses
an archive containing nhondominated solutions previousinfl (the so-called
external nondominated set). At each generation, nhonddedriadividuals are
copied to the external nondominated set, removing the datedhsolutions. For
each individual in this external setsaengthvalue is computed. This strength is
similar to the ranking value of MOGA, since it is proportibt@athe number of
solutions to which a certain individual dominates. The wef each member
of the current population is computed according to the gtieof all external
nondominated solutions that dominate it. In SPEA, instdasimg niches based
on distance (as MOGA and NPGA), Pareto dominance is adoptexdure that
the solutions are properly distributed along the Paretotfrélthough no niche
radius is required, the effectiveness of this approaclesedn the size of the
external nondominated set, since such a set participates iselection process
of SPEA. Because of this, the authors decided to adopt aitpehthat prunes
the contents of the external nondominated set so that iésreinains below a
certain threshold. The approach adopted for this sake wiastgedng technique

called “average linkage method” [112].

e Strength Pareto Evolutionary Algorithm 2 (SPEA2): SPEA2 has three main

differences with respectto its predecessor [188]: (1)xdbnporates a fine-grained



fitness assignment strategy which, for each individuakgakto account both
the number of individuals to which it dominates and the nurnddeindividu-

als that dominate it; (2) it uses a nearest neighbor densiignation technique
which guides the search more efficiently, and (3) it has aaeoéd archive trun-

cation method that guarantees the preservation of bousdariions.

Pareto Archived Evolution Strategy (PAES): This algorithm was introduced in
[83]. PAES consists of a (1+1) evolution strategy (i.e. gk parent that gener-
ates a single offspring) in combination with a historicalkave that records the
nondominated solutions previously found. This archiveseduas a reference
set against which each mutated individual is being comp&®edh a historical
archive is the elitist mechanism adopted in PAES. Howeveiingeresting as-
pect of this algorithm is the procedure used to maintainrdit)eewhich consists
of a crowding procedure that divides objective space in argde manner. Each
solution is placed in a certain grid location based on thae&bf its objectives
(which are used as its “coordinates” or “geographical limc&). A map of such
grid is maintained, indicating the number of solutions tieaide in each grid lo-
cation. Since the procedure is adaptive, no extra paras@terequired (except

for the number of divisions of the objective space).

Nondominated Sorting Genetic Algorithm II (NSGA-II): This approach was
introduced in [32] as an improved version of the NSGA. In tI8&3W-II, for each

solution one has to determine how many solutions dominatedtthe set of so-
lutions to which it dominates. The NSGA-II estimates thesignof solutions

surrounding a particular solution in the population by caotivy the average dis-
tance of two points on either side of this point along eaclthefabjectives of the
problem. This value is the so-calledowding distance During selection, the
NSGA-II uses a crowded-comparison operator which takes ¢onhsideration
both the nondomination rank of an individual in the populatand its crowding
distance (i.e., nondominated solutions are preferred dwarinated solutions,
but between two solutions with the same nondomination rérkone that re-

sides in the less crowded region is preferred). The NSGAsHsdnot use an

10



external memory as the other MOEAs previously discusseste#sd, the elitist
mechanism of the NSGA-II consists of combining the bestmareith the best
offspring obtained (i.e., g4+ A)-selection). Due to its clever mechanisms, the
NSGA-II is much more efficient (computationally speakinigan its predeces-
sor, and its performance is so good, that it has become venylgoin the last
few years, becoming a landmark against which other MOEAg ta\be com-
pared [187].

There are several other multi-objective metaheuristiedi@vle. The two following

are discussed here because they are adopted by some of licatégps discussed here:

e Particle Swarm Optimization: This metaheuristic is inspired on the choreog-
raphy of a bird flock which aim to find food [77]. It can be seeraalistributed
behavioral algorithm that performs (in its more generaki@r) a multidimen-
sional search. The implementation of the algorithm adoisulation of par-
ticles, whose behavior is affected by either the best Idaal, within a certain
neighborhood) or the best global individual. Particle swaptimization (PSO)
has been successfully used for both continuous nonlinebdianrete binary op-
timization [40]. For extending PSO to deal with MOPs, the missues are:
(1) how to select particles (to be used as leaders) in ordgiveopreference to
nondominated solutions over those that are dominated’hd®)to retain the
nondominated solutions found during the search processdier @o report so-
lutions that are nondominated with respect to all the papufations and not
only with respect to the current one?, and 3) how to maintaiardity in the
swarm in order to avoid convergence to a single solution?médy, mecha-
nisms very similar to those adopted with MOEAs (namely, Rabased selec-
tion and external archives) have been adopted in multiedlbge particle swarm
optimizers (MOPSOs). However, the addition of other medras (e.g., a mu-
tation operator) is also relatively common in MOPSOs. Anamant number of

multi-objective versions of PSO currently exist (see foample [140]), and this

11



remains as a very active area of research.

o Differential Evolution: This metaheuristic was proposed by Kenneth Price and
Rainer Storn [161, 130] to optimize problems over contiraomains. The core
idea is to use vector differences for perturbing a vectoupetfpn, and it aims to
estimate the gradient in a region (rather than in a pointjfeBintial Evolution
(DE) performs mutation based on the distribution of the Sois in the current
population. In this way, search directions and possible siees depend on the
location of the individuals selected to calculate the matavalues. Several
DE variants are possible, and they differ in the way in whicl parents are
selected and in the form in which recombination and mutataies place (see
[130] for more information on DE). The high success of DE imgé&-objective
optimization has made it an interesting candidate for sgiWIOPs. The main
issues for extending DE to multi-objective optimizatioe &ery similar to those
of PSO (i.e., how to select parents, how to store nondonminséutions and
how to maintain diversity in the population). As with MOPSQery similar
mechanisms to those adopted by MOEAs have been use with-ofjgtctive
differential evolution (MODE). A variety of MODE approacheurrently exist
(see for example [110]), and this also remains as a veryeaati®a of research.
It is worth noting that MODES are often considered MOEAs [24]

Although many other MOEASs exist (see for example [25, 186]¥ not the inten-
tion of this paper to be comprehensive. The interested rendg refer to [24, 31] for
more information on this topic.

The main advantages of MOEASs are their generality, easeeofnd the fact that
they require little or no specific domain information to oger Also, they are less
susceptible to the specific features of the problem (e.@peator continuity of the
Pareto front) than traditional mathematical programmauaniques [24].

Although the performance of MOEASs has been traditionalseased using a va-
riety of quantitative measures (see for example [24, 19@}), of them have been
adopted in the applications discussed in this paper. Thisdbably due to the high

computational cost of these applications and the few notited solutions that are
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normally produced. This is the reason why the use of suclopeence measures is
not discussed in the applications reviewed here, excepifad them is adopted in the
selection process (e.g., SMS-EMOA adopts a selection nmésrhebased on a perfor-

mance measure calléypervolumg10]).

4 A Taxonomy of Applications

Aeronautical/aerospace engineering design process tsarpree phases: @oncep-
tual design (ii) Preliminary designand (iii) Detailed desigr{13]. In each of these
phases, design concepts are analyzed to determine theplieoce with the perfor-
mance requirements, as well as their manufacturabilityesmmchomical viability. The
design process cannot be considered as serial, but as a pymtiess, in which many
design iterations are required. This iterative processasiy executed between the
first two phases. Applications surveyed in this article ctlie spectrum o€onceptual
designandPreliminary designwhere numerical optimization has its greatest impact,
and where the goal of optimization is to refine the desigrargd theDetailed design
phase in which design production is initiated (see Figure 1)

Although very interesting ways of classifying complex MORwe been proposed
in the past (see for example the approach described in [#8])taxonomy adopted
in this article aims to reflect the optimization problem cdexjty degree in terms of
three main features: (i) physics-model fidelity, (ii) themoer of disciplines involved,
and (iii) the associated computational cost needed to partioe optimization process.

The classes considered are the following:

1. Conceptual design optimization Being this the earliest phase of the design
process, it has an emphasis on finding the Bestign Conceptsensuring de-
signers that they are heading into the correct design patragteeing to meet

all design’s performance requirements.

2. 2D geometries and airfoil shape optimization In these applications the di-
mensionality of the problem is reduced, and the physicshersimulations can

be considered as two-dimensional.
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3. 3D complex physics/shape optimization 3D complex physics, 3D complex

geometries or the combination of both are considered ircthgs of applications.

4. Structural optimization : Considering the design of lighter and stronger struc-
tures as the premise of aeronautical/aerospace desigm;létss of application

looks for the best trade-off between these two objectiMesyly in conflict.

5. Multidisciplinary design optimization : These applications cover those where
two or more disciplines are involved, each one with specliiectives to accom-

plish or to optimize.

6. Aerospace system optimization Applications focused on space systems such

as spacecrafts and satellites.

7. Control system design These applications are used for parametric design in

different control laws.

The different approaches in each one of these classes wdikberibed in the fol-
lowing section. It is worth mentioning that this review oéthktate-of-the-art is focused
on Pareto-based MOEAs. This decision was made based ondhada the number
of references of non-Pareto-based approaches would ot altareful description of

each approach.

5 Applications

5.1 Conceptual design optimization

Traditionally, the aeronautical/aerosp&nceptual Desigphase has been conducted
with the help of databases, statistics, and regressiofdlaler engineering models as
well as company’s/designer’s accumulated experience.nTdia outcome of this de-
sign phase has been to determine a few promiBiegign Concepti be further ana-
lyzed in thePreliminary Desigrphase, in which numerical simulations or experimental
setups are developed to verify and refine the design. Additiy tradeoff analyses are

performed in order to identify unreasonable or conflictiequirements. This latter

14



task has been limited because of the large design spaceadbdtto be explored,
and a holistic (multidisciplinary) vision of the design isquired when multiple dis-
ciplines are involved in the design. Nowadays, with the@asing computing power
available, low-cost/fidelity numerical simulations hayeead toward th€onceptual

Designphase, making it possible to benefit from thelorationof large design spaces
with reduced time and low computational cost. Additionallys possible to envision
performingtrade-off analysis of the multi-objective and/or multidisciplinadgsigns.

Both of these characteristics are inherent in the use of MOBAthe present class of

applications reported next:

- Oyama and Liou [124] addressed the conceptual design kétengine pumps,
for a centrifugal single and multi-stage pump design. Irhbm#ses two objec-
tives were defined: (i) maximization of total head in the pyuam (ii) minimiza-
tion of the pump input power. Side constraints were considiéor the design
variables range, defining the pump geometry. An additiopatating constraint
was imposed for the static pressure at the rotor tip in oldetect the inception
of cavitation, being crucial to prevent this condition fbetoptimal design. The
authors adopted MOGA with fitness sharing [52], blendedsmoesr (BLX«)
and uniform random mutation. Conceptual designs were ateduusing a one
dimensional meanline pump flow-modeling method, which ftes a fast mod-
eling of turbopumps for rocket engines at very low compotai cost. For the
first conceptual design case, a total of 498 different noridatad solutions were
obtained, while 660 were found in the second case. Authdegirtbat improve-
ments in the objective functions were within 1% in both ohjexs with respect

to a reference design.

- Buonanno and Mavris [15] addressed the conceptual desasmall supersonic
aircraft, considering seven objectives: (i) weight, @hge, (iii) takeoff balanced
field length, (iv) loudness, (v) overpressure, (vi) flight dhanumber, and (vii)
cabin size. Some of them were minimized, while others wergimiaed. An

application example presented by the authors compriseta 8p to 64 design
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variables (both continuous and discrete variables wersidered), describing
the aircraft geometry and the mission requirements. Theoasiused a parallel
hybrid subjective/quantitative MOEA, in which the fithegsa individual was a
combination of both quantitative and qualitative metniggh the latter being de-
fined by a human evaluator. A parallel-MOEA) (pMOEA), basadhe injection
island genetic algorithm [36], was adapted for this MOP. $tnategy consisted
on assigning one objective function per island and solvitga@objective op-
timization problem. The second objective for each island wsenstructed as a
goal attainment metric based on the mission requirementkéaircraft. In this
way, each island obtained a set of solutions excelling imssigned objective
and representing a trade-off with respect to the projectsgoAfter a certain
number of generations, the nondominated solutions fronistaads were sent
to a central island which solved the seven-objective problermulated as a
goal attainment problem. Each island used SPEA2. The noimdded solu-
tions from the central island were transferred back to eddheislands and
the process was repeated until satisfactory solutions alasned. The authors
used physics-based analysis tools for performance predidtow-order/fidelity
models were used for the involved disciplines: aerodynanpi@pulsion, stabil-
ity and control, economics, aeroelasticity, manufactyi@md acoustics, along

with modules for weight estimation and geometry paramzadon.

Valliyappan and Simpson [175] solved a conceptual desjgimuization for a
general aviation aircraft product family of small propeliigiven GAA (General
Aviation Aircraft) to be scaled around tt¥ 4, and6 seats configurations, and
which can cruise from50 to 300 knots and have a range fraf0 to 1000 miles.
The aim of this study was to explore the design space in oodiénd the trade-
off between platform commonality and individual productfpemance within
the aircraft family. The MOP comprised four objective fupnaos which were de-
fined by means of a goal programming formulation, where thétiens of each
goal from their targets were minimized. For this sake, a E&étgmals (aspiration

levels), and a set df constraints were defined. The first two objectives measured
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the technical and economical related goals within the famaélspectively; while
the third objective measured the total constraint viotafar the whole family;
finally, objective four measured the variance index or degfecommonality in
variables within the product family. Design candidatesengfined with a set of
14 continuous/discrete design variables, and the evaluafithe aircraft perfor-
mance was done via NASA's GASP (General Aviation Syntheigiam). The
authors used the NSGA-II. A special encoding was adoptedderdo contain a
set of commonality controlling genes (one gene per var)afdfowed by a con-
catenation of genes defining the design variables of eaatuptdn the product

family.

Rajagopal et al. [135] investigated an Unmanned Aerialiélel{UAV) concep-
tual design. Two objectives were considered: (i) the mazértidn of the en-
durance (the time an airplane can fly given a payload and andiwed weight)
and (ii) the minimization of the wing weight. Six design \afries were used,
four of them being wing-geometry related parameters (dsj¢io, wing load-
ing, taper ratio, thickness to chord ratio) and the other hwimg UAV's oper-
ational parameters (loiter velocity and altitude). Adulitally, constraints were
imposed on the performance parameters of the UAV desigrselineluded: (1)
wing weight, (2) rate of climb, (3), stall speed, and (4) nmaxim speed at sea
level condition. NSGA-II with real-numbers encoding and BBX crossover
operator was adopted. This MOEA was coupled to Raymer’'s RijSvare,
which is based on the design methods described in [138]derdo evaluate the
performance of each design candidate. The authors repibided Pareto front

was obtained with a total of 11 solutions.

Kuhn et al. [88] developed a multidisciplinary conceptdasign methodology
for its application to hybrid airship design (aerostatitdind aerodynamic lift).
Two objectives were considered: (i) minimization of theatehass, and (i) max-
imization of the payload. Thirteen constraints were impgpselated to stress
levels in the components. A set of 18 mixed real/discret@aftes were used to

represent the geometry of the airship and its structurgdgnt@s. The optimiza-
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tion tool adopted was a MOEA called GAME (Genetic Algorithon Multicrite-
ria Engineering) [90], which is based on Evolution StragsgiES). The evalua-
tion of the objective functions was done with models varyim§idelity, ranging
from interpolation models to FEM models. The latter was usethe structural
analysis using a FEM commercial software. A Hybrid UniveGeound Ob-
server (HUGO) airship demonstrator was designed, withad ¢6t10,000 design

candidates being evaluated.

