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Summary The particle swarm optimization (PSO) algorithm has gained increasing
popularity in the last few years mainly because of its relative simplicity and its good
overall performance, particularly in continuous optimization problems. As PSO is
adopted in more types of application domains, it becomes more important to have
well-established methodologies to assess its performance. For that purpose, several
test problems have been proposed. In this chapter, we review several state-of-the-
art test function generators that have been used for assessing the performance of
PSO variants. As we will see, such test problems sometimes have regularities which
can be easily exploited by PSO (or any other algorithm for that sake) resulting in
an outstanding performance. In order to avoid such regularities, we describe here
several basic design principles that should be followed when creating a test function
generator for single-objective continuous optimization.

1 Introduction

Multimodal problems are those in which the search space has several local
optima and possibly more than one global optimum. They constitute a type
of optimization problem in which the particle swarm optimization (PSO) al-
gorithm has been only scarcely applied [1]. Such multimodal problems are
interesting not only because of the challenge that represents avoiding local
optima or the localization of more than one global optimum at the same time,
but because there exist several real-world problems presenting such features.

The most common multimodal test functions currently available in the
specialized literature show regularities, such as symmetry with respect to one
axis, uniform spacing among optima, exponential increase in the number of
global optima with respect to the increase in the number of decision vari-
ables, among others. Such regularities can be exploited by an optimization
algorithm such as PSO, decreasing their degree of difficulty [2]. To overcome
these regularities and have a better testing environment to assess the perfor-
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mance of an optimization algorithm, some test functions generators have been
developed [3] as well as methodologies to create new test functions by using a
composition procedure or through the application of linear transformations on
common test functions [4]. Our particular interest are scalable test functions
presenting several local optima, but only one global optimum.

In this chapter we present a brief introduction to particle swarm opti-
mization, to linear transformations and to the composition of functions. We
also provide guidelines to create a composition of functions in a simple way,
using any sort of test functions at hand. Additionally, we review the state-of-
the-art regarding test function generators, and conclude with some pointers
towards promising directions to extend the test functions generators currently
available in the specialized literature.

2 The Particle Swarm Optimization Algorithm

Kennedy and Eberhart introduced the PSO algorithm in the mid-1990s [5],
and it quickly became popular as an optimizer mainly because of its ease of
use and efficacy. In PSO, the position of a possible solution (a particle) is
updated using the two rules shown in equations (2) and (1).

vt+1 = vt + c1r1(g − xt) − c2r2(p − xt) (1)

xt+1 = xt + vt+1 (2)

where xt and vt are the current position and the current velocity of the
particle, respectively, p is the position in which the particle has obtained its
best (so far) fitness value, g is the position with the best (so far) fitness value
obtained by the entire swarm, c1 and c2 are called the learning constants, r1

and r2 are random numbers in the range [0, 1] generated using an uniform
distribution. The initial tests of the PSO algorithm were made using the
Schaffer F6 function and training a neural network. Further improvements to
the PSO algorithm were later introduced by Eberhart and Shi [6], by adding
an inertia weight constant to the update rule of the velocity, as shown in
equation (3)

vt+1 = ωvt + c1r1(g − xt) − c2r2(p− xt) (3)

The constant ω acts as a damping parameter, regulating the transition
between the exploration and exploitation phases of the algorithm. In this
case, the Schaffer F6 function was also adopted for the validation of the PSO
algorithm. In some further work, Shi and Eberhart [7] presented a version in
which the inertia weight value was linearly decreased. In that work the PSO
algorithm was assessed using four test functions: the Sphere, Rosenbrock,



Test Function Generators for PSO Algorithms 3

Rastrigin, and Griewank. All of these test functions can be scaled to any
number of variables.

An analysis of the PSO algorithm from the point of view of the dynamic
systems was presented by Clerc and Kennedy [8]. This work introduced an-
other modification to the velocity update rule, as expressed in equation (4).

vt+1 = χ [vt + c1r1(g − xt) − c2r2(p − xt)] (4)

where the coefficient ω is computed according to equation (5).

χ =
2κ

|2 − φ −
√

φ2 − 4φ|
(5)

Here, κ is an arbitrary value in the range [0, 1]. It is common to use the
value κ = 1. From equation (5) we can see that, in order to obtain a real value
in the square root of the denominator, it is necessary that φ ≤ 4. In the case
φ = 4, with κ = 1, we obtain a value χ = 1, and we get the original PSO
update rules. In addition to the four test functions used by Shi and Eberhart
[7], that can be scaled up to any number of variables, other four test functions
were used, namely, De Jong F4, Schaffer F6, Foxholes (De Jong F5), and a
Rosenbrock variant with only two variables. Of the last four test functions
only the De Jong F4 test function can be used with any number of variables.

