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Abstract: Multi-Objective Differential Evolution (MODE), a multi-population, multi-

objective optimization approach using Differential Evolution (DE) has been successfully 

applied to selected real world problems. This algorithm is equipped with non-dominated 

population selection combined with basic DE algorithm. In this study, the MODE 

algorithm is further applied on six different Test problems with/without constraints and 

extensive simulation runs are carried out for parametric study. Pareto optimal solutions 

are obtained for each test problems. The Pareto fronts are compared on the basis of 

various values of key MODE parameters. This work resulted in identifying the sensitivity 

of various key parameters of the MODE algorithm applied on the hard test problems. 
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1. INTRODUCTION  

Most realistic optimization problems, particularly those in engineering design, require the 

simultaneous optimization of more than one objective function. Some examples are listed 

in Table-1: 

Table-1: Applications of Multi-objective optimization in Engineering Design. 

Application    Objectives 

Complex test problems [8, 9] Simultaneous maximization and 

minimization of several objectives in 

complex test problems  

Chemical Plant Design [33] Low total investment and high yield of 

product. 

Aircraft Design [33] High Fuel Efficiency, low payload, and 

low weight. 

Car Purchase [33] Low cost and high comfort 

A good sunroof design in a car [33] Low noise and high ventilation. 

Automobile Design [33] High crash resistance for safety and low 

weight for fuel economy. 

Bridge Construction [33] Low total mass and high stiffness. 

Supply Chain Management [8], [37] Minimum Manufacturing Cost, Total 

Operating Cost, Transportation cost and 

Maximum Revenue/Profit. 

Wiped-Film Poly-Ethylene Terephthalate 

(PET) Reactor [22] 

Minimization of acid end group 

concentration and vinyl end group 

concentration 

Adiabatic Styrene reactor [23] Maximization of productivity and yield 

 

In the applications listed in Table 1 and in many other cases, different solutions may 

produce trade-offs (conflicting scenario) among different objectives. A solution that is 

extreme with respect to one objective requires a compromise in other objectives. Hence, 

some trade-off between the criteria is needed to ensure a satisfactory design.  



Because of a lack of suitable solution methodologies, a Multi-objective optimization 

problem (MOOP) has been mostly formulated and solved as a single objective 

optimization problem in the past by keeping one of the objectives as main objective and 

making other objectives as constraints. Traditionally, there are several methods available 

in the literature for solving MOOP problems [31]. These methods follow preference-

based approach, where a relative preference vector is used to scalarize multiple 

objectives. Since classical search and optimization methods use a point-by-point 

approach, where  

One solution in each of the iterations is modified to a different solution; the outcome of 

using classical method is a single optimized solution. However, Evolutionary Algorithms 

(EAs) can find multiple optimal solutions in a single simulation run due to their 

population based search approach.  

In this paper, MODE, a simple and fast EA is applied on six different Test problems. As 

Differential Evolution is found to give better results than Genetic Algorithms (GA) for 

single objective optimization [18, 19, 20, 11, 24, 13], we tried to extend the application of 

DE to MOOP problems. In our previous work [22, 23], it was observed that results 

obtained by MODE and NSGA were exactly matching in terms of optimum objective 

function values. Though both NSGA and MODE follow the same Pareto optimal front, 

MODE is found to perform better in terms of convergence and diversity of the Pareto 

Optimal front with chosen parameter values. In this work, an attempt has been made to 

explore the performance and robustness of MODE algorithm by further applying it on six 

well known Test problems with various possible parameter values. 

 



2. DIFFERENTIAL EVOLUTION 

Differential Evolution [37] is an improved version of GA [32] for faster optimization. 