- Jing and Shuo [74] presented the conceptual design of amreathing hyper-
sonic cruise vehicle. Five design objectives were consittel(i) maximiza-
tion of the lift-to-drag ratio, (ii) minimization of the sgamation temperature, (iii)
maximization of the thrust-to-drag ratio, (iv) maximizatiof the airframe vol-
ume, and (v) minimization of the Radar Cross Section (RC8nhsBaints were
imposed on variables ranges, flow flux and Mach number at adetitions,
trimmed angle of attack and rolling angle, and static sitgtaihd maneuverabil-
ity margins as well. 21 design variables were used to defieg#ometry of the
design candidates. The authors adopted MOGA with the fatigfeatures: real
numbers encoding, arithmetic crossover, Gaussian motatieady-state repro-
duction and fitness sharing. Constraint handling was doraalaccurate penalty
strategy. Additionally, for further improvement of the sobns, a simulated an-
nealing algorithrfi was adopted as a local search engine. The objectives were
evaluated using simplified models with reduced computatioast. Only three
globally nondominated solutions could be generated. Sakhisns were fur-
ther evaluated and compared against a reference desigrauttners noted that

these solutions were better in all the objectives than tFereace design (i.e.,

“4Kirkpatrick et al. [79] pointed out the analogy between anrfealing” process and optimization: a
system state is analogous to the solution of an optimizgiroblem; the free energy of the system (to be
minimized) corresponds to the cost of the objective fumctmbe optimized; the slight perturbation imposed
on the system to change it to another state corresponds tovammeat into a neighboring position (with
respect to the local search state); the cooling schedutesmnds to the control mechanism adopted by the
search algorithm; and the frozen state of the system camelspto the final solution generated by the search
algorithm (using a population size of one). These analdgio the development of the so-callsichulated

annealingalgorithm.
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they dominated it).

Xiaoging et al. [184] evaluated the multiobjective optzation of hypersonic
waverider shape generation. Three objectives were camsidé€i) lift-to-drag

ratio, (ii) vehicle’s volume, and (iii) vehicle’s volumatrratio. No information
is given, concerning constraints, thus it is assumed thigtside constraints on
variable ranges are considered. The base section of theaidewvevas defined
by means of analytical shape functions (i.e., fourth-optdynomials), keeping
to a minimum the number of design variables. The authorsoezgltwo dif-

ferent techniques: (a) cone derived waverider, and (b)lasog cone derived
waverider. The authors adopted the NSGA-II with an impros@avding mech-

anism.

Theisinger and Braun [170] identified hypersonic entryoakell shapes in or-
der to find trade-off designs with increased landed masshilijEs. Three ob-
jectives were considered: (i) drag-area, (ii) static ditgband (iii) volumetric
efficiency. This particular spacecraft design problem waged by planetary
entry-descent-landing performance requirements andnééstructural limita-
tions, which are naturally conflicting. All objectives wereaximized and two
constraints were imposed to the volumetric efficiency antherlift-to-drag ra-
tio. Side constraints were applied to the design varialilesder to obtain de-
signs fitting with the current launch systems. Aeroshelpghaas described by
a bi-parametric, cubic by quadratic, non-uniform ratioBadpline 3D surface,
allowing them to define the optimization problem with 20 desvariables, in-
cluding the aeroshell angle of attack. The authors adopted/érsion of the
NSGA-II available in theSIGHT commercial software. Additionally, the ob-
jective function evaluations were performed with the eatid flowfield around
the aeroshell using a physics-based simulation, nameljN#vetonian impact
theory. The Mars Science Laboratory Aeroshell was adomeraference de-
sign. The authors found several design candidates thaimpeetl better than the

reference design in the three objectives under considerati
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Analysis of the use of MOEAs in conceptual design:

Table 1 summarizes the application of MOEAS in conceptusigiteoptimization
problems. From this table and the previous review, it canldserved that the NSGA-II
is the most frequently adopted approach. The common useefd?based approaches
seems to corroborate the hypothesis from some authorsdiegahe suitability of
Pareto optimality to drive the search at the preliminargssaof design [181]. It should
be clear that the use of MOEASs is computationally expensiéch is the reason why
analytic and/or low-order engineering models are adoptemhdst cases. Only in a
few applications, researchers seem to rely on low-ordesipghybased models [15],
and variable-fidelity physics-based models [88]. Nevdeds we believe that in the
near future, MOEAs will become a standard practice, as thgpcing power available
continues to increase each year. Itis also worth notingMI@EAs are flexible enough
as to allow their coupling to both engineering models and-¢wder physics-based
models without major changes. They can also be easily ptiraltl, since MOEAs
normally have low data dependency. Finally, it is worth @ading the advantage of
incorporating a subjective evaluation scheme for caseshichwthe search must be
controlled, disallowing the generation of impractical idessolutions as reported by
Buonanno and Mauvris [15].

An aspect that is important to emphasize is the poor scilabil Pareto-based
MOEAs as we increase the number of objectives [82]. Many efapplications pre-
viously described considered a low number of conflictingeotiyes (two or three in
most cases). Although MOEAs can still be used in high-dirteTed objective spaces,
it is required to use mechanisms different from the tradaidPareto-based selection
[64]. This issue, however, does not seem to be a major comeenost of the appli-
cations reviewed above. A remarkable exception is the weplrted in [15] in which
the authors deal with a problem having seven objectives. alitieors adopt in this
case a parallel MOEA based on the concepts of co-evolutionuitiple populations.
This approach seems to produce acceptable results in gtisdiinensional objective
search space. Another issue that seems to be a common camtieisnfirst group of

applications is the encoding of the decision variables.c&itis sort of application
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normally has mixed decision variables (e.g., discrete amdicuous), authors tend to
propose their owad-hocencodings, which also require specialized crossover and mu
tation operators associated to them. It should also be ewtitiat in this first type of
applications, authors paid little or no attention to thefimeing of parameters of their
MOEAs. This may be due to the obvious difficulties to perforraaeful statistical
analysis when dealing with very expensive objective fuori However, other pos-
sible alternatives such as self-adaptation or on-line t&diap have not been properly
addressed by researchers in this area yet [174]. If suckadalftation and on-line
adaptation mechanisms are unaffordable, at least the usdatizely high mutation
rates is suggested, combined with a plus selection mechah& combines the pop-
ulation of parents with the population of offspring and nesathe best half. This will
increase the selection pressure but will maintain enouggrsity as to avoid premature
convergence. Finally, it is worth mentioning the use of exaéfiles (or archives) as
a viable alternative to reduce objective function evatuaiand perform a more accu-
rate search. This sort of mechanism can be particularlyulséfen combined with
relaxed forms of Pareto dominance such-@®minance [94], which allows to regulate
convergence, and has not been adopted by researchers gvarkims first group of

applications.

5.2 2D geometries and airfoil shape optimization

Aeronautic and aerospace systems are, in general, comgi@eering systems. Their
analysis and design is a very complex task. There exist, \ienvenany enginering
design cases where this complexity can be tackled by amgyrasic components of
the complete system, on which reduced/simplified modelsbeansed as the basis
for analyzing the whole system. Examples of these conditeme the design of 3D
complex shapes such as wings and turbine blades, whereahysiarof their 2D build-
ing sections (airfoils) is frequently performed prior t@tanalysis of the complete 3D
geometry. In other cases, the geometry for the system cauodbetksat its operating

conditions can be estimated by analyzing its sectionalgnt@s. Examples of this lat-
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ter condition are the aircraft engine inlets/nozzles, whae flow can be assumed as
two-dimensional or axisymmetrical. In this section, sorppleations of MOEAS for

these types of problems are presented.

- Yamaguchi and Arima [185] dealt with the optimization ofrartsonic com-
pressor stator blade in which three objectives were miranhiZi) pressure loss
coefficient, (ii) deviation outflow angle, and (iii) incidea toughness. The last
objective function can be considered as a robust conditiothie design, since
it is computed as the sum of the pressure loss coefficientgatff-design inci-
dence angles. The airfoil blade geometry was defined by engdgign variables.
The authors adopted MOGA with real-numbers encoding, fitskaring and in-
termediate crossover. Aerodynamic performance evalu&tiothe compressor
blade was done using Navier-Stokes CFD simulations. Thienggation pro-
cess was parallelized, using 24 processors in order to edtheccomputational
time required. In order to promote diversity, during thetffesv generations,
parents were selected from individuals with the first twodstwank values (i.e.,
dominated individuals were also selected) and later oty, mohdominated indi-

viduals were selected.

- Benini and Toffolo [9] addressed the development of higifgrmance airfoils
for its application in axial flow compressors. They minimdz®vo objectives:
(i) nondimensional pressure ratio, and (ii) the pressuse tmefficient reduced
from the unit value. Constraints were imposed on the desigmlitions, and
were evaluated at 5 different flow-field points, in order téadb airfoils being at
least equal in performance to the reference airfoils adbpyethe authors. The
airfoil geometry was defined using three Bézier curvesotalt9 designs vari-
ables were used to define the airfoil geometry, its lengtichpiand incidence.
A special procedure was used to avoid generating eitheesselr invalid air-
foil geometries. The MOEA used by the authors is based onitist €} + 1)
evolution strategy, which adopted binary encoding. Inrtireplementationy
offspring were generated using crossover and were mutdte@wandom-based

mechanism. Repeated solutions (clones) were replacedipmay-generated
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individuals. In the selection process, the combined pdjmriaof parents and
offspring were Pareto-ranked but considering also a diyensetric defined as
a function of the minimal normalized Euclidean distanced@tision variable
space) of each individual to its closest neighbor. The pesidividuals were
retained as members of the following generation. The etialuaf the objec-
tive functions was done by means of CFD simulations with & keigmputational
cost. The nondominated solutions generated by the authers fgund to be

superior in performance to the reference airfoils, using65 family airfoils.

- Naujoks et al. [113] addressed an airfoil design problemtiich extreme Pareto
optimal solutions were defined for two operational designisqtwo competing
objectives): one for high lift performance at low speed dgtod and the other
one for low drag performance at high speed condition. Thieihivas repre-
sented by two Bézier curves, and a total of 12 design varsablere adopted.
No constraints were defined, other than side constrain{sefugnd lower limits
for the design variables). The authors used an approadddslODES (Multi
Objective Derandomized Evolution Strategy). In this cagé+d0)-DES (De-
randomized Evolution Strategy) was adopted, which meaatsotily one parent
was used to produce the offspring. The aerodynamic evaluati the design
candidates is performed using a CFD Navier-Stokes sinmmatith a high com-
putational cost. It is worth noting, however, that for theples presented by
the authors, a budget of only 1000 evaluations was consldekthough this
was a very small number of objective function evaluatiohs,authors reported
the generation of good approximations of the Pareto fronta further paper,
Naujoks et al. [114] proposed to use a (20+20)-MODES styatdgng with an
additional selection mechanism inspired on the NSGA-Ie Tésults presented
with this additional selection mechanism were very sintitethose obtained be-
fore, both in terms of quality of the Pareto approximatiod &mterms of the

spread of the nondominated solutions along the Pareto. front

- Beume et al. [10] poposed the SMS-EMOA (SMS stands for Sioiedelec-

5Thehypervolume (also known as thé metric or the Lebesgue Measure) of a set of solutions messure
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tion) strategy. The approach was used to solve a multi-tibgeairfoil design
problem. As in the previous case, Pareto extreme solutiare wefined by
three operational conditions for lift, drag and pitchingnmrent coefficients. The
optimization problem was to find trade-off solutions mirang the drag val-
ues for the three flow conditions, while not losing lift andepéng the pitching
moment within &% range from the reference design points. Additionally, ge-
ometrical constraints were included for the airfoil shaphkese last constraints
were treated in a direct manner, discarding all infeasiblet®ns, previous to a
CFD simulation. Results for this application were preseiated compared with
those obtained by using NSGA-II, in both cases with a limiedget of 1,000

function evaluations.

- Rai [133] dealt with the robust optimal aerodynamical desif a turbine blade
airfoil shape, taking into account the performance degradaue to manufac-
turing uncertainties. Two objectives were consideredtq(ijninimize the vari-
ance of the pressure distribution over the airfoil's sugfaand (ii) to maximize
the probability of constraint satisfaction. Only one coaistt was considered,
related to the minimum thickness of the airfoil shape. Thest@int-handling
technique adopted was the one developed by the same autthoeported in
[132]. The airfoil shape parameterization consisted ohedgcision variables
but in the experiments presented, only two of them were usegrturbing one
airfoil side (the pressure side). The author adopted a robjective differential
evolution (MODE) approach [130]. Its main features incld@emechanism to
reduce the set of nondominated solutions in case its sizeebed a certain (pre-
defined) threshold. This was done to promote diversity irpthgulation. It also
adopted an intermediate population whose size was twicags &s the original
and which was Pareto ranked so that only the first half waseddor the next
generation. The author used a high-fidelity CFD simulatinragerturbed air-

foil geometry in order to evaluate the aerodynamic charaties of the airfoil

the size of the portion of objective space that is dominatethbse solutions collectively. It has been proved
that the maximization of this performance measure is etgrivdo finding the Pareto optimal set [45], and

this has also been empirically verified by some researc838js [
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generated by MODE. The simulation follows a probability signfunction that
is observed for manufacturing tolerances. This processinedja high compu-
tational cost, which the author attempted to reduce by uaingrtificial neural
network [150] Response Surface Model (RSM).

- Ray and Tsai [136] considered an airfoil shape design apdition problem with
two objectives to be minimized: (i) the ratio of the draghfosquared coeffi-
cients, and (ii) the squared moment coefficient. Constsaivdre imposed on
the flow Mach number and angle of attack. Airfoil shapes werfndd by the
PARSEC representation [158]. This airfoil representatibowed to define the
geometry of an airfoil with 1 design variables which are more related to its aero-
dynamic performance than in other type of airfoil repreagohs. The optimizer
used is a multi-objective particle swarm optimizer (MOP38)}) A particular
feature of this application was that the particle swarm sehevas based on
movements for the particles of one position to another irdés#gn space, rather
than on an update of an individual’'s velocity as done in tlaadard particle
swarm optimization algorithm. The aim of this scheme wasdacéon in the
number of user-defined inputs. The flow solver utilized cgponds to an Euler
code which was able to capture nonlinearities in the flow agbhock waves.
In their results, the authors obtained a set with 32 nondatadhsolutions. In
a related work, Ray and Tsai [137] presented a parallel imptgation of this
MOPSO for airfoil shape optimization. This approach was &lgbridized with
a gradient-based algorithm. Contrary to standard hylat@tin schemes where
gradient-based algorithms are used to improve the nonduedrsolutions ob-
tained (i.e., as a local search engine), in this approachutiers used the gradi-
entinformation to repair solutions not satisfying the digpaonstraints. This re-
pairing algorithm was based on the Marquardt-Levenbergréhlgn [106, 100].
During the repairing process, a subset of the design vasatés used, instead of
the whole set, in order to reduce the dimensionality of thientipation problem

to be solved.

- Obayashi et al. [117] studied the aerodynamic design afagesairfoils shapes.
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The problem considered three objective functions: (i) puesrise, (ii) flow turn-
ing angle, and (iii) total pressure loss. The first two obyes were maximized
and the third one was minimized. The authors used a realecbii@GA. Ob-
jective evaluation was performed using a 2D Navier-Stokeledor flow evalu-
ation. The same MOEA was also used for the design of a fogestampressor
[123, 117]. In this second application, two objective fuos were maximized:
(i) total pressure ratio and (ii) isentropic efficiency. TMEOP consisted of 80
design variables, and one constraint on the flow conditionsyder to avoid
designs with flow separation. The evaluation was done usavg gimulations
based on the streamline curvature method in which soluBoa®btained iter-
atively, causing a high computational cost even when anneeging model is
used. The nondominated solutions obtained by the authtpedarmed a base-

line design in both objective functions by an amount of 1%.

D’Angelo and Minisci [29] solved a subsonic airfoil shapgtimization prob-
lem, in which two objective functions were minimized: (i)ady force coeffi-
cient, and (ii) lift force coefficient difference with respdo a reference value.
The airfoil geometry was parameterized using Bézier cubvath for its cam-
ber line and for its thickness distribution. Five designiafales were used and
constraints were imposed on the extreme values of the dl@dainctions. The
authors adopted MOPED (Multi-Objective Parzen-basedizgion of Distribu-
tion) [27], which uses the Parzen method to build a probstilrepresentation
of the nondominated solutions, with multivariate depemdenamong the deci-
sion variables. The authors included three modificatiomjorove MOPED: (a)
the use of a Kriging model by which solutions were evaluatétiaut resort-
ing to costly computational simulations, (b) the use of atioh control to keep
the evolution from converging to false Pareto fronts, andh(e hybridization of
the algorithm with some mechanisms from NSGA-II (selectiond ranking of
solutions). Aerodynamic evaluations were performed bygisi CFD simula-
tion code, tailored for aerodynamic airfoil analysis. Thethers indicated that

this subsonic airfoil shape optimization problem prese difficulties associated
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to more complex problems: The true Pareto front was discantis and par-
tially converged solutions (when divergence was detecdteljterative process
was stopped) from the aerodynamic simulation code intredircegularities in
objective function space. The approximation model redubechumber of ob-
jective function evaluation in a significant manner (to oix¢hsof their original

value).