Other modifications to the PSO algorithm include the topology of the
particles. Initially, the global best position g is computed by inspecting each
of the particles in the swarm. In this case, all the particles can exchange
information among them. Thus, the information of which particle has the best
fitness value is transferred quickly and easily. In an attempt to slow down the
information transfer (and favor diversity), the particles are aligned in a ring.
Each particle has only two neighbors with whom they can share information.
The position of a particle in the ring is not related to its position in the search
space.

The first of these two models (in which all the particles are examined in
order to determine the position of a particle) is called global best (or gbest).
The second model (in which a ring topology is used) is called local best (or
lbest). Eberhart and Kennedy introduced the lbest topology in their work [9].
Subsequent works from Kennedy [10] and Kennedy and Mendes [11] examined
in more detail the effects of using different topologies in the PSO algorithm.
The test functions used in this case include the Sphere, Rosenbrock, Ranstring,
Griewank, and in [11], the Schaffer F6 test function is used as well. Along
with the gbest and lbest topologies, the von Neumann topology [11] has also
been popular, particularly when adopting sub-swarms [12, 13]. In the von
Neumann topology, the particles are arranged in a grid and each particle
has four neighbors. Figure 1 illustrates the gbest, lbest, and von Neumann
topologies.
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Fig. 1. Different topologies used with the PSO algorithm. From left to right: the
gbest topology where all particles can share information among them, the lbest topol-
ogy where each particle has only two neighbors and can only share information with
them, and the von Neumann topology where the particles are arranged in a regular
grid and each particle has four neighbors.

Although other, more robust and elaborate, PSO variants have been pro-
posed (see for example [14, 15]), most of them rely on the use of the constric-
tion factor and the inertia weight model, along with the gbest, lbest or von
Neumann topologies.

3 Linear Transformations and Homogeneous Coordinates

Most of the basic test functions have regularities that can be exploited by
optimization algorithms. Examples of such regularities are that the position
of the optimum is in the origin, or that it has equal values for all of its coordi-
nates. These regularities can be overcome by using linear transformations. A
translation transformation can displace the location of the optimum. Indeed,
the position of the optimum can be not only displaced, but its coordinates can
also have different values. Other transformations such as rotation and scaling
can also be used to break regularities in the test functions.

A well-known drawback of using linear transformations is that such trans-
formations are applied separately. It is, for example, common to first translate
a point using vector operations, then multiply it by a scalar in order to ap-
ply a scaling transformation, and finally, multiply the vector by a matrix in
order to rotate its position. This is partly due to that a translation cannot
be expressed as a matrix for a given dimension D. If all linear transforma-
tions could be expressed by a matrix, they could all be combined using matrix
multiplication, and then, by using a single vector-matrix operation, we could
apply all the linear transformations to a point. This can be accomplished by
using homogeneous coordinates.

Homogeneous coordinates are commonly used in computer graphics [16].
Although they are used for perspective and projection transformations, they
are also useful to express a translation transformation as a matrix. To use
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homogeneous coordinates we only need to add an extra coordinate to the vec-
tor that represents the position. This extra coordinate is used only to help
in the application of the linear transformations, and can be dropped after.
For example, in a problem with two decision variables x and y, a point P
of the search space is represented as P = (x, y). The same point in homoge-
neous coordinates is expressed as P ′ = (x, y, 1). A translation transformation
that shifts an amount Tx the variable x, and an amount Ty the variable y is
expressed as the matrix





1 0 0
0 1 0
Tx Ty 1



 (6)

To apply the translation transformation, we multiply the vector represent-
ing the position P ′ by the matrix representing the translation transformation
as follows

[

x y 1
]





1 0 0
0 1 0
Tx Ty 1



 =
[

(x + Tx) (y + Ty) 1
]

(7)

We obtain a translated point Q′ with coordinates (x + Tx, y + Ty, 1). Re-
moving the last coordinate of Q′ we obtain the point Q = (x + Tx, y + Ty)
which is the point P = (x, y) translated by an amount Tx and Ty. The transla-
tion transformation can be expressed as a matrix for any number of variables.
A generalization of the translation transformation matrix is shown in equa-
tion (8).