Unlike simple GA, that uses binary coding for representing problem parameters, DE is a 

simple yet powerful population based, direct search algorithm for globally optimizing 

functions with real valued parameters. Among the DE’s advantages are its simple 

structure, ease of use, speed and robustness. Price and Storn [37] gave the working 

principle of DE with single strategy. Later on, they suggested ten different strategies of 

DE [39]. A strategy that works out to be the best for a given problem may not work well 

when applied for a different problem. Also, the strategy and key parameters to be adopted 

for a problem are to be determined by trial and error. Pseudo code of DE for solving 

single objective optimization is discussed in [22]. The crucial idea behind DE is a scheme 

for generating trial parameter vectors. Basically, DE adds a weighted difference between 

two population vectors to a third vector. The key parameters of control in DE are: NP, 

CR, and the F- the weight applied to random differential. Price and Storn [39] have given 

simple rules for choosing key parameters of DE for any given application. Babu et al. 

[24] proposed a new concept called ‘nested DE’ to automate the choice of DE key 

parameters. In addition, some new strategies have been proposed and successfully 

applied to the optimization of extraction process [14]. 

DE has been successfully applied in various fields. Some of the successful applications of 

DE include: digital filter design [40], batch fermentation process [41, 18], estimation of 

heat transfer parameters in trickle bed reactor [10], dynamic Optimization of a 

Continuous Polymer Reactor using a Modified Differential Evolution [34], optimization 

of Low Pressure Chemical Vapor Deposition Reactors Using Hybrid Differential 



Evolution [35], optimal design of heat exchangers [19, 20], synthesis and optimization of 

heat integrated distillation system [17], optimization of an alkylation reaction [7], 

optimization of non-linear functions [12], optimization of thermal cracker operation [11], 

global optimization of MINLP problems [13], optimization of water pumping systems 

[15], optimization of biomass pyrolysis [6], etc. Many engineering applications using 

various evolutionary algorithms have been reported in the literature [1, 2, 3, 4, 5, 8, 9, 16, 

21, 29, 36] etc. 

 

3. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION (MODE) 

Multi-Objective Differential Evolution (MODE) is a multi-population, multi-objective 

DE approach. The algorithm can be summarized as follows: An initial population is 

generated at random. All dominated solutions are removed from the population using the 

non-dominated sorting approach [31]. The remaining non-dominated solutions are 

retained for recombination. Three parents are selected at random. A child is generated 

from the three parents and is placed into the population if it dominated the first selected 

parent; otherwise a new selection process takes place. The schematic representation of 

MODE algorithm using DE approach is presented in Fig. 1.  The general pseudo-code for 

MODE is reported in our earlier work [22, 23]. 
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Fig. 1 –working principle of MODE algorithm 

 

 



4. TEST PROBLEMS 

Six well-known MO benchmark problems were used as a first step in the investigation of 

MODE’s performance. Each Test problem consists of two objective functions 

with/without constraints. Test problems with constraints are handled by penalty approach.  

Since penalty terms are added to each objective function, the resulting penalized 

objective functions may form a Pareto optimal front different from the true Pareto 

optimal front, particularly if the chosen penalty parameter values are not adequate. For 

this purpose, the pseudo Pareto optimal front is determined by calculating the penalized 

function values using equations 1 and 2. 

221111 gRgRfF ++=         (1) 

221122 gRgRfF ++=         (2) 

where g1 and g2 are constraints and R1 and R2 are the Penalty parameters of the 

respective objective functions. We considered the following Test problems for study [25, 

26, 27, 31]. 

4.1. Test Problem - 1 [31]   
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where the maximum stress is calculated as follows:  
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4.2. Test Problem - 2 [31] 

.50

,11.0

19)(

,69)(

,
1

)(

),()(

2

1

122

121

1

2
2

11

≤≤

≤≤

≥+−≡

≥+≡

+
=

=

x

x

xxxg

xxxgtoSubject

x

x
xfMinimize

xxfMinimize

 

4.3. Test Problem - 3 [25]   

The Maximize-Maximize problem [25] is also solved using MODE algorithm.  
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4.4. Test Problem - 4 [31] 
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4.5. Test Problem- 5 [26] 
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4.6. Test Problem- 6 [27] 
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5. RESULTS & DISCUSSION 

The performance of MODE algorithm is tested by applying it to above mentioned 

benchmark Test problems. Extensive simulation runs are carried out for parametric study. 