Bing et al. [11] presented the aerodynamic shape optimoizdor a 2D Hy-
personic inlet and 2D SERN (Single-Expansion-Ramp Noazsed in scram-
jet engines. Two applications were presented, one with thjeatives and the
other with three objectives. For the first optimization exdera 2D Hypersonic
engine inlet was considered, and the aim was to maximizewbefdllowing
objectives: (i) pressure recovery, and (ii) static presgige. Constraints on
the design variables, inlet geometry and flow condition ét, eere imposed.
The inlet geometry was defined using four decision variablHse evaluation
of the design performance required high fidelity CFD Nadérskes simulations
since the flow physics was highly nonlinear for the operaflog conditions
indicated. The results of both the NSGA-II and the NeighlbodhCultivation
Genetic Algorithm (NCGA) [182] were compared. The secormbpgm consid-
ered the same inlet design previously defined, with the mdidit objective of
minimizing the inlet drag coefficient. From the results preed by the authors,
in both cases, the NCGA algorithm performed better than NSIGAbtaining

more nondominated solutions with a better spread alongahet@front.

Brown et al. [14] addressed the optimization design of areget inlet consider-

ing two objectives: (i) total pressure recovery factor, éindariation of pressure

recovery factor for at 5% change in free stream Mach number. The first objec-

tive was maximized, while the second was minimized. Acaggdo the design
problem, geometric constraints were defined in order to wenphysically un-
realistic solutions. Additionally, operational flow corahts were considered to
guarantee the auto-ignition in the engine. This conditemquired a certain range

for pressure, temperature and Mach number in the flow atféplgations. The
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inlet was considered as a 2-D geometry and consisted of flaeeamps and
a cowl at the combustion chamber inlet. In this case, 12 deggiables were
adopted. The MOEA adopted used a selective breeding priwdssinked solu-
tions according to the constraints, and also on the basteaé¢sirability of the
values of the objectives (according to the user’s prefexend he objective func-
tions consisted of hypersonic flow conditions in which sgrehock waves were
present. The authors did not report the cardinality of theo@ondominated
solutions that they obtained, but they reported the geioeraf a considerably

high number of nondominated solutions.

Congedo et al. [26] dealt with the airfoil shape optimiaatfor transonic flows
of Bethe-Zel'dovich-Thompson (BZT) fluids. In this caseptdesign conditions
were explored, both for a non-lifting airfoil, and for a iifg airfoil. In the sec-
ond case, the MOP considered two design objectives: (i) mization of lift
at BZT subcritical conditions, and (ii) minimization of wandrag while maxi-
mizing lift for supercritical BZT flow conditions. The geotng of the airfoil
shape was represented with a Bézier curve with 16 2D coptinits, i.e., 32
decision variables, from which 10 are constants used tacithe leading edge
and trailing edge positions as well as the leading edge sldpels, the prob-
lem consisted of 22 variables. The only constraint includead the thickness to
chord ratio of the airfoil, which was adjusted to its spedifi@lue, once a design
was generated, and prior to the flow solution. The authord tiseNSGA with
a sigma-share formula given in [131], which takes into aotdhe population
size and the number of objectives. They chose parametehnstatless than
1,000 obijective function evaluations were performed. Tithars reported that
all the solutions that they obtained outperformed the limselesign as well as

the designs obtained using traditional design methods.

Shimoyama et al. [156] developed a novel optimization epph for robust de-
sign. In their approach, a design for multi-objective sprsa (DFMOSS) [155]
was applied for the robust aerodynamic airfoil design of asvploratory air-

plane. The core of the design methodology was, on the one, tlaadoncept
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of Robust Desighand, on the other, its multi-objective nature. The idea ef th
DFMOSS methodology was to incorporate a MOEA to simultasgooptimize
the mean value of an objective function, while minimizirggstandard deviation
due to the uncertainties indicated above. The airfoil slogybienization problems
considered two cases: a robust design of (a) airfoil acraaym efficiency (lift-
to-drag ratio), and (b) airfoil pitching moment constraimh both cases, only
the variability in the flow Mach number was taken into accoufihe authors
adopted MOGA. The airfoil geometry was defined using Bézigwves both for
the upper and for the lower surfaces. 6 control points wees usesulting in
12 design variables. The aerodynamic performance of theilairas evaluated
by CFD simulations using the Favre-Averaged compressititelayer Navier-
Stokes equations. Eighteen robust nondominated solutiens obtained in the
first test case. From this set, almost half of the populatitaireed the6o con-
dition. In the second test case, more robust nondominatetds®s were found,

and they satisfied a sigma level as higl2as.

Sz0llds et al. [162] addressed the aerodynamic shapeaiaation of the airfoil
geometry of a standard-class glider, considering threeatigs: (i) maximize
gliding ratio at high flight speed, (ii) maximize gliding ra@&t average weather
conditions, and (iii) minimize sink rate at low turning sgpse All these objec-
tives are specified in terms of airfoil’s aerodynamic lifdagirag coefficients as
well as flight operating conditions in terms of the Reynoldeber Re) and the
Mach number §/). Constraints are considered for: (a) airfoil’s maximtildo-
efficient at landing flight conditions, (b) maximum airfgithickness to chord ra-
tio, (c) trailing edge thickness, and (d) pitching momergftioient (C,,,) which
is required not to be worse than a reference airfoil desigme duthors intro-
duced a new MOEA callethulti-objective micro-genetic algorithm with range

adaptation, based oa-dominanceor euARMOGA. This approach is inspired

6Robust design takes into account the fact that in real-wemitgineering designs, performance of a design
can vary from its expected value, due mainly to errors an@dainties in the design and/or manufacturing
process, and/or in the operating conditions. Thereforeaim is to find the trade-off between the optimality

of the design and its robustness.
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on the Adaptive Range Multi-Objective Genetic AlgorithmRIOGA) [143].
ARMOGA incorporates two archiving techniques: a globahare, which stores
all the best solutions obtained so far, and a recent archivieh stores the best
solutions of the past previous generations. Solutions ftensecond archive par-
ticipate in the parent selection processARMOGA introduces two additional
mechanisms. The first corresponds to the use of a small papukize (i.e.
the use of a micro-genetic algorithm as in [85, 25]), coupléiti the use of an
external file for storing the nondominated solutions ol#dino far. The second
mechanism corresponds to the use of the conceptdaiminance [95], which
is a relaxed form of Pareto dominance that has been used astavirsg strat-
egy that allows to regulate convergence. The authors liziid the population
using a Latin Hypercube Sampling (LHS) technique, and th& mapulation
was reinitialized at every certain number of generatioasel on the average
and standard deviation of the decision variables. The tilgtunctions were
evaluated using a CFD simulation code. The authors obtdéesible solutions
with improvements on the order of 10%, 8% and 7-10% for thg fiecond and

third objectives, respectively, with respect to a refeeeaicfoil design.

Analysis of the use of MOEAS in 2D geometries and airfoil shag@ optimization:

Table 2 summarizes the application of MOEAs in 2D geometiebairfoil shape
optimization problems. From this table and the previousudision, we can see that,
as before, a wide variety of Pareto-based elitist MOEAs Haen used in this do-
main. It is also worth noting the use of MOEAs iobust designin which solutions
are evaluated with off-design operating conditions andufesturing tolerances. Such
solutions are thus representing more realistic designser8kauthors report improved
designs when adopting MOEAs, but unsuccessful cases hswdaén reported. The
cases in which MOEAs fail to produce improved designs sedpe tassociated to situ-
ations in which the baseline design had been already imgriova significant manner,

or when the search space is so highly constrained that iffisudi to move to better
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regions. Again, the high computational cost associateltidoise of MOEASs is evident.
In spite of the advantages of Pareto-based MOEAs, it is afisieet that, when dealing
with expensive objective functions such as those of the alagyplications, the use of
careful statistical analysis of parameters is unafforelabhus, the parameters of the
MOEAs discussed in this section were simple guesses or fatenvalues suggested
by other researchers. It is also important to note that s@searchers have suggested
clever approaches that allow the use of very small populaizes, although surrogate
models have also been employed, as in the previous sectienertideless, the use
of other simpler techniques such as fitness inheritancermsft approximation [139]
seems to be uncommon in this domain and could be a good alterméhen dealing
with high-dimensional problems. Additionally, the autkof this group of applications
have relied on very simple constraint-handling technigussst of which discard in-
feasible individuals. Alternative approaches exist, Wigan exploit information from
infeasible solutions and can make a more sophisticate@eatfin of the search space
when dealing with constrained problems (see for exampl8])hd this has not been
properly studied yet. Finally, it is worth emphasizing thiat spite of the difficulty
of these problems and of the evident limitations of MOEAs éaldvith them, most
authors report finding improved designs when using MOEAsneavhen in all cases a
fairly small number of fithess function evaluations waswa#ld. This clearly illustrates

the high potential of MOEAS in this domain.

5.3 3D complex physics/shape optimization

Sophisticated aeronautical/aerospace systems possasssincases, complex three-
dimensional shapes and/or are designed to operate in copipysical environments.
Examples of such complex three-dimensional shapes are thfosirbine/propeller
blades, and complete aircraft configurations. Complexetitienensional physics are
present for high speed flow over wings and turbine/propéliades, in which shock
waves can arise, affecting the design performance. Foe tt@ses, the MOP cannot
be simplified by the use of reduced models, such as two-dimealssimulations, as

done in the applications of the previous section. Next, wiediscuss applications of
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MOEAs in which their authors deal with these 3D complex pbsishape optimization

problems.

- Sasaki et al. [145] and Obayashi et al. [118] solved a nuldjective aerody-
namic wing shape optimization problem in which they minietizhree objec-
tives: (i) drag coefficient for transonic cruise, (ii) dragetficient for supersonic
cruise, and (iii) bending moment at the wing root for supeisoruise condition.
The set of constraints comprised lift coefficient at botins@nic and supersonic
cruise conditions, wing area and maximum airfoil thicknebke variables for
this design were 66 in total, and defined the wing planfornpshairfoil chord
and thickness distribution at several wing stations, a$ ageWing twist angles
at the same airfoil locations. The authors adopted MOGA aedlesign can-
didates were evaluated by a high-fidelity Navier-Stokes Gy simulation.
The evaluation process was parallelized using the malstes-paradigm. In a
further paper, Sasaki et al. [146] used the same algorithrthBbaerodynamic
optimization of a supersonic transport wing-body configjora In this applica-
tion, two objectives were considered: (i) drag coefficiemd &ii) difference in
Darden’s equivalent area distribution. Constraints oritheoefficient were im-
posed during the optimization, and on the length and voluitieedfuselage. The
aim of the second objective was to achieve low sonic boomeagitaristics. For
this problem, the number of variables increased to 131 ,@afidelage geometry
was added in this case. The aerodynamic evaluation for thieofijective was
performed by an Euler CFD simulation to considerably redbeeomputational
time with respect to the use of a Navier-Stokes CFD simulatidonetheless,
the optimization process was parallelized using the mata®e paradigm. Two
test cases were considered, each one having different/Agwper limits for the

section nearby the wing-body intersection.

- Sasaki and Obayashi [147] solved a problem similar to tleeipus one [146]
and obtained analogous results, but in this case, the ARM@Igérithm was
used. Also, and in order to incorporate constraints, amebee Pareto ranking

method based on constraint-dominance was used [47].
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- Ng et al. [115] addressed a multiobjective wing platfornd airfoil shape opti-
mization problem. The MOP aimed to redesign the referencERANM6 wing
minimizing two objectives: (i) W/Wo, which is the ratio fohé design wing
weight with respect to the reference ONERA M6 wing weight éi) CD/CDo,
which is the ratio of the design wing drag coefficient withpest to that of the
reference wing. The first objective was evaluated using &@-sempirical equa-
tion, while the second was obtained from a multigrid EuleDCé&tmulation.
Constraints were imposed on the flow Mach number and conktanoeffi-
cient. No special constraint handling technique was usgidhle CFD code was
instructed to vary the angle of attack, subjected to a talsrain order to satisfy
this equality constraint. This technique can be seen as &anéxm to repair
solutions. The wing platform was represented by 5 desigiablas: (a) taper
ratio, (b) wing sweep angle, (c) twist angle, (d) aspecbratnd (e) thickness-to-
chord ratio. The airfoil used for the wing corresponded ®shimmetric airfoil
used in the ONERA M6 wing, and was the same across the wingoptimizer
used was based on the PSO algorithm described in Ray et &l. [[I3e authors
presented results for two test cases: the first with 4 steggrensecond with
8 steps. In the first case 10 nondominated solutions wereéneltawhile 11
were found in the second case. In both cases, all the nondtedidesigns were
better in the first objective function compared to the rafesewing, and for the
second objective, almost half of the population were bettgite the rest were
worse, with respect to the reference wing. An Adaptive Se&pgace Operator
(ASSO) technique was used by the authors to give the algotitie possibility
of adapting decision variables bounds by shrinking/expaptthe boundaries of

the design space.

- Lian and Liou [101] addressed the optimization of a thrememhsional rotor
blade, namely the redesign of the NASA rotor 67 compressatehla transonic
axial-flow fan rotor, which was the first of a two-stage congs fan. Two ob-
jectives were considered in this case: (i) maximizatiorhefdtage pressure rise,

and (ii) minimization of the entropy generation. Consttaiwere imposed on
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the mass flow rate to have a difference less than 0.1% betweeretv one and
the reference design. The blade geometry was construaisddirfoil shapes
defined at four span stations, with a total of 32 design végabThe authors
adopted MOGA. The optimization process was coupled to askooder RSM,
which was built with 1,024 design candidates using the ImgdoHypercube
Sampling (IHS) algorithm. 12 design solutions were sekkdtem the RSM-
Pareto front obtained, and such solutions were verified avitigh fidelity CFD
simulation. The objective function values slightly diterfrom those obtained
by the approximation model, but all the selected solutioesenbetter in both
objective functions than the reference design. Similarkweas presented by
Lian and Liou [102] but minimizing the blade weight insteddte entropy gen-
eration. Similar performance results were obtained wightér blades. More re-
cently, Kim and Liou [78] presented the design of three newBWS, including
addtitional mechanisms to the basic MOGA algorithm indidabefore. Such
mechanisms included: an elite-preserving approach (EREMQa modified
sharing function (EP-MOGAS), and a gradient-based diveeti operator (EP-
MOGAS-D).

Holst [61] presented the aerodynamic optimization of agalimdy configuration
in which two objective functions were maximized: (i) lit-drag ratio, and (ii)
configuration volume. Constraints were imposed on the dipgrédlow condi-
tion at transonic Mach number and at a fixed lift. The problexd 66 decision
variables which controlled the wing geometry, its posit@ong the fuselage and
the section shape of the fuselage at some specified fusa&tgas. The author
adopted MOGA. The proposed approach was able to reduce $b&afie cross
section in the vicinity of the wing-fuselage juncture, whis a common practice

in aerodynamic design for the transonic flow regime.