T =



















1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
T1 T2 T3 · · · TD 1



















(8)

A scaling transformation can be also represented as a matrix. Equation (9)
shows a matrix that represents a scaling transformation for two variables.
The values Sx and Sy in the diagonal of the matrix, represent the scaling
factors for the variables x and y, respectively. Equation (10) shows the scaling
transformation matrix in homogeneous coordinates for two variables.

S =

[

Sx 0
0 Sy

]

(9)
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S =





Sx 0 0
0 Sy 0
0 0 1



 (10)

The scaling transformation matrix can also be expressed for any number
of variables. A scaling transformation matrix in D dimensions using homoge-
neous coordinates is represented in equation (11).

S =



















S1 0 0 · · · 0 0
0 S2 0 · · · 0 0
0 0 S3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · SD 0
0 0 0 · · · 0 1



















(11)

In the case of a rotation transformation, a matrix can also represent it.
However, the matrix that represents a rotation transformation has additional
properties, since the matrix must be orthogonal. A rotation transformation
can also be difficult to build. For example in three dimensions, and depending
of the rotation axis, a rotation transformation matrix can be expressed in any
of the following ways:

Rz =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 (12)

Rx =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 (13)

Ry =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 (14)

Rotation can be done around any axis, but the matrix, in each case, takes
a different form. As we mentioned before, a matrix that represents a rota-
tion transformation must be orthogonal. Salomon [2] describes a method to
generate a matrix that represents the application of random rotation trans-
formations for more that 2 variables. A brief description of this method is
provided next:
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1. A function that generates a rotation matrix is defined as follows: Rot(A, i, j)
returns an identity matrix A with a change in four elements, namely
aii = ajj = rand1 and aij = rand2, aji = −rand2, where rand1 and
rand2 are random numbers in the range [−1, 1].

2. To create a square n×n orthogonal matrix, n rotation matrices are created
Ak = Rot(A, 2, k) for k = 1, . . . , n and are multiplied to create A1.

3. A second n × n matrix A2 is created using the product of Am =
Rot(A, m, n) matrices for m = 3, . . . , n − 1.

4. The final matrix AR is computed as the product AR = A1A2.

A rotation matrix in homogeneous coordinates follows the same form that
the translation and scaling matrices. In order to represent a rotation trans-
formation matrix we only need to add a row and a column and put a value of
1 in the lower-right element of the matrix as in equations (8) and (11).

Now, we can represent all the linear transformations as matrices, and we
can combine any number of transformations of any type in a single matrix.
This will be useful when we describe how to use linear transformations to
generate new test functions in Section 6.

4 Function Composition

In this section, we present a brief review of the basic notions of function and
function composition that we will use to generate test functions.

A function f is a rule that associates the elements of a set A called domain

to the elements of a set B called codomain. This relation is commonly repre-
sented as f : A → B, and it is usually said that f maps the elements a ∈ A
into elements b ∈ B. This is written as a 7→ b or f(a) = b. A function has the
restriction that an element a ∈ A is associated only with one element b ∈ B.
Thus, an element a ∈ A cannot be associated with two elements b1, b2 ∈ B,
but an element b ∈ B can be associated with two different elements a1, a2 ∈ A.

As an example, let’s consider the function f : R → R that maps x ∈ R to
y ∈ R using the rule x 7→ mx + b (which is usually written as f(x) = mx + b
or y = mx + b). This function maps a x ∈ R to a y ∈ R and it is easy to
see that if we have two elements x1, x2 ∈ R they map to different elements
y1, y2 ∈ R. But, with the function g : R → R, and the rule x 7→ x2, the
elements x,−x ∈ R are mapped to the same element x2 ∈ R.

Function composition is the sequential application of two or more func-
tions. That is, we apply the function f to a point x and then function g to
f(x). This is written as g ◦ f . We use function composition so commonly that
sometimes we do not realize it. Mathematical operations, such as an addition
or a product are functions. When performing a multiplication along with an
addition, a function composition is applied. The application of two or more
transformations, as we did in the previous section, is also function composi-
tion. For example, the function F (x) = (x+3)2+5 is actually the composition
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of three functions: a function f : R → R such that x 7→ x + 3, adds 3 to x,
the function g : R → R with the rule y 7→ y2, which raises (x + 3) to the
second power. Then, the function h : R → R, which does z 7→ z + 5, adds 5
to (x + 3)2. Thus, the final result of the composition of the three functions is
h ◦ (g ◦ f)(x) = F (x) = (x + 3)2 + 5.