The key parameters of MODE; Crossover constant (CR), Number of population points 

(NP), Scaling factor (F), Number of generations (Ng) and Penalty parameter (R) are 

varied over a wide range of their possible values. The results obtained through the 

simulations are discussed below problem wise. 

5.1. Test Problem-1 

In Figs. 2 to 8, all the non-dominated solutions obtained for Test problem 1 using MODE 

approach are plotted. Figure 2 shows the Pareto Optimal front at various values of CR, at 

a very low value of R.  At very low value of R, there is no effect of CR on the Pareto 



Optimal front. Both convergence and distribution of all Pareto fronts are good. Pareto 

Optimal front with CR=0.9 is found to be better than those obtained with CR=0.15 and 

0.5 at R=1(Fig. 3). The Pareto Optimal front shown in Fig. 3 with CR=0.15 and 0.5 at 

R=1 reveals that, convergence is good but spread of solutions is poor. Effect of Penalty 

parameter, R at a fixed CR value is shown in Figs. 4 & 5. MODE is able to produce a 

pseudo optimal front at all values of R. Population with large value of R (R=100) shows a 

poor spread of solution. Also pseudo-optimal fronts seem to approach the true front with 

increasing value of R (Fig. 4). This may be due to the fact that at very low value of 

penalty parameter, the front resides in the infeasible region. This is also common in 

single-objective optimization, because if R-value is chosen as smaller than its optimum 

value, the penalty effect is less and the resulting optimal front may be infeasible [30].  

Fig. 6 shows the effect of NP on the Pareto Optimal front. Pareto front with NP=1000 is 

found to be better with respect to both convergence and spread on the Pareto Optimal 

front. Also one of the observations is that with very low value of NP (NP=100), both the 

convergence and spread of solutions is poor. Fig. 7 shows the effect of constant F on 

Pareto Optimal front. Randomly generated F is found to give better results. The bar chart 

representation of the normalized Pareto solutions of both objectives (Weight and 

Deflection) is shown in Fig. 8. Considering that the objectives can take different ranges 

of values, the bar chart diagram is plotted with normalized objective values. The diversity 

in different solutions for each objective can be directly observed from bar-chart 

representation of the objective functions.  
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Fig. 2: Effect of CR at R=0.001 on Pareto front
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Fig. 4: Effect of CR at R=1
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Fig. 5: Effect of Penalty Parameter R
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Fig. 6: Effect of NP on Pareto front
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Fig. 7: Effect of constant F on Pareto front
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5.2. Test Problem-2 

In Figs. 9 to 14, all the non-dominated solutions obtained for Test problem 2 using 

MODE approach are plotted. Fig. 9 shows the Objective space and Pareto Optimal front 

at various Generations, with CR=0.9, R=0.1 and NP= 1000. Generation after generation, 

MODE converges to the better Pareto front as shown in the figure. Also, the robustness 

of MODE can be visualized, as MODE approaches to the true Pareto front at lower 

generations. Thereafter, even increasing the number of generations, the Pareto front 

remains same. In Fig. 10, Pareto Optimal front is plotted at various values of CR and NP 

combinations. Irrespective of CR values, with lesser values of NP (in the range of 100) 

the performance of MODE is poor at a lesser generation value. This may be due to the 

fact that at low values of NP, the possibility of getting diversified and well –distributed 



solutions in the feasible region is very less. As can be seen from Fig. 10, with CR=0.9 

and NP=1000, Pareto Optimal front is well distributed as well as converged.  

As discussed in Test problem 1, success of MODE approach depends on selection of 

penalty parameters R1 and R2. To show this effect, we choose different values of R1 and 

R2. Figs. 11 & 12 show the complete population after 50 generations of MODE for 

different values of R. The reason for continuing simulations for so long is purely to make 

sure that a stable population is obtained. Fig. 11 shows that a small penalty parameter 

cannot find all feasible solutions even after several generations. Since penalty terms are 

added to each objective function, the resulting penalized objective functions may form a 

Pareto optimal front different from the true Pareto-optimal front, particularly if the 

chosen penalty parameter values are not adequate. It also reveals from Figs. 12 & 13 that 