Sasaki et al. [142] solved an aerodynamic MOP for a turbormapressor stage.
The main aim was to improve three aerodynamic objectivesdéytifying the
trade-offs among them in the baseline condition: (i) isapitr efficiency, (ii)

blockage, and (iii) flow loss. Equality constraints on thsige were imposed,
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intended mainly to maintain the flow and operating condgisimilar to those
of the baseline geometry: Stage loading, mass flow ratee staigg whirl angle
and pressure ratio. Such equality constraints were tremsft into inequali-
ties, and thresholds were reduced as the optimization pdsck The three-
dimensional shape of the blade was re-designed from thdif@aggEometry,
by defining parameters that allowed: (a) axial movement ofiges along the
engine axis, (b) circumferential movement of sections,s(djd body rotation
of sections based on trailing edge position, and (d) comnothe number of
blades. In total, 28 design variables were used per congressge. The au-
thors adopted ARMOGA. The aerodynamic evaluation was perdd with high
fidelity Reynolds-Averaged Navier-Stokes CFD tools to gpala compressor
stage. The CFD analysis comprised the rotor/stator intierac The authors
presented two application examples, the first of which hacedfnumber of
rotor/stator blades. The optimization process was ablenfwrave the baseline
design while 8 designs satisfied all the constraints. Effigjewas improved
within 1%, even when infeasible solutions were consideraéter analyzing
the trade-off among the objectives from the first test casecand test case was
proposed, considering the number of rotor/stator bladas aslditional variable,
and changing the approximation function in the radial dicec In this case, a
B-spline function was used instead of the cubic-spline &b the previous
case. Results from this second test case achieved an affiaraprovement of
1.5%. In this case, 14 feasible designs were generated Vitdoh only 4 were

nondominated.

Benini [8] extended a previous work from Benini and Toff¢8j for a three-
dimensional transonic compressor rotor design optimomngbroblem in which
two objective functions were maximized: (i) total presstato, and (ii) adia-
batic efficiency. Constraints were imposed on the desiguditions as to obtain
the mass flow of a reference design, the NASA Rotor 37. Theebtgbme-
try used in the transonic compressor rotor was parametebyeBézier curves

defining the mean camber line and the thickness distributidhree profiles
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along the blade span were defined: at hub, midspan and tiptahdb23 de-

cision variables defined the 3D compressor rotor geometitye duthor used
the MOEA described in [9], which is based on evolution styas. The perfor-
mance evaluation of the designs was done using high fidedityié¥-Stokes CFD
simulations. The authors noted that the nondominatedisokiproduced were
clustered around the reference design point, due to a tagtgtaint imposed on
the flow mass rate, which did not allow the algorithm to explarwider region
of the search space. Nevertheless, the author was abledio @hprovementsin

both objective functions using the proposed approach.

Chiba et al. [17] explored the trade-offs among four aenaaigic objective
functions in the optimization of a wing shape for a Reusalderich Vehicle
(RLV). The objective functions were: (i) the shift of the adynamic center
between supersonic and transonic flight conditions, (ihphg moment in the
transonic flight condition, (iii) drag in the transonic fligbondition, and (iv)
lift for the subsonic flight condition. The first three objges were minimized
while the fourth was maximized. These objectives were sedefor attaining
control, stability, range and take-off constraints, resipely. The RLV defini-
tion comprised 71 design variables to define the wing platfaring position
along the fuselage and airfoil shape at prescribed wingstagions. The authors
adopted ARMOGA, and the aerodynamic evaluation of the RL¥ dane with
a Reynolds-Averaged Navier-Stokes CFD simulation. A traff@nalysis was

conducted with 102 nondominated individuals generatedh&yMOEA.

Song and Keane [159] performed the shape optimization dfibaircraft en-

gine nacelle. The primary goal of the study was to identig/titade-off between
aerodynamic performance and noise effects associatedvatitbus geometric
features for the nacelle. For this, two objective functiamse defined: i) scarf
angle, and ii) total pressure recovery. The nacelle gegmeis modeled using
40 parameters, from which 33 were considered design vasablhe authors
adopted the NSGA-II with a commercial CFD software for eadilg the three-

dimensional flow characteristics. Due to the large size efdbsign space to be
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explored, as well as the simulations being time consumikgiging-based sur-
rogate model was adopted in order to keep the number of des&jng evaluated
with the CFD tool to a minimum. The authors reported diffi@dtin obtaining
a reliable Pareto front (there were large discrepanciesd®t two consecutive
Pareto front approximations). They attributed this betiato the large number
of variables in the design problem, and also to the assabihiffeculties to obtain
an accurate Kriging model for these situations. In ordelevite this situation,
they performed an analysis of variance (ANOVA) test to find dariables that
contributed the most to the objective functions. After taist, they presented
results with a reduced surrogate model, employing only 7saw®t variables.
The authors argued that they obtained a design similar téeaerece one, but
requiring a lower computational cost because of the useisfédluced Kriging

model.

Jeong et al. [69] investigated the improvement of the &tdynamic character-
istics of a lifting-body type re-entry vehicle in transotiight condition. Two
objectives were minimized: (i) the derivative of the yawimgment, and (ii) the
derivative of the rolling moment. The MOP involved four dgsiariables, and
two solutions were sought: The first one without constraemsl the second one
constraining the lift-to-drag ratio for the lifting-bodype re-entry vehicle. The
authors adopted the Efficient Global Optimization for Mu@tbjective Problems
(EGOMOP) algorithm developed by Jeong et al. [68]. This athm was built
upon the ideas of the EGO and ParEGO Algorithms from Jone d76] and
Knowles et al. [80], respectively. For the exploration af tondominated solu-
tions, the authors adopted MOGA. Due to the geometry of ftindibody and
the operating flow condition of interest, namely high Macimiwer and strong
vortex formation, the evaluation of the objectives was doyeneans of a full
Navier-Stokes solver. Since the objectives were actuadlyvdtives, multiple
flow solutions were required to determine their values insamdite manner, con-
siderably increasing the total computational time due targd number of calls

of the CFD code. The authors were able to find better geometrfigurations
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than the baseline one, with better lateral dynamic chariatitss, both for the

unconstrained and for the constrained instances.

Lee et al. [98] presented the robust design optimizaticamoDNERA M6 wing
shape. The robust optimization was based on the concept diuchi method
in which the optimization problem is solved consideringentainties in the de-
sign environment, in this case, the flow Mach number. Thelprolhad two ob-
jectives: (i) minimization of the mean value of an objecfivection with respect
to variability of the operating conditions, and (ii) minipaition of the variance
of the objective function of each candidate solution, witispect to its mean
value. In the sample problems, the wing was defined by meaits planform
shape (sweep angle, aspect ratio, taper ratio, etc.) ame @fitfoil geometry, at
three wing locations (each airfoil shape was defined withraliination of mean
lines and camber distributions), using a total of 80 deskyiables to define the
wing designs. Geometry constraints were defined by uppetcavet limits of
the design variables. The authors adopted the Hierarchgyaichronous Paral-
lel Multi-Objective Evolutionary Algorithm (HAPMOEA) [5K which is based
on evolution strategies, incorporating the concept of Cianae Matrix Adapta-
tion (CMA). The aerodynamic evaluation was done with a CRDuation. It is
worth noting that HAPMOEA uses, during the evolutionarygess, a hierarchi-
cal set of CFD models, varying the grid resolution of the solfithree levels are
used), as well as different population sizes (dependindhergtid resolution).
The authors presented two solutions, with and without uag#res. In the latter
case the problem considered two design points (at two diftesperating condi-
tions), and the algorithm found the trade-off solutionsametn these two design
points. For the case of the design with uncertainties, thienggation problems
found the trade-off solutions considering the minimizatfor the mean value
of the objective function (the inverse of the lift-to-dragtio for the wing) and
its variance with respect to the mean value. From the repuodtsented by the
authors, the Pareto fronts were continuous and exhibitesthaave geometry

for the trade-off solutions. 12 solutions were obtainedhia tobust design of
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the wing and all the nondominated solutions presented akshee flow both
at the upper and at the lower surface of the wing. Additignalie nondomi-
nated solutions showed a better behavior, in terms of aeadic performance
(lift-to-drag ratio) with a varying Mach number, as comphte the baseline de-
sign. In these examples, the authors used three grid-lévieldel resolution):
fine, intermediate, and coarse. During the evolutionarggss, the individuals
were moved from the coarse to the fine levels and viceversaotah of 1100

individuals were evaluated.

Oyama et al. [126] applied a design exploration techniquextract knowledge
information from a flapping wing MAV (Micro Air Vehicle). Th8apping mo-
tion of the MAV was analyzed using multi-objective desigrtiopzation tech-
nigues in order to obtain nondominated solutions which vaegdyzed with Self
Organizing Maps (SOMSs) in order to extract knowledge abloataffects of the
flapping motion parameters on the objective functions. Tmdlicting objectives
considered were: (i) maximization of the time-averagddhbiefficient, (i) max-
imization of the time-averaged thrust coefficient, ang @iinimization of the
time-averaged required power coefficient. The problem haddesign variables
and the geometry of the flying wing was kept fixed. Constraivese imposed
on the averaged lift and thrust coefficients so that they \pesitive. The au-
thors adopted MOGA. Due to the nature of the complex flow is grioblem,
the objective functions were obtained by means of CFD sitimra, solving
the unsteady incompressible Navier-Stokes equationsedidg functions were
averaged over one flapping cycle. The purpose of the studyovadract trade-
off information from the objective functions and the flappimotion parameters
such as plunge amplitude and frequency, pitching angle iardpland offset,
and phase difference. In order to minimize the turnaroumdpmdational time,
the evaluation of the objective functions was paralleliasithg a cluster of work-
stations. From the results obtained, the authors extrastieedme nondominated
solutions which were further analyzed to understand thaiv fihysics for each

objective in particular.

39



- Arabnia and Ghaly [5] presented the aerodynamic shapenggatiion of tur-
bine stages in three-dimensional fluid flow, so as to minirthieeadverse effects
of three-dimensional flow features on the turbine perforoearTwo objectives
were considered: (i) maximization of isentropic efficierfoy the stage, and
(i) minimization of the streamwise vorticity. Additiorlg constraints were im-
posed on: (1) inlet total pressure and temperature, (2)peggsure, (3) axial
chord and spacing, (4) inlet and exit flow angles, and (5) rflassrate. The
blade geometry, both for rotor and stator blades, was baseldeoE/TU-3 tur-
bine which is used as a reference design to compare the aption results.
The multi-objective optimization consisted of finding thesbdistribution of 2D
blade sections in the radial and circumferential direcidror this, a quadratic
rational Bézier curve, with 5 control points was used farteaf the two blades.
The authors adopted NSGA. Both objective functions weréuated by using
a 3D CFD flow simulation. The authors adopted an artificialraenetwork
(ANN) based RSM. The ANN model with backpropagation, cargdia single
hidden layer with 50 nodes, and was trained and tested wi@FL3simulations,
sampling the design space using the LHS technique. The matiion process
was undertaken by using the ANN model to estimate both thectiigg func-
tions, and the constraints. Finally, the nondominatedt&mia obtained were
evaluated with the actual CFD flow simulation. The authodsdated that they
were able to obtain design solutions which were better thameference turbine

design.

- Tani et al. [168] solved a rocket engine turbopump blad@slogptimization de-
sign which considered three objective functions: (i) shafter, (ii) entropy rise
within the stage, and (iii) angle of attack of the next staljee first objective was
maximized while the others were minimized. The design adates defined the
turbine blade aerodynamic shape and consisted of 58 desigables. The au-
thors adopted MOGA.. The objective function values wereiokthfrom a CFD
Navier-Stokes flow simulation. The authors reported sohdithat were better

than a baseline design turbopump blade shape. Indeed, Vempemnts on the
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three objective functions were of 8%, 30% and 40%, respalgtias compared

to the baseline design.

Analysis of the use of MOEASs in 3D complex physics/shape optization:

Table 3 summarizes the application of MOEAs in 3D complexgits/shape opti-
mization problems. For this group of applications, a comipaint is that 3D complex
shapes and/or complex physics models are considered, wéqciires, in most cases,
the use of high dimensional design space and/or sophisticatnulation tools. For
both cases, the design optimization search becomes highiputationally expensive
(some authors report times in the order of days or even mdattke problems that
they solved). Such applications require approaches timatnéaimize their high com-
putational cost. Some authors relied on parallelizatichrigques for this sake (see for
example [145]). An interesting parallel approach is the mported by Lee et al. [98],
in which the evaluation of the objectives is done in an asyorrbus manner, with a
scheme that resembles an island model [24]. Such asynasgazallel MOEAS are
uncommon in the specialized literature, in spite of theghtpotential in the sort of ap-
plications reported in this section. Another alternativé¢hie use of surrogate models,
which are adopted by a number of works reported in this secti@r example, Lian
and Liou [101, 102], used a second order RSM, Song and Ke&® (i5ed a Kriging-
based model, Lee et al. [98] adopted hierarchical CFD mddels models with vary-
ing mesh sizes, which produce approximations at a reducegbetational cost), and
Arabnia and Ghaly [5] adopted an artificial neural networkeTuse of approximate
models can be seen as an advantage, but also presents deaywloaexample, for
large dimensional design spaces, as indicated by Song aamte&59]. Another alter-
native is to adopt simpler approximation mechanisms sudtress inheritance [109]
and fithess approximation [164]. Another aspect worth ersigivey is that most au-
thors adopted MOEAs with real-numbers encoding, rather wigh binary encoding.
This is relatively common when dealing with engineeringlegaions having a high

number of decision variables. The lack of modern diversigintenance approaches
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such as archiving techniques (see for example [94, 60, 154]50 evident within the
applications of this section, although there are someestarg exceptions. For exam-
ple, Sasaki and Obayashi [147] adopted two external arstiosetheir MOEA. Also
interesting is the proposal of Holst [61] of using “bins”i@@pproach is similar in its
operation to the adaptive grid adopted in PAES [83]). Howgvés worth noting that
both, Sasaki & Obayashi’s and Holst's approaches quickdyatte their performance
as the number of objectives increases.

An interesting area worth exploring is the design of mecémasithat allow a better
(i.e., more intelligent) exploration of the search spae®.dxample, Sasaki [143], and
Ng et al. [115] use statistics gathered from the populaticorder to guide the search.
Such approach, however, requires a good diversity maintenaechanism in order to
avoid an excessive selection pressure that would prodeeegiure convergence.

In spite of the large number of constraint-handling techagcurrently available
for evolutionary algorithms [23, 108], in most of the workported in this section there
is a noticeable lack of them. The use of good constraint-frantechniques is partic-
ularly useful when the optimum solutions lie on the boundsetyveen the feasible and
the infeasible regions, which is normally the case in molttiective optimization [24].
Their use can contribute to a better (i.e., more efficienteffettive) exploration of the

search space in the presence of constraints.

5.4 Structural optimization

Since its origins, aeronautical and aerospace enginedes@gn has adopted, as a
premise, the design of lighter and stronger structureschvare two objectives that
are clearly in conflict. The applications of MOEASs in strualuioptimization that are
reviewed in this section make evident that these desigrsgwal still pursued by re-

searchers in aeronautical and aerospace engineering.

- Langer et al. [91] applied an integrated approach using jiiaer Aided Design
(CAD) modeling with a MOEA for structural shape and topolagptimization

"For a good survey of the use of MOEAs in structural optimizatithe interested reader is referred to
[73].
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problems. The authors dealt with the structural optimaratf a typical instru-
ment panel of a satellite in which two objectives were defin@dminimizing
the instrument panel mass, and (ii) maximizing the first migguency. The
problem had eight constraints, which were defined in termgpefrating con-
ditions, mainly given by stress, temperature and eigenfaqy levels, as well
as geometric constraints. The problem had 17 design vasdbbm which 2
were discrete and the rest were mixed (continuous/digcrétes discrete vari-
ables considered the number of stringers to use in the panelthe plate and
stringer materials. The MOEA developed by the authors haddtowing fea-
tures: it used a mix of real/integer representation for ioomtus and discrete
variables, respectively, and crossover and mutation ¢@aravere applied difer-
ently for each type of variable. Besides, the algorithm uBarkto dominance-
based ranking to assign fitness to an individual and the &gaall priorities”
strategy [47] as a constraint-handling technique. The aomdated solutions
obtained at each generation were stored in an external filighveonstituted, at
the end of the evolutionary process, the approximation@fRareto optimal set
generated by the MOEA. In their application examples, thh@s solved the
optimization problem for three shape and topology optitidzecases: (a) panel
without instruments, (b) panel with instruments at fixedifiass, and (c) panel
with instrumental placing. The evaluation of the objecfiwvections comprised
four load cases: (a) quasi-static acceleration, (b) madalysis, (c) sinusoidal
vibration loads, and (d) ‘pseudo temperature’ load. Thitetdoad case, re-
stricted the positioning of the instruments on the paned,tddimiting operating
temperature for a specific instrument. The first three loagsavere evaluated
in parallel using a FEM simulation on a cluster of workstasioln the first appli-
cation example, the Pareto front was approximated and mpreemall regions
of discontinuity. For the second example, the Pareto frbahged radically its

shapé with more regions of discontinuity. Finally, for the thirdse, the authors

81f the problem was transformed into one that considered tha@mization of both objectives, this change
in geometry for the Pareto front would correspond to a chdrgge a convex to a concave shape. This type

of geometry is challenging to traditional mathematicalgresnming techniques.
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did not present a Pareto front but indicated that this cassgmted difficulties to
generate feasible solutions, due to the tight constraiefised. This condition
was alleviated by introducing a solution repairing alduorit Langer et al. [92]
extended the previous MOEA using RSM in order to reduce gscated com-
putational cost. One important feature in this applicatéahat a clustering tech-
nique was used to build multiple response surfaces oveimuanis subspaces of

the complete design space.