Before using the transformations and function composition to generate test
functions, we will provide a review of test functions that have been commonly
adopted in the PSO literature on multimodal optimization.

5 Test Functions Commonly Adopted

This section describes the test functions that have been the most commonly
adopted to assess performance of PSO-based algorithms. Details of each of
them are also provided, such as the search range, the position of their known
optima, and other relevant properties.

The Sphere test function is one of the most simple test functions available
in the specialized literature. This test function can be scaled up to any number
of variables. It belongs to a family of functions called quadratic functions and
only has one optimum in the point o = (0, 0, . . . , 0). The search range com-
monly used for the Sphere function is [−100, 100] for each decision variable.
Equation (15) shows the mathematical description of the Sphere function and
Figure 2 shows its graphical representation with two variables.

f(x) =
D
∑

i=1

x2
i (15)

The first Schwefel test function is also a quadratic function, and it is
defined by equation (16). It also has only one optimum at the point o =
(0, 0, . . . , 0) and its search range is the same as that of the Sphere function
(i.e., [−100, 100] for each variable). The graphical representation of the first
Schwefel function is shown in Figure 3.

f(x) =

D
∑

i=1





i
∑

j=1

xj





2

(16)

The Rosenbrock test function is defined by equation (17) and its graphical
representation with two variables is shown in Figure 4. Although this picture
shows an extense flat region, it only has one optimum located at the point o =
(1, 1, . . . , 1). It is also a quadratic function, and its search range is [−30, 30]
for each variable.
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Fig. 2. Graphical representation of the Sphere test function in two dimensions.
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Fig. 3. Graphical representation of the first Schwefel test function in two dimensions.
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f(x) =

D−1
∑

i=1

[

100(xi+1 − x2
i ) + (xi − 1)2

]

(17)
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Fig. 4. Graphical representation of the Rosenbrock test function in two dimensions.

The second Schwefel test function includes a trigonometric function in the
equation that defines it (see equation (18)). This provides the function with
multiple local optima in the search range, which is, in this case, [−500, 500]
for each variable. However, it only has one optimum located at the point o =
(420.96, 420.96, . . . , 420.96). Its graphical representation, using two variables
is shown in Figure 5.

f(x) = −
D
∑

i=1

xi sin(
√

|xi|) (18)

The generalized Rastrigin test function is also commonly adopted, and it is
represented by equation (19). It includes a trigonometric function analogously
to the second Schwefel function. The graphical representation of the Rastrigin
function is shown in Figure 6. There, we can observe that it has several local
optima arranged in a regular lattice, but it only has one global optimum
located at the point o = (0, 0, . . . , 0). The search range for the Rastrigin
function is [−5.12, 5.12] in each variable.
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Fig. 5. Graphical representation of the second Schwefel test function in two dimen-
sions.

f(x) = 10 +

D
∑

i=1

{

x2
i − 10 cos (2πxi)

}

(19)

The Ackley test function is defined by equation (20) and its graphical
representation is shown in Figure 7. As we can see, the Ackley test function
has several local optima that, for the search range [−32, 32], look more like
noise, although they are located at regular intervals. The Ackley function only
has one global optimum located at the point o = (0, 0, . . . , 0).

f(x) = −20 exp



−0.2

√

√

√

√

1

D

D
∑

i=1

x2
i





− exp

(

1

D

D
∑

i=1

cos(2πxi)

)

+ 20 + e (20)

The Griewank test function is defined by equation (21). It also shows
several local optima within the search region defined by [−600, 600]. Figure 8
shows its graphical representation for the case of two variables. It is similar to
the Rastrigin function, but the number of local optima is larger in this case.
It only has one global optimum located at the point o = (0, 0, . . . , 0).
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Fig. 6. Graphical representation of the Rastrigin test function in two dimensions.
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Test Function Generators for PSO Algorithms 13

f(x) =
D
∑

i=1

x2
i

4000
−

D
∏

i=1

cos

(

xi√
i

)

+ 1 (21)
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Fig. 8. Graphical representation of the Griewank test function in two dimensions.