Pseudo Pareto-Optimal fronts seem to approach to the true front with increasing value of 

R but the Population with a large R (R=100) shows a poor spread of solutions. These 

results are consistent with the results obtained in Test problem 1. Fig. 14 shows the bar 

chart representation of the objective functions. 
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Fig. 9: Pareto front at various Generations with CR=0.9
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Fig. 10: Pareto front at varied values of NP and CR
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Fig. 11: Pareto front at varied penalty parameter values
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Fig. 12: Pareto front at different values of R
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Fig. 13: Pareto front at various R values
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5.3. Test Problem-3  

In Figs. 15 to 18, all the non-dominated solutions obtained for unconstrained Test 

problem 3 using MODE approach are plotted. Fig. 15 shows the Pareto Optimal front at 

various Generations and the objective space. These fronts are plotted using the parametric 

values as CR=0.15 and NP= 500. In the objective space, all the points are distributed 

evenly. As has been the case with the previous Test problems, in this case also, MODE 

converges to the better Pareto front. This also proves the robustness of MODE for 

Maximize-maximize problems with two objectives. In Fig. 16, Pareto front is plotted at 

various values of CR at fixed generation. MODE is robust enough to give the same 

Pareto Optimal front at all CR values. Fig. 17 shows the population after 100 generations 

and with CR=0.15 and various values of NP. MODE converges to the same Optimal front 



at any value of NP. The bar chart representation of the normalized Pareto solutions of 

both objectives is shown in Fig. 18.  
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Fig. 15. Pareto front at various generations
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Fig. 16: Pareto front at various values of CR
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Fig. 17: Pareto front at at different NP values
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Fig. 18:  Bar- Chart Representation
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5.4. Test Problem-4  

In Figs. 19 to 21, all the non-dominated solutions obtained for Test problem 4 using 

MODE approach are plotted. In Fig. 19, Pareto front is plotted at various values of CR at 

fixed generation. For this case too, the same Pareto Optimal front is obtained at all CR 

values with few exceptions. Fig. 20 shows the Pareto Optimal front at various 

Generations, with CR=0.9 and NP= 1000. The Pareto Optimal front is plotted at 

generation 1, 10, 100 and 1000.  The non-dominated set of solutions goes on converging 

generation after generation. The points shown at generation 1 show the feasible objective 

space for the Maximize-Maximize Test problem given in section 4.4.  The exact number 

of non-dominated solutions for above-mentioned problem in generations 1, 10, 100 and 

1000 is 298, 10, 8 and 2 respectively. In this case also in each generation, MODE 



converges to the better Pareto front. This also proves the robustness of MODE for 

Maximize-maximize problems with two objectives. The bar chart representation of the 

normalized Pareto solutions of both objectives is shown in Fig. 21.  

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

30

35

40

45

50

55

60

65

Fig. 19: Pareto front at various  CR values
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Fig. 20: Pareto front at various generations
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Fig. 21: Bar- Chart Representation
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5.5. Test Problem-5 

Binh and Korn [26] introduced the two variable constrained problem (BNH) as given in 

section 4.5.  Figs. 22 to 26 show the Pareto Optimal front for two variable constrained 

Minimize-minimize BNH test problem. Fig. 22 shows the effect of CR on the Pareto 

front.  MODE is found to converge to the same front at various values of CR. But the 

number of non-dominated solutions is found to be increasing with increasing the value of 

CR. The non-dominated solutions at the CR value of 0.15, 0.5 and 0.9 for BNH problem 

are 101, 136 and 149 respectively after 500 generations. Pareto Optimal front is plotted 

with various NP values after 500 generations in Fig. 23. MODE is tested with various NP 

values and results with NP 100, 500 and 1000 are shown in Fig. 23. MODE is found to 

converge to the same front at any value of NP. However the number of non-dominated 

solutions in the Pareto set is found to vary with NP values. Number of non-dominated 

solutions for NP 100, 500 and 1000 is 107, 98 and 147 respectively. It is interesting to 

note that with NP values of 100, the number of non-dominated solutions is 107. The 