Voutchkov et al. [180] solved a robust structural desiga sfmplified FEM jet
engine model. This application aimed at finding the bestjefiree structural
configuration minimizing the variation of reacting forcesder a range of ex-
ternal loads, the mass for the engine and the engine’s fueuroption. The
authors considered the minimization of four objectivessiandard deviation of
the internal reaction forces, (i) mean value of the intéreaction forces, (iii)
engine’s mass, and (iv) mean value of the specific fuel copsiom The FEM
model comprised a set of 22 groups of shell elements, anchibleness corre-
sponding to 15 of these groups were considered as desigiblesi The authors
adopted the NSGA-II. The evaluation of the structural resgavas done in par-
allel by means of FEM simulations. The computational time weaduced using
a Kriging-based RSM. The first two objectives were computest 800 external
load variations. The authors reported finding a good com@®ifand robust)

design.

Todoroki and Sekishiro [173] proposed a new optimizatiathod for compos-
ite structural components. The problem consisted of tweaihjes: (i) mini-

mize the structural weight of a hat-stiffened wing pandbjsat to buckling load

constraints, and (ii) maximize the probability of satisiyia predefined buck-
ling load. The problem was described by a set of mixed resfdie design
variables. The real variables corresponded to the stiffgaemetry definition,
while the discrete variables were related to the numberie§fbr the compos-
ite panel. Constraints were imposed on the dimensions dtifiener, but they

were automatically satisfied in the definition of the decisiariables’ ranges.
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The authors adopted MOGA coupled to a Kriging model, in otdeeduce the
number of objective function evaluations, and to a Fract@nBh and Bound
(FBB) method [172] for the stacking sequence optimizatieaded in laminar
composites structures. The authors noted that the firsttigevas not compu-
tationally costly, since it could be computed once the gdonod the design can-
didates was defined. On the other hand, the buckling loadmentsdemanded
a large computational cost, since it needed a FEM simulati@m this reason,
a Kriging model was adopted and initialized with samplingng®obtained by
the LHS technique. The optimization cycle consisted of tayets. The upper
layer was driven by MOGA and the Kriging model, where the mjation of
the structural dimensions took place. At the lower layeg, gtacking sequences
of the stiffener and panels were optimized by means of the Fig@Bhod. From
the results obtained, a comparison of different designsmade. The solution
obtained with the evolutionary algorithm was 3% heavientagrevious design
obtained with a conventional (deterministic) method, legired only 301 FEM

analysis compared to the tens of thousands required by #véopis design.

Olympio and Gandhi [121] applied a hybrid MOEA to generateoastrained
topology optimization design for morphing aircraft sturgs. The problem con-
sisted mainly on finding the trade-off for cellular struesiwith voids, meeting
the following four objectives: (i) high recoverable straipability to allow sev-
eral cycles of morphing, (ii) low work necessary to morphrfonimal additional
need on the actuation system, (iii) high bending stiffnesgtiuce out-of plane
deformation due to surface pressure and (iv) low mass. Gontt were defined
on local strains in order to prevent plastic deformatiommaterial failure. In this
application, comprising the distribution of material iretbtructural element, a
FEM analysis was performed to evaluate the objective fonetrelated to strain
and stiffness for the material. Mesh elements were consibizs the design vari-
ables which are discrete in nature. Special techniques usad to suppress
non-connected regions of material. The cardinality of tesigh variables vec-

tor depended on the discretization of the finite element miesHd in solving the
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problem. The authors adopted the&NSGA-II of Kollat and Reed [84]. This
MOEA can be seen as an improved version of the NSGA-II, whicliiporates
e-dominance [94], dynamic population sizing, and an aut@meatmination cri-
terion. Thee-NSGA-II was hybridized with a local search procedure, viahic
consisted of flipping elements adjacent to actual strutaleanents and evalu-
ating its sensitivity. This can be seen as a specializedadgewhich acts only
on void elements adjacent to structural elements. In théicpion examples,
this local search procedure was limited to a user-definecbeunrof iterations,
and was incorporated after a specific number of generatiddditionally, the
authors proposed the use of a variable mutation rate, inhathie mutation rate
was increased or decreased from its current value, depgdithe improve-
ment of the solutions. The authors presented two applicai@mples. The
first corresponded to a one-dimensional flexible skin usingeah grid size of
20 x 20 elements (400 design variables), and the second exampksponded

to a shear-compression flexible skin using the same mesh size

Analysis of the use of MOEASs in structural optimization:

Table 4 summarizes the application of MOEASs in structurgiloization problems.
The problems presented in this section are characterizéidebyse of mixed variable
types, which in some cases required that the MOEA adoptedadpepresentations
and operators. There were also several problems that ewdhe solution of a combi-
natorial optimization problem. It is worth emphasizingtttraditional MOEAs such as
NSGA-II do not necessarily perform well in multi-objectiecembinatorial optimiza-
tion problems, since they were originally designed to sa@estinuous optimization
problems. Additional elements such as a good local seargimerare normally re-
quired when solving combinatorial optimization problems. fact, there is a wide
variety of MOEAs that have been designed to solve multi-cpje combinatorial op-
timization problems (see for example [48, 37]). Howevemgnaf them do not support

mixed problems such as those described in this section.s€eisis to indicate that the
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solution of multi-objective structural optimization piems such as those described in
this section is a research line that is worth exploring inftitare. The use of the so-
called multi-objective memetic algorithms [50], which higdize MOEAs with power-
fullocal search engines seems to be an obvious choice ttetdekproblems described
in this section, but they have been scarcely used in this diefil now.

Another interesting topic is the use of advanced archiveahniques that allow
us to limit the number of nondominated solutions to be stamea clever way. The
e-NSGA-II of Kollat and Reed [84] is an example of such cleveahdving techniques.
However, other alternatives exist which have not been pgtppgploited in the context

of aeronautical and aerospace engineering (see for exdirdlp.

5.5 Multidisciplinary design optimization

As indicated before, aeronautical and aerospace desigmgacally multidisciplinary,
involving disciplines such as aerodynamics, structuneguilsion, acoustics, manufac-
turing and economics, among others. Normally, each of theilines involved aims
at optimizing one specific performance metric, which makettidisciplinary design
multi-objective in nature. Next, we present some applicetiof MOEAS in multidis-

ciplinary design optimization (MDO).

- Obayashi et al. [120, 119] and Takahashi et al. [165] adéshe MDO of
a wing platform. Three objectives were considered: (i) dgnamic drag, (i)
wing weight, and (iii) fuel weight. Constraints were impdsn lift and on wing
structural strength. No special constraint-handling rmeddm was adopted, and
for any solution that violated the constraints, its rank \agered, by using a
constant penalty value of 10. Three design variables wensidered for the
wing planform: sweep angle, chord length at the kink and @temgth at the tip.
Other variables such as the wingspan, root chord length asitign of the kink
took a fixed value. The authors adopted MOGA. Two discipliwese consid-
ered: aerodynamics and structures. The aerodynamic ¢éealweas performed
with the potential CFD solver FLO27, from which only inducaad wave drag

could be obtained. For the wing weight, an algebraic model wsed, and for
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the last objective, the volume of the wing was calculatedstoreate the amount
of fuel that could be stored in the wing tanks. The first twcegkiyes were mini-
mized while the third was maximized. The structural analysvaluated the skin
thickness required, as well as the stress distributionshvvias considered as a

constraint in the problem.

Choi et al. [20] solved a MDO problem involving Supersonigsihess Jet de-
sign. The goal was to obtain a trade-off design having gooaldymamic perfor-
mances while minimizing the intensity of the sonic boom aimgine at the ground
level. Three objectives were considered: (i) the aircredgdcoefficient, (ii) ini-
tial pressure rise (boom overpressure), and (iii) grourrdgieed noise level. In
this case, the disciplines involved were aerodynamics andaaoustics. Con-
straints were imposed on some geometrical parameters,raatgaaft’'s oper-
ational conditions. No special constraint-handling medétra was used other
than discarding infeasible candidates. The geometry ohifeeaft was defined
by 17 design variables, allowing the modification of the wplgtform, its po-
sition along the fuselage, and some cross sections and cdontibe fuselage.
The authors adopted the NSGA-II. For evaluating the objedtinctions, a high-
fidelity Euler simulation was obtained with a very fine grids to the aircraft’s
surface. In order to reduce the computational time requisethe optimization
cycle, Kriging models were employed, one for each objedtinetion. Its initial
definition was formed with a LHS of the design space with 23@aihsolutions
including both, feasible and infeasible candidates. Thias were able to find

solutions that were better than a baseline design.

In related publications, Chung and Alonso [21] and Churg €22] solved the
same MDO problem described before, but using#@A algorithm from Coello
and Toscano [25]. This change aimed at reducing the totabeuof function
evaluations performed during the optimization processe JHGA algorithm
uses a population of only 4 individuals, an external file aneiwitialization pro-
cess. Inone study [21], the design cycles were performed)esKriging model.

Two design cycles were executed, each consisting of 15@ieolcandidates us-
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ing the LHS technique, around a base design in the first cytie.second cycle
was performed around the best solution obtained in the guevtycle aiming

to improve it. In the other study [22], the authors proposed tested the Gra-
dient Enhanced Multiobjective Genetic Algorithm (GEMOGAhe basic idea
of this MOEA is to enhance the hondominated solutions obthiny a genetic
algorithm with a gradient-based local search procedures iGportant feature
of this approach was that the gradient information was abthfrom the Krig-

ing model. Therefore, the computational cost was not cemalaly increased.
In both studies, the authors reported obtaining very go@iagmations of the

Pareto optimal set.

Kumano et al. [89] addressed the MDO of the wing shape of dl $etaircraft.
In this study, four objectives were minimized: (i) drag a druise condition, (ii)
drag divergence between cruising and off-design condiidypitching moment
at the cruising condition, and (iv) structural weight of thain wing. Addition-
ally, two constraints were considered, related to the veingar spar heights, and
the strength and flutter margins. The wing geometry was défigeairfoil sec-
tions at four wingspan stations, and wing twist at five wirggishs. A total of
109 design variables were required. The authors adopted M@@rodynam-
ics and structures were the two disciplines needed for atialy the objective
functions. Since high-fidelity CFD and CSD simulations wased, demand-
ing a very high computational time, the optimization pracess performed by
means of a Kriging model. The authors were able to obtain gmawed design

with respect to a reference solution.

Chiba et al. [16] performed a MDO design exploration. Tha af this study
was to find the trade-offs for the design of a wing for its usea isilent super-
sonic transport application. Five objectives were corrgide minimization of
(i) pressure drag (ii) friction drag, (iii) boom intensity supersonic condition,
and (iv) composite structural weight of the wing; and maxiation of (v) lift at

subsonic condition. In these objectives, aerodynamicsstmidtural dynamics

were the main disciplines under consideration. The coimssraf this problem
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were mainly geometrical, and no special constraint-hagdfhechanism was
required other than discarding any solution that violatesl geometrical con-
straints. The geometry of the wing was defined by 58 desigiahi@s. The
authors adopted a hydrid MOEA consisting of a combinatiotwofalgorithms:
ARMOGA and a MOPSO. The motivation of this hybridization wasxploit,
on the one hand, the ability for performing global search BMOGA, and, on
the other hand, the ability of the MOPSO for performing lszdrch. Both algo-
rithms used real-coded design variables. One half of thelatipn was handled
by ARMOGA, with a further subdivision, assigning one quadéthe popula-
tion to each crossover method indicated above. The othEohtle population
at each generation was handled by the MOPSO. The evaludtibe aerody-
namic properties was done via an Euler solution with TAS«aupled to a
simplified model for estimating the friction drag, reducinghis way the com-
putational cost of this discipline. The structural prosrtcomposite strength
and modal analysis) were verified with the commercial codeSNRAN. Fi-
nally, the intensity of the sonic boom was also evaluated Jithors obtained
75 nondominated solutions on which a data mining method wabeal, using
ANOVA and SOM methods, in order to reduce them to a set coimigionly 24

solution from which the designer was able to select only one.

Chiba et al. [18] addressed the MDO problem of a wing shape fwansoic
regional-jet aircraft. In this case, three objective fims were minimized: (i)
block fuel for a required airplane’s mission, (ii) maximuakeoff weight, and
(iii) difference in the drag coefficient between transonid aubsonic flight con-
ditions. Additionally, five constraints were imposed, #aé which were related
to the wing’s geometry and two more to the operating conaidtim lift coeffi-

cient and to the fuel volume required for a predefined aitenégsion. The wing
geometry was defined by 35 design variables. The authordedi®fiRMOGA.

The MDO process was done with high fidelity CFD/CSD simulagioThe dis-
ciplines involved included aerodynamics and structuralysis and during the

optimization process, an iterative aeroelastic solutias yenerated in order to
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minimize the wing weight, with constraints on flutter ancstyth requirements.
Also, a flight envelope analysis was done, i.e., obtainirghHidelity Navier-
Stokes solutions for various flight conditions. The popolafconsisting of only
eight individuals) was reinitialized at every 5 generasidor range adaptation.
In spite of the use of such a reduced population size, theoesthiere able to
find several nondominated solutions outperforming theaihitesign. They also
noted that during the evolution, the wing-box weight tenttehcrease, but this
degrading effect was redeemed by an increase in aerodyrdiiciency, given
a reduction in the block fuel of over one percent, which wdugdtranslated in

significant savings for an airline’s operational costs.

Sasaki et al. [144] solved a MDO for a supersonic wing shdpethis case,
four objective functions were minimized: (i) drag coeffiti@t transonic cruise,
(ii) drag coefficient at supersonic cruise, (iii) bendingnment at the wing root
at supersonic cruise condition, and (iv) pitching momenswgiersonic cruise
condition. The problem was defined by 72 design variablesis€aints were
imposed on the variables ranges and on the wing sectioglsrtegs and camber,
all of them being geometrical constraints. Thus, no spedaktraint-handling
techniques were required, other than discarding any iitfleesolution, and gen-
erating a new one using the genetic operators, until a valigtisn was ob-
tained. The authors adopted ARMOGA, and the aerodynamloa&an of the
design solutions, was done by high-fidelity Navier-Stok€®Gimulations. No
aeroelastic analysis was performed, which considerallyaed the total com-
putational cost. The objective associated with the bendiagent at wing root
was evaluated by numerical integration of the pressuralolision over the wing
surface, as obtained by the CFD analysis. The authors itedithat among the
nondominated solutions there were designs that were lietidfour objectives

with respect to a reference design.

Lee et al. [97] utilized a generic framework for MDO [53] tgptore the im-
provement of aerodynamic and radar cross section (RCSacteaistics of an

Unmanned Combat Aerial Vehicle (UCAV). In this applicatitwo disciplines
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were considered, the first concerning the aerodynamicetfitgi and the second
one, dealing with the visual and radar signature of an UCAylane. In this
case, three objective functions were minimized: (i) ineastthe lift-to-drag ra-
tio at ingress condition, (ii) inverse of the lift-to-dragtio at cruise condition,
and (iii) frontal area. The number of design variables wakdtd only side con-
straints were considered in the design variables. Theitsbbjective functions
were evaluated using a potential flow CFD solver (FLO22) ¢tedipo FRIC-
TION code to obtain the viscous drag. The authors adoptedHibrarchical
Asynchronous Parallel Multi-Objective Evolutionary Algthm (HAPMOEA).
The authors reported a processing time of 200 hours for #ggroach, on a
single 1.8 GHz processor. It is important to consider thaPNEOEA operates
with different CFD grid levels (i.e., approximation levelsoarse, medium, and
fine. In this case, the authors adopted different populaiizes for each of these
levels. Also, solutions were allowed to migrate from a logthfidelity level to

a higher/lower one in an island-like mechanism.