The test function shown in this section correspond to those that are most
commonly adopted in the specialized literature. They can be scaled up to
any number of decision variables. There are also other commonly used test
functions that were not included here because they are defined with only one
or two decision variables, and are not scalable. We also did not include test
functions such as Schubert’s function, which has multiple global optima, since
they are more suitable for methods dedicated to locate more than one optima
in a single run. The interested reader is referred to the work of Bratton and
Kennedy [17] for more test functions of this sort.

6 Generating Test Functions

This sections describes how to generate a new test function using a set of
available test functions, by applying transformations and function composi-
tion.
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6.1 Using linear transformations

We begin with the most simple function and a translation transformation.
The Sphere test function is known to be a very simple function, since it only
has one optimum centered in the origin. In order to change the position of the
optimum of the Sphere function, we can apply a translation transformation.
For example, if we use a translation transformation to move the location of
the optimum of the Sphere function in two dimension from the origin to the
point (50, 50), we only need to multiply each point by a translation matrix
before applying the Sphere function. That is, starting with a point P = (x, y),
we first add the dummy variable w = 1 and we get the point P ′ = (x, y, 1).
Then, we multiply this point by the matrix





1 0 0
0 1 0

−50 −50 1



 (22)

To obtain the translated point Q′ = (x − 50, y − 50, 1), we then drop the
last coordinate of the point Q′ in order to obtain the point Q = (x−50, y−50).
Finally, we apply the Sphere function to the point Q. Although this may look
like a complicated operation to simply translate the optimum of the Sphere
function, as we add more transformations, the procedure remains the same,
and we only need to build a matrix representing all the transformations.

The effect of the translation applied to the Sphere function is shown in
Figure 9. It is worth noting that the values used in the translation transfor-
mation are negative, and they translate the optimum to a positive position.
This may be counterintuitive, but it has a reason: if we use positive values
in the translation transformation Tx = 50, Ty = 50, the point where the op-
timum is located o = (0, 0) is translated to o′ = (−50,−50). If we want the
new optimum to be located at P = (50, 50) after the translation, the values
of Tx, Ty that we need to adopt for the translation transformation must be
Tx = −50, Ty = −50. After applying the translation to the point P = (50, 50),
the outcome is the translated point Q = (0, 0). So, the position of the opti-
mum if we use as translation values Tx = −50, Ty = −50 will be located at
the point P = (50, 50). If we wish to translate the optimum to another point
displaced by an amount x1, y1, we must use the values Tx = −x1, Ty = −y1

for the translation transformation.
It is worth mentioning that certain transformations do not have effect

on the Sphere function. For example, a rotation does not have any effect on
the complexity of this test function. In fact, rotation has no effect on any
function with radial symmetry. To break the radial symmetry in the Sphere
test function in two dimensions, we can apply a scaling transformation in only
one of its variables. For example, to shrink its first coordinate, we can use the
transformation matrix
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Fig. 9. The Sphere function with the optimum translated from the origin to the
point (50, 50).

S =





2.0 0 0
0 1 0
0 0 1



 (23)

As in the case of the translation transformation in which we used the
inverse value to translate the optimum, in this case, if we want to shrink by
a 0.5 factor, the value that we must use in the transformation matrix is the
inverse 1/0.5 = 2. This also applies to the rotation transformation. The effect
of the scaling transformation without a translation transformation is shown
in Figure 10.

Without its radial symmetry, a rotation transformation will have an effect
in the Sphere test function. A translation of 30 degrees can be done using the
following transformation matrix





0.866 −0.5 0
0.5 0.866 0
0 0 1



 (24)

The graphical representation of the Sphere test function with both scaling
and rotation is shown in Figure 11.

So far, we have only applied two transformations at the same time to the
Sphere function, but we can apply as many as we wish, without forgetting that
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Fig. 10. The Sphere test function scaled.
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Fig. 11. The Sphere test function with both scaling and rotation transformations.
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it is necessary to break the radial symmetry before applying a rotation. As
an example, we compute the matrix R that represents three transformations:
a translation followed by a scaling and, finally a rotation. Using the same
matrices as before, our transformation matrix is computed as follows:

R =





0.866 −0.5 0
0.5 0.866 0
0 0 1









2 0 0
0 1 0
0 0 1









1 0 0
0 1 0

−50 −50 1



 (25)

=





0.866 0.5 0
−0.5 0.866 0

0 0 1









2 0 0
0 1 0

−50 −50 1



 (26)

=





1.732 −0.5 0
1.0 0.866 0
−50 −50 1



 (27)

The graphical representation of the resulting Sphere test function after
applying the transformations is shown in Figure 12
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Fig. 12. The Sphere test function after applying three transformations.