objective space and the Pareto Optimal front for BNH problem at various generations is 

shown in Fig. 22. MODE is found to converge to true Pareto Optimal front at generation 

value of 10. After 500 generations although Pareto front is same as that at generation 10, 

it contains 2 non-dominated solutions less than that at generation 10. Effect of constant F 

on Pareto Optimal front is shown in Fig. 25. MODE converges to the true Pareto front 

irrespective of the value of F in the range. The number of non-dominated solutions is 

found to be same at all values of F including the random generation of F. Fig. 26 shows 

the effect of Penalty parameter on the Pareto front. As penalty terms are added to each 



objective function, the resulting Pareto optimal front is different from the true Pareto 

Optimal front. Relaxing the constraints (low R value) moves Pareto Optimal front to 

infeasible region, while increasing the value of Penalty parameter move the front into a 

feasible objective space. MODE algorithm is found to converge to only 2 optimal 

solutions with R=50.  
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Fig. 22: BNH Problem Pareto front at various CR values
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Fig. 23: BNH Problem Pareto front at  various NP
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Fig. 24: BNH Pareto front at various generations
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Fig. 25: BNH Pareto Front at various F values
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Fig. 26: BNH Pareto front at various Penalty Parameters
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5.6. Test Problem-6 

This test problem (SRN) is borrowed from Chankong and Haimes [27].  Figs. 27 to 31 

show the Pareto Optimal front for SRN problem at various parameter values. As has been 

the case with earlier problems discussed above, MODE converges to the same optimal 

front at all values of CR within range of 0 to 1 (Fig. 27).  Fig. 28 shows the SRN Pareto 

Optimal front at various NP values. Pareto front is same in this case with few exceptions 

at NP=100. The reason for such trade-off in Pareto front is discussed in section 3.3.2. The 

objective function space and the Pareto optimal front at various generations are shown in 

Fig. 29. These results also match with the results discussed above. Fig. 30 shows the 

Pareto Optimal front with various values of F. Pareto front is rich with respect to number 

of non-dominated solutions in the dominant objective feasible space, which can be seen 

from Fig. 29. Effect of R on SRN test problem is shown in Fig. 31. In this case also, 

increase in the Penalty Parameter pushes the Optimal Pareto front in the feasible region 

away from the true front. 
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Fig. 27: SRN Pareto front at various values of CR
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Fig. 28: SRN Pareto front at various number of populations
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Fig. 29: SRN Pareto Front at various generations
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Fig. 30: SRN Pareto front at various F values
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Fig. 31: SRN Pareto front at various R values
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6. CONCLUSIONS 

MODE algorithm is applied to six different benchmark test problems for validating its 

robustness and performance. MODE is found to handle all kinds of MO problems with 

and without constraints. MODE is already found to give the exact results in terms of 

optimum objective function values with respect to NSGA [22, 23]. Also both NSGA and 

MODE are found to follow the same Pareto Optimal front. In this study we observed the 

robustness of MODE with respect to its key parameters, i.e., CR, NP, F, and Ng. 

Generation after generation, MODE converges to the better Pareto Optimal front. MODE 

is robust enough to give the same Pareto Optimal front for all CR values. F is found to 

have no effect on the Pareto front.  



Pseudo Pareto-Optimal fronts seem to approach to the true front with increasing value of 

R but the Population with a large R (R=100) shows a poor spread of solutions. This may 

be due to the fact that at very low value of penalty parameter, the front resides in the 

infeasible region. If R-value is chosen as smaller than its optimum value, then the penalty 

effect is less and the resulting optimal front may be infeasible. With very low value of NP 

(NP=100), both the convergence and spread of solutions is found to be poor. This may be 

due to the fact that at low values of NP, the probability of getting diversified and well-

distributed solutions in the feasible objective function region is very less. Bar chart 

representation of normalized Pareto solutions is a useful way to represent different non-

dominated solutions. The diversity in different solutions for each objective can be 

directly observed from bar-chart representation of the objective functions. With this 

representation, user can easily compare and select the solutions according to his need due 

to the wide range of available solutions.  
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