In further work, Lee et al. [96] solved the same previousfited UCAY MDO
problem, but considering a robust design methodology (hgudhi method
[163]) to incorporate uncertainties in the operation emwment of the UCAV.
The MDO problem considered two cases, each with three dbgsctThe first
case corresponded to a mono-static RCS and its aerodynhape ®ptimiza-
tion, and the objectives to be minimized were: (i) radar sresction for the
mono-static case, (ii) mean value for the inverse of thadiftirag ratio, and (iii)
variance for the inverse of the lift-to-drag ratio with respto its mean value.
The second case was a mono/bi-static RCS and aerodynanpie spéimiza-
tion, with the following objectives to be minimized: (i) mosstatic RCS (ii)
bi-static RCS, and (iii) both, the mean value of the inveifs¢d-drag ratio, and
its variance. For this latter objective, an aggregatingfiom was used, instead
of extending the optimization problem to one with four olijges. In both cases,
the robust design considered uncertainties in operatingitons such as fly-

ing Mach number, angle of attack and radar signal oriemtatiith respect to
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the UCAV. In both test cases, the authors adopted HAPMOEA.NIBO prob-
lem comprised more than 100 design variables, with comégranposed on the
thickness of the airfoil sections for structural concerrork the results, a set of
15 nondominated solutions was obtained in the first case aatda 10 solutions
was obtained in the second case. From these solutions, signdes were able
to select one which had superior performance in all the ¢l with respect

to a baseline design (this happened for the two cases coedjde

Pagano et al. [127] presented an application for the MDOnoiecraft pro-
peller. The aim was to improve the propeller performancesiczdly, two con-
flicting objectives were considered: (i) minimizing the s®emission level, and
(i) maximizing aerodynamic propeller efficiency. For thiglustrial problem,
several disciplines were considered: aerodynamics,tstes; and aeroacous-
tics. For each of these disciplines, specialized computgsips-based simula-
tion codes were employed. Each design solution evaluatiompcised an itera-
tive procedure among these simulation codes in order taat@ah more realistic
operating condition. Therefore, the optimization proceas computationally
demanding. In order to reduce the burden of this high contiput@ cost, the
authors opted for the use of design of experiments techajguel RSM for ef-
ficiently exploring the design space. The geometry for thappller blade was
considered as the output for this optimization process,veasl parameterized
using 14 design variables which included blade twist, seeti chord and lead-
ing edge line definition, all, at several prescribed bladiéaiastations. The MDO
problem contained constraints on the geometry designblagaand on propeller
shaft power at two flight conditions: takeoff and cruisepexgively. The authors
adopted The Nondominated Sorting Evolutionary Algorith(NSEA+) as im-
plemented in the OPTIMUS commercial software. The autharsevable to
obtain design solutions which performed better than a eefeg propeller de-

sign. Approximately 20 nondominated solutions were oladjrall of which

9NSEA+ adopts the selection mechanism of the NSGA-Il and théation operator of the evolution

strategies.
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were better than the reference design in both objectives.

Nikbay et al. [116] presented a coupling of techniques fadtigisciplinary
analysis and optimization, particularly addressing theelastic optimization
problem including aerodynamics and structures as the nmséiptines. The au-
thors adopted the NSGA-II and a MDO problem which aimed toroap the
reference experimental wing AGARD 455.6. For this problém,wing geome-
try was defined in terms of wing taper ratio and wing quart@rdtswept angle,
which were considered as the design variables. The obgefttivctions were: (i)
maximization of the lift-to-drag ratio and (ii) minimizat of the wing’s weight.
Also, one constraint was included in the maximal aeroalaging’s tip defor-
mation, which was prescribed as a function of the wingsparthis approach,
both the aerodynamic and the structural simulation werlopeed with high fi-
delity CFD and CSD commercial codes. A special iterativepss was defined
in order to couple the multiple-discipline effects pregehin the optimization,
i.e., exchanging parametric CAD definition, pressure load deformations,
between the software used for each discipline. From thgiliGgiion example,
the authors obtained 14 nondominated solutions, from wihielextremes of the

Pareto front were extracted.

Johnson et al. [75] performed a MOEA-based MDO for the agnachic and
heat transfer performances of heat shields for blunt boegtrg vehicles. The
authors were interested in obtaining trade-offs among #gréopmance param-
eters (objectives) of the vehicles, which included: (i) bpbaat flux, (ii) total
head load, and (iii) maximum cross range. The optimizatias performed with
the University of Maryland Parallel Trajectory OptimizatiProgram (UPTOP),
which is based on a differential evolution scheme, and alltive analysis of
reentry trajectory vehicles with three degrees of freedoivet coupled with the
analysis for vehicle’s aerodynamic and heat transfer perdoces. Even when
three objectives were considered in the problem, the asifherformed experi-
ments with only two of them at a time. The design variablegHeroptimization

problems were 13 or 14, depending on the definition of thel ax@file of the
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vehicle (three different axial profiles were used). The tm@msts set consisted
of nine constraints, which considered trajectory desigpit, theory limitations,
and aerodynamic moments limits. The crossover and mutedies were varied
randomly from zero to one, with the aim of maximizing the rarg the non-
dominated solutions produced. From the results presetiteduthors selected

optimal trajectory/vehicle configurations for two reentpnditions.

Rajagopal and Ganguli [134] addressed the MDO prelimidasign of an UAV
wing. In their study, the authors aimed at optimizing twoftioting objectives:
UAV endurance and wing’s structural weight. In this case, ithvolved disci-
plines are aerodynamics and structural analysis. Two tigefunctions were
considered: (i) the maximization of the endurance (the timairplane can fly
given a payload and a given fuel weight) and (ii) the minirticza of the wing
weight. A total of ten design variables were used for definigwing’s geome-
try as well as its structural properties. Constraints wemgdsed on the aerody-
namic performance and geometry, both for the airfoil shaygefar the complete
wing. Also, constraints were imposed on the minimal strradtatrength and
stiffness of the wing. The authors adopted the NSGA-II, dradabjective func-
tions were evaluated using CFD and CSD simulation codess fguired a
very high computational cost, which led the authors to theafKriging-based

models. The authors reported finding only 5 feasible nondated solutions.

Jagdale et al. [65] applied a MOEA for the conceptual midtighlinary design
of a bendable UAV wing. Such types of wings, constructed frmomposite
materials, have two conflicting structural requirementst,fthe complete wing
must be able to be folded for its storage in a container amdy&k it must be stiff
enough to withstand the aerodynamic loads during flight ajoem, in order to
avoid buckling, due to an excesive material strength argeldeformation. For
the multidisciplinary design, two major analysis disaigls were considered:
aerodynamics and structures. Two objectives were coresidé) maximize the
lift-to-drag ratio of the wing, (ii) maximize the wing’s blling speed. Addi-

tionally, a set of four constraints was included comprisiagninimum cruising
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speed, a positive lift coefficient, a stability margin, ahd tlesired rolled wing
diameter range. Both objective functions were evaluaténguSFD and CSD
simulation codes. The authors adopted the NSGA-II. Tergdesriables were
used: seven to define the wing geometry and three to defineritpasite plies
orientation. The wing geometry related variables are owiotiis, but the authors
indicated that they used a discretization for them. Theastheported finding
trade-off solutions that were able to outperform a refeeatesign in both objec-

tives.

Analysis of the use of MOEAs in multidisciplinary design opimization:

Table 5 summarizes the application of MOEAs in multidisiciaty design opti-
mization. A common feature of the applications discussetthimsection was the in-
teraction of two or more disciplines in the evaluation of digective functions. This
was combined in some cases with a high-dimensional seaextesteading to very
costly computer simulations that required the use of sate@gnodels and/or paral-
lelization techniques. The need for highly efficient MOEA®sially tailored for this
sort of problems is quite evident. Although some authorsnegl using very small
population sizes (including micro-genetic algorithm$)e tomputational cost of the
MOEAs adopted remains as their main limitation. Thus, thésalearly needs further
research aimed at producing efficient and effective MOE/As ¢hn produce good ap-
proximations of the Pareto optimal set requiring only a very number of objective
function evaluations. The use of advanced archiving tegres can also be advanta-
geous [151]. Finally, the lack of properly designed coristrhandling techniques is
also evident. Such approaches can help to reduce the ovenaflutational cost of the

evolutionary process, but has not been properly addrestddae for exampe [108]).

5.6 Aerospace system optimization

Apart form atmospheric flight, aerospace engineering degbsthe design of space-

craft and space systems such as satellites. The use of M@ERAsse applications is
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reviewed next.

- Hartman et al. [57] and Coverstone-Carroll et al. [28] prded the applica-
tion of a MOEA to the design of low-thrust spacecraft trageiets. The authors
considered two study cases: a) Earth-Mars rendevouz [§7,a28 b) Earth-
Mercury rendevouz [28]. The authors adopted the NSGA [16@]eonsidered
three objectives: i) maximize spacecraft mass delivergradevouz, ii) minimize
the spacecraft mission flight time, and iii) maximize thecgmaft heliocentric
revolutions. Three constraints were also imposed on the MO which two
were related to the minimum and maximum values for the hetfitiéc revolu-
tions (i.e., they constrain the range value that the thijdatlve can attain). The
third constraint was the convergence error that results §olving a two-point
boundary value problem (TPBVP), which includes two setsevka nonlinear
and coupled differential equations each. Since for thig ¢hsre is no closed
form solution, a numerical approximation, based on theuatcof variations
is used. In fact, this latter process corresponds to an gg#tion process by it-
self, since it involves computing the optimal spacecrafishschedule as well as
the thrust orientation, along with the optimal orbit thatximaizes the delivered
weight at the rendevouz point, with its specific constraattunch/rendevouz
points as well as along the transfer orbit. This last optatian process cor-
responds to the objective function evaluation, which is potationally inten-
sive, since many of the solutions generated by the MOEA nmighbe feasible.
The NSGA was hybridized with a local search proceddifeased on a gradient
method implemented in NASA's JPL SEPTOP (Solar ElectricpBtsion Tra-
jectory Optimization Program) software. So, the MOEA (NSiBAhis case) is
used for the global search, and the parameters obtaineddbriedividual in the
population, are used as input parameters for the SEPTORaeftlt is interest-

ing to note that, as reported by Hartmann [58], after appglyire local search,

10In Hartmann [58] the approach is call®SMA which stands for Non-dominated Sorting Memetic
Algorithm.
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the individuals are not updated in their parameters, but mntheir fithess val-

ues (i.e., the authors adopt a Baldwinian learning strate@ius, the authors
argue that diversity is preserved in the population. Thé@stadopt a penalty
function to handle the constraints of the problem. The austhere able to find
several families of optimal trajectories for the two spaaéanissions analyzed,

including some novel trajectories.

- Lee et al. [99] addressed a low-thrust orbit transfer frogeastationary orbit to
a retrograde Molnya-type orbit. The challenge in this peaibls that it requires
to modify five out of six orbital parameters, which is perf@arwith low-thrust
applied during long periods of time. The authors considénedobjectives: i)
minimize the required propellant mass, and ii) minimizettred flight time. The
authors relied on the Q-law (a Lyapunov feedback contro) éagory, which
requires the tuning of 13 control parameters defining thésaetvector. Three
different MOEAs were adopted: 1) NSGA [160], 2) The Paresagda Ranking
Genetic Algorithnt! (PRGA), and 3) the Strength Pareto Genetic Algorithm
(SPGA). The results obtained by these three MOEAs are cadpaased on
two performance measures: the size of the dominated spaddha coverage
of two Pareto fronts. For each candidate solution in the MBpApulation,
an optimal orbital transfer was estimated, using the Q-tawh that it satisfied
the orbital’s initial and final boundary conditions, whileénimizing the total
flight time. Once the schedule and orientation of the thristgthe orbit are
obtained, the required propellant mass, and the flight tatlew to evaluate the
two objective functions previously indicated. From themparative study, the
authors concluded that both NSGA and SPGA had a similar pegce with
respect to the measures adopted. These two MOEAs outpetoRRGA. It
is worth noting, however, that the authors performed ontgelruns with each
algorithm, because of the high computational cost invoivettie evaluation of

the objective functions of this problem.

11The description of this algorithm provided by the authorsesponds to MOGA [46].
12This is really SPEA [189].

58



- Luo et al. [104] solved the problem of rendez-vous trajgcimarameter opti-
mization. In this case, three objective functions were wered: (i) the time
of flight for the spacecrafts to accomplish the rendez-v{i)zhe total velocity
characteristic which is a function of multiple impulsesfpemed by the chaser
spacecraft, and (iii) the trajectory safety performanckein which is a measure
of the distance the chaser spacecraft attains in “free peath’respect to the tar-
get spacecraft, in case the thrust control ceases. A siepplifiodel (linearized)
was adopted for solving the trajectory of the rendez-vowbl@m. The prob-
lem consisted of a decision vector that could vary in sizetdube number of
impulses considered in the optimization problem. In theliapfion problems
presented, the authors used either three or four impulsiggnating decision
vectors of seven or eight variables, respectively. Comtgavere imposed on the
times of applying the impulse and the interval time betweendonsecutive im-
pulses. The authors adopted the NSGA-II. The constraintiivag mechanism
incorporated into the NSGA-II was adopted without any clemgrhe evalua-
tion of the objective functions was obtained by an iterathethod, i.e., a set of
differential equations, governing the spacecraft motibne example problems
presented by the authors were for three and four impulselerevouz trajectory
optimization. In each case 10 runs were performed and a &jji¢tareto front
was constructed considering the Pareto fronts obtaineddéh execution. The
authors did not report the number of nondominated solutabtained in any

case.

In a similar work, Luo et al. [103] extended their applicatifor the multiple-

impulse rendez-vouz trajectory optimization problem, iouthis case using a
more sophisticated model (non-linear) for evaluating thgecive functions.

Additionally, constraints on the path were included to ea\problem with more
realistic operational conditions. As before, the NSGA-Hsradopted. The prob-
lems that were solved corresponded to a three and four ipuéndez-vouz
trajectory optimization. In both cases, trade-offs wertamied among the time

of flight, the propellant cost, and the trajectory safetyrBmdez-vouz missions,
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with and without path constraints.

- Ferringer et al. [43] addressed the problem of satellitestalation design. The
authors looked for a three-satellite constellation whidhimized two objec-
tives: (i) Maximum Revisit Time (MRT), and (ii) Average Resiti Time (ART).
Both objectives were influenced by satellite orbital pareeree (a) inclination,
(b) right ascension of the ascending node, and (c) mean dpowtsich were
used as design variables. Orbital height was not treatedasable but fixed at
an altitude guaranteeing horizon-horizon visibility argaatellites. The evalu-
ation of the objective functions was obtained by modelingl§te constellation
visibility to ground locations, defined by discrete grid pisiand overlaying the

land area of interest. The authors adopted the NSGA-II wiitaty encoding.

- In more recent work, Ferringer et al. [44] addressed thélpro of satellite
constellation reconfiguration using a MOEA. The problenvedlby the authors
considered the Global Positioning System (GPS) condtalldor two degrad-
ing cases: (a) loss of one satellite, out of 24 comprisingcthestellation, and
(b) loss of one plane of satellites, out of a total of six pfless of 4 satel-
lites). The GPS constellation was designed to provide ¢laberage coverage
greater than 99.9% in ideal operating conditions, and grehtin 96.9% in the
worst case. This coverage was calculated by consideringjlaility of at least 4
satellites above a°Tangle over the Earth’s horizon. For the application problem
a total of six objective functions were defined: (i) fourdaverage daily visi-
bility time, (ii) four-fold worst-case-point daily visibty time, (iii) total time of
flight, (iv) maximumAV?*3 required by any maneuvered satellite, (v) sum of the
AV variance of the maneuvered satellites, and (vi) satslliteneuvered. All
these objectives comprised constellation performancectibgs, constellation
reconfiguration costs, and satellite maneuver risk. Thetfirs objectives were
maximized, while the others were minimized. The authorpsetbthec-NSGA-

Il algorithm of Kollat and Reed [84]. Additionally, the awts indicated the use

13In orbital mechanicsAV, corresponds to the impulse or change in velocity neededake an orbital
change of the satellite or any spacecraft. Thig is given by the propulsion system.
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of a technique called time continuation which was appliedrduseveral runs
of the algorithm. When using this mechanism, the initial wlagon for every
successive run was formed by keeping 25% of nondominatedi@a$ of the
previous run and the other 75% solutions were created ralyddime optimiza-
tion problem was defined with a vector of 24 or 21 design véembepending on
the degrading cases indicated above. The design variatiessponded to the

mean anomaly and integer phasing orbits for the satellitéisa constellation.