The plots of the resulting Sphere test function with the same transforma-
tions applied in a different order are shown in Figure 13.

Using linear transformations, we can eliminate some of the drawbacks of a
test function, such as having an optimum in a position with repeated values, as
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Fig. 13. The Sphere test function with three transformations applied in a different
order.

well as having symmetry with respect to the axis, among others. However, we
can also add more features to our test functions by using function composition.

6.2 Using function composition

In the previous subsection, we transformed the Sphere test function by chang-
ing the position of its optimum, by breaking its radial symmetry, and by
adding a rotation with respect to its coordinate axis. However, the resulting
Sphere test function still has only one optimum. The are two common options
to do the composition of functions; one is to add the results of two or more
functions. For example, if we have two Sphere functions f1 and f2, we generate
the composite function F as follows

F (x) = f1(x) + f2(x) (28)

In general, if we have n functions, we can generate a composition function
F (x) by using the formula of equation (29).

F (x) =

n
∑

i=1

fi(x) (29)
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The second type of composition consists in computing the maximum or
minimum of all our functions fi. Again, in the case of two functions f1 and
f2, the composite function F using the max function is:

F (x) = max{f1(x), f2(x)} (30)

and in general

F (x) = max
i

{fi(x)} (31)

Both approaches have their own features and drawbacks that are explained
using an example in which we generate two composite functions F1 and F2

using a sum and the min function, respectively, with two Sphere functions. If
we use two Spheres without any transformation, no much complexity is added
to the composite functions F1 nor for F2, so our Sphere function f1 will be a
standard Sphere function and f2 will be a Sphere function with some of the
transformations defined in the previous section.

We first use only translation on the f2 function. The composite function F1

must have two optima. However, an effect of the composition using addition is
that the value of F1 is different from zero in the search space. The f1 function
is only zero at the location of its optimum P = (0, 0). The value of F1 in the
point P is F1(P ) = f1(P ) + f2(P ) = f2(P ), since f2 is translated f2(P ) 6= 0.
The same happens at the point Q where the optimum of the f2 function is
located. This has the consequence that the position and value of the optima of
the composite function F1 are different from those of the individual functions
f1 and f2. A plot of F1 is shown in Figure 14.

Now, we examine F2. In this case, we use the min function, and thus, our
composite function F2 is

F2(x) = min{f1(x), f2(x)} (32)

Contrary to the composite function F1, the optima of the composite func-
tion F2 is located in the same place of the optimum of f1 and f2, and the value
of the optima is the same. However, if we use the min function to choose the
minimal value of the two Sphere functions, it is possible that in some regions,
F2 is not differentiable, and has abrupt changes in its landscape. Figure 15
shows the plot of F2.

The composite function F2 has two optima with value 0 in the position of
the optima of the f1 and f2 functions, but what if we want only one global
optimum? The value of the optima can also be changed with a transformation,
but in this case the transformation needs to be done after the application of
the test function. Until now, all the transformations have taken place before
the application of the function. Since we are dealing with single-objective
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Fig. 14. Composite function F1.
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Fig. 15. Composite function F2.



Test Function Generators for PSO Algorithms 21

functions not all transformations can be used. For example, a rotation has no
meaning in one dimension. Following our example, we translate the resulting
value after applying the Sphere function f1 by adding a constant value of 5000
and by defining

f ′

1(x) = f1(x) + 5000 (33)

Our composition functions are now defined as

F1(x) = f ′

1(x) + f2(x) (34)

F2(x) = min{f ′

1(x), f2(x)} (35)

The plot of the two composite functions is shown in Figure 17. The trans-
lation transformation applied to f2 after passing the point to the Sphere func-
tion can also be represented as a matrix in homogeneous coordinates. In this
case, it is represented by a 2 × 2 matrix, and a scaling transformation can be
represented in homogeneous coordinates as well.

Following the example we can describe a general procedure to generate a
new test function using linear transformations and function composition as
follows:

1. We begin with a point P in the search space.
2. A point Q in homogeneous coordinates is computed using P .
3. The point Q is multiplied by a matrix representing a sequence of linear

transformations to obtain Q′.
4. Using Q′, we compute P ′, which gives us the point P transformed in the

search space.
5. The value of the test function fi is obtained passing the point P ′ as the

argument to the test function, and f(P ′) is computed.
6. Before computing the composite function F , we can additionally apply

other linear transformations to fi(P
′) and obtain a f ′

i(P
′).