Vasile and Croisard [107] addressed the robust prelingiaad multidisciplinary
design for an interplanetary spacecraft mission, namieBepiColombanis-
sion. The robust design considered uncertainties in skeglesggn parameters,
and aims at reducing the impact of these on the optimal vaiuthé design cri-
teria. Unlike other approaches presented above, which ms&ef the Taguchi
method as the robust design framework, in this case, theoeuthake use of
Evidence theory [154, 33]. This allows to model both, staticaand epistemic
uncertainties (i.e., the authors assume a poor or incomgletwledge of the
design parameters). The latter situation is commonly pitdeethe preliminary
design phase of the spacecraft mission considered. Therawtbnsidered two
objectives in this case: i) maximize the Cumulative BeliehEtion (CBF) (i.e, a
measure of the maximum confidence that a design is betteatbartain thresh-
old, in the cost function), and ii) minimize a given cost ftion, which in the
examples presented, correspondsto minimizing the wet (relaged to the mass
of propellant required to perform the low-thrust transfeffhe spacecraft being
designed. The MOEA used by the authors was the NSGA-I1 [32fh¢ solution
of robust design problems, design candidates are not e¢edlaafixed values of
the design parameters, but considering uncertaintiesimthn this case, three
uncertain parameters were considered with four threshmé&hials and a cor-
responding BPA (Basic Probability Assignment) each. Thosevaluating the
CBF, a total of 64Focal Elementgintersection threshold regions for all the un-

certain parameters with different BPAs each), had to beckedrfor. In each
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of these threshold regions, a local optimizer was used tmatd the maximum
of the system’s function. Thus, if the whole evolutionarggess is considered,
it is evident that this is a computationally expensive aggilon. Furthermore,
the authors reported the use of a Kriging model for approtimgahe relation
between the spacecraft maximum thrust and the power to bergied by the
solar arrays, with the Delta budgeh ), which is an important value for the
objective function evaluation. The authors compared tieeaisthe NSGA-II to
a reference (nearly optimal) solution, and concluded theit thybrid approach
was very useful for estimating the optimum and for narrowdogvn the search

in the presence of uncertainties.

Minisci et al. [111] dealt with the robust multi-discipany preliminary design of
a small scale Unmanned Space Vehicle (USV), which was plambd used for
space re-entry operations. In this case, the simultangptirmiaation of both,
the spacecraft shape, and its trajectory control profierequired. The authors
considered three objectives: i) minimize the mean valuesat flux in the USV,
i) minimize the mean value of the estimated internal spefetemperature,
and iii) minimize the weighted sum of the variances of thd fi® objectives,
which were evaluated along the re-entry trajectory, cargig) uncertainties in
two aerodynamic forces (lift and drag), and in the thermaldeativity and the
specific heat of the material used for building the spacecrBfo constraints
were also included in the maximum attainable values for Hience of the heat
flux and in the estimated internal spacecraft temperatuhe authors adopted
an approach called MOPED [27], which is based on an Estimatidistribu-
tion Algorithm (EDA) [93]. MOPED makes use of nhondominatedtsg and
crowding (taken from NSGA-II [32]) and was used to searchltandpacecraft
geometry parameters (six in total). Additionally, an oglroontrol subproblem
was solved for finding the optimal re-entry trajectory (ite.determine the angle
of attack profile along the trajectory), from a set of dynaemgations, formu-
lated by nonlinear differential equations and a set ofaithioundary conditions

that had to be satisfied. The authors adopted variable fidekta-models, or
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surrogates, whith the aim of reducing its high computati@ust. Artificial
neural networks (ANNSs) were used as meta-models, at thehiegj of the evo-
lutionary process, being trained only with a low fidelity btigal aerodynamic
model. Towards the end of the evolutionary process, the AN&te traided with
high fidelity CFD solutions.

Analysis of the use of MOEAS in aerospace system optimizatio

Table 6 summarizes the application of MOEAs in aerospadesysptimization.
From the above applications described, it is worth notitivad MOEAs applied to

aerospace systems cover a wide variety of problems, imgudultiple disciplines and
the use of robust design techniques. Also, it is importaettphasize that most of the
applications discussed in this section involve the use aupled global-local search
optimization scheme. This is to say that a MOEA is used to fiset®f good solutions,
perhaps at a coarse granularity (e.g., without considaihthe decision variables),
which are further improved using a local search engine {gratased techniques are
normally used for this sake). For example in [111], the MOEAIsed at an upper
level, with a subset of the decision variables and withocbiporating any constraints,
while the constraints and all the decision variables arsidemed and solved at a lower
level, in which a gradient-based optimization process &luse find feasible solutions.
Although memetic MOEAS have existed for several years irsttecialized literature
[50], the development of specific MOEA-based approachespiaperly combine a
global and a local search scheme in an efficient and effeatayewhen dealing with
space applications, is still an open research area. Isswbsas how to couple the
global search engine with the local search engine, how tdledhe constraints (partic-
ularly when dealing with large scale applications havingwnaonlinear constraints),
how to handle mixed problems that combine, for examplegert@nd real-numbers
decision variables (which could be handled separately diffgrent granularities by
the global the local search engines), how to make the seasstekpensive (computa-
tionally speaking) are some of the possible paths for futesearch in this area. In this

regard, Vasile and Zuiani [178] have recently proposed &erésting approach based
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on the collaboration of multiple agents. This approachddesnumber of metaheuris-
tics, including particle swarm optimization and differ@hievolution. This approach,
has been succesfully applied to the design of multi-imptrsectories [178], to the
robust design optimization of low-thrust transfers, anceapture manoeuvres [176];
to the design of an integrated space and terrestrial solaeipplant [177] and to the
design of satellite formation [105]. Another interestisgue that arises in the problems
discussed in this section is the size of the feasible regibith can be very small with
respect to the entire search space. In this sense, somégeesifor pruning the search
space have been proposed [152] and have been succesfuligdaiopthe context of
low-thrust gravity-assist trajectory design. This coéis another promising research

topic, to be considered when designing MOEAs for space egiidins.

5.7 Control system design

In this final group, the applications are those in which MOEa&e used to find the

parameters involved in control systems.

- Chipperfield and Fleming [19] described the use of a MOEAim design of a
control system for gas-turbine aero-engines. This apjdicaevaluated popula-
tions of candidate control systems and modes, aiming attsgjesensors and
defining a suitable controller for a manoeuvre about a padi®perating point
while meeting a set of strict design criteria including digh sensitivity and
the accommodation of degradation with engine ageing. Tipécgion exam-
ple presented by the authors considered attaining ningmedijectives com-
prising the engine’s time response, thrust level, and nerlblade temperature,
among other criteria, in response to a change in thrust dénidre control sys-
tem was evaluated using a linearized model of a referendaenghe authors
adopted MOGA with mating restrictiotfsand fitness sharing in objective func-

tion space. From their results, the authors obtained todideformation which

l4several researchers within evolutionary multi-objectyimization have experimented with schemes
that impose rules on the individuals that can be recombirtdéolvever, there is no clear evidence of the
superiority of this sort of mating scheme with respect toube of a traditional one in which no restrictions

are imposed on the individuals to be recombined [24].
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allowed them to look into the positive and/or negative atpeftdifferent control

schemes.

In a similar research work, Thompson et al. [171] used theesaension of
MOGA previously indicated for the multi-objective optinaitton of an aircraft
engine controller architecture, particularly for a miitaircraft engine, where
many inputs and outputs were duplicated, increasing ceralidy the number
of sensors and actuators inputs (240 approximately) to bsidered in the con-

troller design.

- Aranda et al.[6] used a MOEA for the design of an aircraftfligontrol system.
The application concerned the design of control laws, winehe further used
for evaluating control designs. The MOEA adopted was baseBaveto rank-
ing. The flight controller took several input signals, anetatheir evaluation it
returned system performance in a vector of control resporetgcs. This vector
comprised 21 parameters. The design variables for the matiion were the
elements of the two control law gain matrics{ 5 and2 x 2 matrices) for the
inner loop controller. 14 design variables were considdrethg these variables
floating point numbers. The authors presented results fibr, bangitudinal and

lateral flight controllers.

Analysis of the use of MOEAs in control system design:

Table 7 summarizes the application of MOEASs in control systiesign. The appli-
cations described in this section are also computatioirapensive, allowing the use
of more elaborate MOEAs and archiving techniques whichaegmtly, have not been
used so far within this domain. However, another intergstgature of the problems
described here is that the approaches developed to solverttay be extrapolated to
other domains, since control systems are commonly used idevariety of engineer-
ing disciplines (see for example [66]). This should motivtite development of more

research within this area.
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6 Future Research Paths

As evidenced in this survey, the use of MOEAs for solving aatdical and aerospace
engineering optimization problems is already a mature et@ah has spread over a
broad range of application subdomains. Most of the apjidinatreviewed in this pa-
per are based on a genetic algorithm, being MOGA and NSGAelintost frequently
used (both of them with diverse modifications). All the apalions reviewed in this
paper represent real-world application problems, whicuire, in many cases, the use
of expensive computational simulations to evaluate theaibje functions. Addition-
ally, the problems analyzed are typically very high dimenal, having large, complex
and poorly understood search spaces, which make themtettaaising traditional
mathematical programming techniques. In fact, the highmaational cost associated
to some of these problems makes the use of MOEASs infeasitllessialternative tech-
niques are adopted. The most common ones are the use of sespanfiace models
(or approximation models), the use of parallel programn{imginly to evaluate the
population’s fitness values), and the use of other metastegrithat are better suited
for continuous optimization than genetic algorithms (edgferential evolution, evolu-
tion strategies and particle swarm optimization). Additily, other authors have hy-
bridized their MOEAs with gradient-based methods, aimmgdambine the strengths
of the global search performed by an evolutionary algorittith the local search per-
formed by a gradient-based technique.

From the applications analyzed in this paper, the follovgalient issues have been

identified as requiring further research:

e Alternative chromosome encodings Most of the applications analyzed here
mention the use of specific chromosome representationgbyeneral, it is as-
sumed that vectors of real numbers or binary numbers areailyradopted (with
a set of associated crossover and mutation operators). \Woyether encodings
exist, which could probably help to improve the performaocea MOEA. Such
alternative encodings include the use of matrix or strutirierarchical repre-
sentations (see for example [179, 30]), which could be palgily useful for 3D

complex geometries (see for example [12]).

66



e Use of small population sizesOne possible choice for reducing the total num-
ber of objective function evaluations performed by a MOE fisise very small
population sizes with proper mechanisms to maintain diterghis is normally
not done because the use of such small population sizes hpoaases prema-
ture convergence of EAs due to a sudden loss of diversity,[12P However,
with carefully designed mechanisms that can maintain ditygiit is possible to
use very small population sizes. An example of this are theaorgenetic algo-
rithms for multi-objective optimization, which have bedready used in aero-
nautical engineering [21, 162]. It is worth noting, howewhat several other
metaheuristics that have a high potential in aeronautitgineering have been
only scarcely used with very small population sizes (e.dfemntial evolution

and evolution strategies).

e Use of techniques to improve efficiency The use of response surface mod-
els presents difficulties as the number of decision vargabiereases, mainly
because the number of samplings required for obtaining la fidiglity model
increases, too. A possible way of dealing with this probleroibuild local re-
sponse surface models as proposed by Emmerich et al. [39G&mhakoglou
[49]. and to use them for a pre-screening process in thetgeiguorocess (i.e.,
to select promising members at each generation which wighviaduated by the
exact model, reducing, in consequence, the overall cortipngd cost). Another
possible option for improving efficiency is to adopt knowdedextraction tech-
niques and then reuse this information during the evolatipsearch. Although
such techniques have been normally used ira grosteriorimanner (adopting
self-organizing maps and ANOVA, as in [125, 126, 18, 159]s also possible
to use them as aa priori technique. For example, Graning et al. [55] success-
fully applied this type of approach to the single-objectgtimization of 3D
turbine blade geometries. The extension of this type of @ggr to aeronauti-
cal/aerospace multi-objective optimization problemsideed, a very promising

research path.

There are, however, other approaches that can reduce thieenurhobjective
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function evaluations without having to build an approxieatodel of the prob-
lem. Perhaps the most well-known choices within the evohary algorithms
literature are fitness inheritance [157] and fitness appration [70]. Both of
them have been used with MOEAs (see for example [139]), ket tise in real-
world applications is still scarce (see for example [128jginly because prac-
titioners are either not aware of them, or do not trust theliability in highly
nonlinear search spaces [35]. It is also worth remarking sbaeral other ap-
proaches exist for improving the efficiency of a MOEA, but trafthem remain

unused in real-world applications (see for example [16§, 1]

o Efficient constraint-handling techniques Most of the applications reviewed in
this paper dealt with problems subject to constraints. Istroases, infeasible so-
lutions were discarded and generated again, or a simplmekfgenalty function
was adopted. However, many other constraint-handlingagmbres exist, which
could be very useful in multi-objective optimization, sinthey can explore the
boundary between the feasible and the infeasible regiomior@ efficient way
than traditional penalty functions (see for example [108]1LIt would also be
interesting to design approaches that can efficiently déal problems having

many nonlinear constraints.

e Alternative selection schemes Most modern MOEAs rely on Pareto-based
ranking [51]. However, this sort of selection scheme hasagedimitations,
from which its poor scalability is perhaps the most remal&§®2]. Recently,
and mainly motivated by this scalability problem, a numbgalternative se-
lection schemes for MOEAs have been introduced in the slimsgibliterature.
From them, perhaps the most remarkable approaches arebthsesgon a perfor-
mance measure known agpervolumégsee for example [38]) and those based
on relaxed forms of Pareto dominance (see for example [&2]¢h approaches
have been scarcely used in aeronautical/aerospace engméee for example
[10]).

e Alternative parallelization techniques: Due to the high computational cost re-

quired by many aeronautical and aerospace engineeringiaption problems,
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the use of parallelism is relatively common. However, mdeberate paral-
lelization techniques based, for example, on coevolutl@T], cellular comput-
ing [2], GPU-based computing [183] and asynchronous tegles [7] are still
scarce in this area and more work in that direction is expkictéhe next few
years. These techniques have been adopted in other coptlgadjons arising

in areas such as genetic programming [56].

7 Conclusions

This paper has presented a survey of applications of MOEAsrionautical and aerospace
engineering. A taxonomy of approaches together with a a sbeiew of applications
in each of the categories contained in it, have been pregente

The main conclusion from this review is that MOEAs are widatcepted as an
alternative numerical optimization tool in this area, maibecause of their ease of
use and their effectivity (several authors reported findialyitions that improved the
reference design).

The main drawback of MOEAs is clearly the high computatiaret associated to
applications in which these algorithms must be coupled togiex physical simula-
tions such as CFD and CSM. Although several authors reporg ssirrogate models
and parallelization techniques in such costly applicajoew approaches are required,
as indicated in the final part of this paper in which some fmssilternatives to deal
with this problem have also been provided. Finally, anotksue that certainly de-
serves attention is the need for stronger theoretical fatios for MOEAS. Issues
such as not being able to (mathematically) prove that thatisol produced by some
specific MOEA is optimal may be seen with skepticism by sonseaechers in this
area. Although some important work has been done in thisde@ae for example

[141]), much more work is still needed.
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Figure Captions

Figure 1: Graphical representation of the three stagessifdé aeronautical/aerospace

engineering
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Aeronautical/Aerospace engineering design

Conceptual Design Phase Preliminary Design Phase
Characteristics: Characteristics:
- Explore widest possible - Design/Analysis of subsystems
design space - Use of high fidelity CFD and FEM models
- Analysis of numerous - Multiple-discipline interaction
alternative concepts - Robust design considerations
- Extensive trade-off - High dimensional search space
analysis - High computational cost
- Many - Need for parallelization
objectives/disciplines U - Use of surrogate and approximation U
analysis models
- Use of low order/fidelity
physics models Goals:
- Low computational cost - Freeze the design for full scale
development
Goals: - Establish confidence for building time
- Assess and improve and costs
design requirements M N
- Define few promising Examples:
concepts - 2D airfoil/blade design
- Wing-Body airplane configuration
Examples: - Wing structural/flutter design
- Supersonic aircraft - Turbine blade aero-thermodynamic
design design
- UAV/MAYV design - Spacecraft orbital trajectory design
- Turbine design - Aircraft control system design
- Satellite constellation
design

FABRICATION

Detailed Design Phase
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Table Captions

Table 1: Summary of MOEAS applied to conceptual design dptition problems.

Table 2: Summary of MOEAs applied in 2D geometries and distoape optimization

problems.

Table 3: Summary of MOEASs applied in 3D complex physics/s@ptimization prob-

lems.

Table 4: Summary of MOEASs applied in structural optimizatio

Table 5: Summary of MOEASs applied in multidisciplinary dgsoptimization.
Table 6: Summary of MOEAS applied in aerospace system opitioin.

Table 7: Summary of MOEAS applied in control system design.
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| Ref | NObj | NCons | NVars | VarType Algorithm | Operators Physics Model | NPop | Gmax | Remarks
[124] 2 s.C. 11 Continuoug MOGA Fitness sharing, BLXx | Mean line pump flow| 120 30 None
crossover, uniform ran-{ modeling
dom mutation, Best-N
selection
[15] 7 s.C. 64 Mixed SPEA2 Hierarchical ~crossoverl Multiple disciplines low | N/A N/A Island based parallel in{
continu- operator order/fidelity models teractive GA with subjec-
ous/discretf tive evaluation
[175] 4 s.C. 14 Mixed NSGA-II SBX crossover and poly{ Low order models 20 150 Objectives defined by
continu- nomial mutation means of goal program
ous/discret| ming technique
[135] 2 4 6 Continuoug NSGA-II SBX crossover and poly{ Multiple disciplines, low | N/A N/A None
nomial mutation order and database mo(
els
[88] 2 s.C. 18 Mixed GAME Evolution strategies’ mu-| Multiple disciplines with | 400 25 None
continu- tation operator low fidelity and FEM
ous/discretf models
[74] 5 6 21 Continuoug MOGA Arithmetic ~ crossover,| Multiple disciplines sim-| 300 300 Constraint handling us-|
gaussian mutation, plified models ing exact penalty method
fitness  sharing and and simulated annealing
steady-state reproductior as a local search operatq
[184] 3 s.C. 5 Continuoug NSGA-II SBX crossover, polyno-| Inviscid flow model N/A N/A None
mial mutation and im-
proved crowding mecha-|
nism
[170] 3 2 20 Continuoug NSGA-II SBX crossover and poly{ Newton impact theory N/A N/A None
nomial mutation

NObj = Number of objectives; NCons = Number of constraint§/até = Number of design variables;

generations; N/A = Not available; s.c. = Only side constsaare adopted.

VarType = Type of variaplPop = Population size; Gmax = Maximum number of
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| Ref | NObj | NCons | NVars | VarType | Algorithm | Operators Physics Model | NPop | Gmax | Remarks
[185] 3 s.C. 12 Continuoug MOGA Intermediate crossover and fitness sharing | Navier-Stokes 100 30 Robust design optimization
[9] 2 5 9 Discrete (n + p)-ES Gaussian mutation, Goldberg’s Pareto rark-Navier-Stokes 100 200 None
ing, crowding based on euclidian distance jn
decision space
[113] 2 s.C. 12 Continuoug (1+10)-MODES | Adaptive derandomized mutation strategy, de-Navier-Stokes 1 N/A Use of a maximum of 1,000 designis
lection based on the NSGA-II
[10] 3 2 12 Continuoug SMS-EMOA Adaptive derandomized mutation stratedy, Navier-Stokes 20 N/A Use of a maximum of 1,000 designgs
steady-state selection based on hypervolume
measure
[133] 2 1 8 Continuoug MODE DE'’s crossover and mutation operators Navier-Stokes 10 25 Robust design optimization, use af
ANN RSM
[136] 2 11 Continuoug MOPSO N/A Euler model 100 50 None
[117] s.C. N/A Continuoug MOGA N/A Navier-Stokes 64 75 None
[123] 1 80 Continuoug MOGA N/A Streamline curvaturel 300 1000 | None
method
[29] 2 s.C. 5 Continuoug MOPED N/A Coupled boundary layer N/A N/A Use of Kriging model
potential flow panel
method
[11] 3 2 4 Continuoug NCGA N/A Parabolized Navier-| 100 50 None
Stokes
[14] 2 N/A 12 Continuoug N/A Elitist selective inter-breeding, ranking of sg- Navier-Stokes 100 100 None
lutions according to constraints and user de-
fined preferences, weighted variable recombi-
nation
[26] 2 1 22 Continuoug NSGA-II SBX crossover and polynomial mutation Euler flow with ther- 36 24 None
modynamical model for
dense gases
[156] 2 s.C. 12 Continuoug MOGA Stochastic universal sampling, blendedFavre-Averaged com- 64 100 Robust design optimization baseld
crossover, uniform mutation, best-N selectign pressible thin-layer on6o
Navier-Stokes
[162] 3 4 12 Continuoug epxARMOGA SBX crossover, no mutation is used, externalCoupled boundary laye 4 2000 | Reinitialization of population is
file storage based arrdominance potential flow panel used for diversity preserving, in
method stead of mutation

NObj = Number of objectives; NCons = Number of constraint¥/alé = Number of design variables; VarType = Type of variahlPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constsaare adopted.
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| Ref | NObj | NCons | NVars | VarType Algorithm Operators Physics Model | NPop | Gmax | Remarks
[145] 3 4 66 Continuoug ~ MOGA Fitness sharing, BLXx crossover, best N select Navier-Stokes 64 30 None
tion
[118] 3 4 66 Continuoug MOGA Fitness sharing, averaged crossover, best N sele®Navier-Stokes 64 70 None
tion
[146] 2 3 131 Continuoug  MOGA Fitness sharing, BLXx crossover, best N select Euler/Navier-Stokes| 64 20 None
tion
[147] 2 3 131 Continuoug ARMOGA Fitness sharing, BLXx crossover, best N select Euler/Navier-Stokes| 64 20 Design variables ranges are adapted
tion ery M generations, based on the statis-
tics of the archive and current populatio|
[115] 2 2 5 Continuoug  MOPSO Adaptive Search Spacing Operator (ASSO) Euler N/A N/A The ASSO operator allows to extend th
initial design space
[101] 2 1 32 Continuoug MOGA Fitness sharing, BLXx crossover, best N select Reynolds-Averaged| N/A N/A Use of RSM
tion, random uniform mutation Navier-Stokes
[61] 2 2 66 Continuoug ~ MOGA Masking array to activate/deactivate the designPotential flow 34 N/A None
variables, selection based on bins of the nondom-
inated archive, random average crossover, local
and global mutation operators
[142] 3 4 28 Continuous ARMOGA Stochastic universal sampling, SBX crossover,Reynolds-Averaged 16 20 Grid-enabled parallel computation
polynomial mutation, best N selection, ParetoNavier-Stokes
ranking incorporating constraints
[8] 2 1 23 Discrete (1 + p)-ES | Gaussian mutation, Goldberg’s Pareto rankingNavier-Stokes 20 100 None
crowding based on Euclidian distance in the de-
cision space
[17] 4 s.C. 71 Continuoug ARMOGA Fitness sharing, BLXx crossover, best N select Reynolds-Averaged 8 30 None
tion Navier-Stokes
[159] s.C. 33 Continuoug  NSGA-II SBX crossover, polynomial mutation Navier-Stokes 60 20 Use of Kriging model
[69] 1 4 Continuoug MOGA N/A Navier-Stokes N/A N/A None
[98] s.C. 80 Continuoug HAPMOEA | ES mutation operator with Covariance Matrix Navier-Stokes * N/A * Population sizes are 20, 40 and 6
Adaptation (CMA-ES), distance dependent mu- for fine, medium and coarse CFD meg
tation, tournament selection grids, 1100 design candidates evaluatg
[126] 3 2 5 Continuoug  MOGA Fitness sharing, roulette wheel selection,BLX- Navier-Stokes N/A N/A Knowledge extraction from the muilti
a crossover, random uniform mutation, Parefo objective optimization process
based constraint handling
[5] 5 10 Continuoug NSGA N/A Navier-Stokes N/A N/A ANN model
[168] s.C. 58 Continuoug  MOGA Stochastic  universal  sampling, BLX- | Navier-Stokes 16 50 None
crossover, best N selection

NObj = Number of objectives; NCons = Number of constraint§/até = Number of design variables; VarType = Type of variablPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constsaare adopted.
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| Ref | NObj | NCons| NVars | VarType Algorithm Operators Physics Model | NPOp| Gmax| Remarks
[91] 2 8 17 Mixed N/A Arithmetic crossover and| FEM structural analysis 200 20 Topological shape opti-|
continu- Gaussian mutation for| mization, use of external
ous/discrete continuous variables,| archive for keeping non-
two-point and uniform dominated solutions
crossover for discrete
variables, Pareto ranking|
[180] 4 s.C. 15 Discrete NSGA-II SBX crossover and poly-| FEM structural analysis | N/A N/A Robust design optimiza-|
nomial mutation tion, use of Kriging
model
[173] 2 s.C. 7 Mixed MOGA Fitness sharing, SBX| FEM structural analysis 100 300 Use of Kriging model
continu- crossover and  poly-
ous/discretg nomial mutation for
continuous variables|
Two-point crossover and
uniform  mutation for
discrete variables
[121] 4 s.C. 400 Discrete e-NSGA-II Dynamic population siz-| FEM structural analysis N/A N/A Topological shape opti-|
ing, variable mutation mization, use of local
rate, SBX crossover and search procedure for im
polynomial mutation proving solutions

NObj = Number of objectives; NCons = Number of constraint¥alé = Number of design variables; VarType = Type of variahlPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constsaare adopted.
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Ref | NObj | NCons | NVars | VarType Algorithm | Operators Physics Model | NPop | Gmax | Remarks
[120] 3 2 3 Continuoug MOGA Weighted averaged crossover, Pareto rankingPotential flow model and| 100 30 Penalty-based constraint handling
[119] fitness sharing, best N selection FEM model
[165]
[20] 3 N/A 17 Continuoug NSGA-II SBX crossover and polynomial mutation Euler and aeroacousti¢ N/A N/A Use of Kriging model
models
[21] 3 N/A 17 Continuoug p-GA N/A Euler and aeroacousti¢ N/A N/A None
models
[22] 3 N/A 17 Continuoug GEMOGA | N/A Euler and aeroacousti¢ N/A N/A Use of Kriging for gradient calcula-
models tion
[89] 4 2 109 Continuoug MOGA N/A Navier-Stokes CFD and N/A N/A Use of Kriging model
FEM structural model
[16] 5 N/A 58 Continuoug ARMOGA | BLX-«a and PCA-BLX« crossover opera-{ Euler CFDflowand FEM| 20 12 Population is divided among thg
and tors, fitness sharing, Pareto ranking models algorithms used as well as th
MOPSO crossover operators
[18] 3 5 35 Continuoug ARMOGA | Fitness sharing, Pareto Ranking, best N selecNavier-Stokes CFD and 8 20 None
tion FEM models
[144] 4 2 72 Continuous ARMOGA | Fitness sharing, BLXx crossover, Paretd Navier-Stokes CFD and 64 30 None
ranking, best N selection simplified structural
models
[97] 3 N/A 100 Continuoug HAPMOEA ES mutation operator with Covariance Ma- Potential flow CFD and * N/A * Population sizes are 40, 40 and 6
trix Adaptation (CMA-ES), distance depen- Radar Cross Sectio for fine, medium and coarse CF[
dent mutation, tournament selection (RCS) estimation modelsg mesh grids, 1550 design candidat
evaluated
[96] 2 1 100 Continuoug HAPMOEA ES mutation operator with Covariance Ma- Potential flow CFD and * N/A * Population sizes are 15, 40 and 6
trix Adaptation (CMA-ES), distance depen- Radar Cross Sectio for fine, medium and coarse CF[
dent mutation, tournament selection (RCS) estimation models mesh grids, 1100 design candidatg
evaluated. Robust design optimizg
tion
[127] 2 2 14 Continuoug NSEA+ ES mutation operators and NSGA-II selectign Simplified aerody- 20 17 Use of RSM
mechanism namics, FEM and
aeroacoustic models
[116] 2 1 2 Continuoug NSGA-II N/A Navier-Stokes CFD and 12 17 None
structural FEM models
[75] 3 9 14 Continuoug DE based | N/A Aerodynamic and ther-| 130 N/A Random variation of mutation rate
modynamic models
[134] 2 4 10 Continuoug NSGA-II SBX crossover and polynomial mutation Simplified aerodynamics| 50 100 Use of Kriging model
and structural FEM mod-
els
[65] 2 4 10 Discrete NSGA-II N/A Simplified aerodynamics| 30 70 None

and structural FEM mod-
els

NODbj = Number of objectives; NCons = Number of constraintgalé = Number of design variables; VarType = Type of variapléPop = Population size; Gmax = Maximum number of genearatio
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| Ref | NObj | NCons| NVars | VarType Algorithm Operators Physics Model | NPOp| Gmax| Remarks
[28, 3 3 8 Continuoug NSGA Single point crosover,| Orbital mechanics and 150 30 Use of binary encoding,
57] uniform mutation, | rocket equation models a local search mechanisn
stochastic universal and a Baldwinian learn-|
sampling, fitness sharing ing strategy.
in decision space, and
Pareto ranking
[99] 2 N/A 13 Continuoug NSGA, PRGA | N/A Orbital mechanics and 1000 | 200 None
(MOGA), and rocket equation models
SPGA (SPEA)
[104] 3 N/A 718 Continuoug NSGA-II Arithmetical ~ crossover| Linearized orbital me-| 100 200 None
and nonuniform mutation| chanics model
[103] 3 N/A 718 Continuoug NSGA-II Arithmetical crossover| Nonlinear orbital me-| 100 200 None
and nonuniform mutation| chanics model
[43] 2 s.C. 3 Discrete NSGA-II SBX crossover and poly- Orbital mechanics model| 32 400 Island-based parallel im-{
nomial mutation plementation of NSGA-II
[44] 6 s.C. 21/24 | Continuoug e-NSGA SBX crossover and poly- Orbital mechanics model| 48 250 None
nomial mutation
[107] 2 N/A N/A Continuoug NSGA-II SBX and polynomial-| Orbital mechanics and 20 N/A Results are presented fq
based mutation rocket equation models 100,000, 500,000, and
1,000,000 total function
evaluations.
[111] 3 2 6 Continuoug MOPED Nondominated sorting,| Analytical,  structural,| 60 50 Use of ANNs as meta-
crowding and CFD models model.

h

NObj = Number of objectives; NCons = Number of constraint¥/alé = Number of design variables; VarType = Type of variahlPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constsaare adopted.
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| Ref | NObj | NCons| NVars | VarType Algorithm | Operators Physics Model | NPop| Gmax| Remarks
[19] 9 s.C. 6 Discrete MOGA Structured chromosome Control mode analysis 70 N/A None
representation, mati
ing restrictions, fitness|
sharing
[6] 20 s.C. 14 Continuoug  MOGA Binary tournament selec{ Control mode analysis N/A N/A None

tion, multiple crossover
operators, Pareto rank|

ing, fitness sharing

NObj = Number of objectives; NCons = Number of constraint§/até = Number of design variables; VarType = Type of variablPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constsaare adopted.
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