7. Finally, we compute the composite function F by adding the fi(P
′) values

or by computing the max of them.

Although we only used the Sphere test function in our examples, any other
test function can be adopted for the composition previously described. Some
considerations must be taken when we are using different test functions in the
composition. One of them is the search range, For example, if we wish to make
a composite function using the Sphere and Ranstrigin tests functions, we need
to consider that the range for the Sphere test function is usually [−100, 100]
and in the case of the Rastrigin test function the range is [−5.12, 5.12]. If we
use the range of [−100, 100] in the Rastrigin test function, we obtain the plot
shown in Figure 18. As we can observe, it looks like the Sphere function and
does not show any of the original features of the Rastrigin function. Thus, it
is necessary to apply a scaling transformation to it.
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Fig. 16. Composite function F1.
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Fig. 17. Composite function F2.
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Fig. 18. The Rastrigin test function in the range [−100, 100].

As a rule of thumb we first normalize by dividing by the length of the range
of the function being scaled, and then we multiply by the length of the new
range. In the case of the Rastrigin function, a scaling factor of 200/10.24 =
19.53 is needed. In the transformation matrix we use the inverse of this value.
If we scale the values of the search range, this does not mean that the values
after applying the Rastrigin function are scaled. If we compare the plots of the
Sphere and Rastrigin test functions (see Figures 2 and 6), the values that are
computed using the Rastrigin test function are far smaller than those of the
Sphere test function. It is then necessary to apply a scaling transformation
after computing the values of the Rastrigin function. In general, the scaling
factor depends on the maximum value of the functions involved. Such value
may not be easy to compute. The plot of the composition of the Sphere and
Ranstrigin test functions using scaling in the search range and after computing
the Rastrigin value is shown in Figures 19 and 20.

Now we can generate new test functions from the common test functions
using linear transformations and function composition. However, we should
keep in mind the recommendations previously provided about the composition
using the addition of two functions or the max or min functions, and be careful
about the proper scaling of the search ranges and values.
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Fig. 19. The composition of the Rastrigin and the Sphere test functions using
addition.
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Fig. 20. The composition of the Rastrigin and the Sphere test functions using the
min function.
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7 Overview of Test Function Generators

In this section, we describe the state-of-the-art regarding test function gen-
erators involving the transformations and function composition procedures
described in Sections 3 and 4.

We first examine the test function generator of Liang et al. [4]. In this
work, the authors proposed a composition of functions using the formula of
equation (36).

F (x) =

n
∑

i=1

{wi ∗ [f ′

i((x − oi + oold)/λi ∗ Mi) + biasi] + fbias} (36)

If we examine equation (36), the argument of f ′

i is a composition of linear
transformations:

(x − oi + oold)/λi ∗ Mi (37)

The authors use a translation first to center the optimum of the function in
the origin of the coordinate system with the +oold factor. Then, we translate
the optimum to a new position with the factor −oi. As we see in Section 3, it
is not necessary to move first the optimum to the origin, since this displace-
ment can be represented with a translation matrix Ti using homogeneous
coordinates. Thus, equation (37) can be rewritten as follows

(xTi)/λi ∗ Mi (38)

Dividing by λ is also a linear transformation, and in this case, it is a
homogeneous scaling transformation since they use the same scaling factor
for each variable. This can also be represented by a scaling matrix Si with a
1/λi scale factor in each element of the diagonal except for the last element
(see Section 3). Again, equation (37) is rewritten as

xTiSi ∗ Mi (39)

The ∗ operator in equation (37) represents a matrix product. Given Mi,
which is a rotation transformation matrix, equation (37) can be expressed as
a product of matrices representing linear transformations and the vector that
represents a point in the search space, as expressed in equation (40).

xTiSiMi (40)

Defining Ri = TiSiMi, equation (36) can be written as
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F (x) =

n
∑

i=1

{wi ∗ [f ′

i(xRi) + biasi] + fbias} (41)

Writing equation (36) in this form, it is easy to observe that after ap-
plying f ′

i to the point xRi, a translation transformation is applied using the
term +biasi. Analogously, a scaling transformation is applied using the factor
wi. However, these transformations are done after computing f ′

i . If we repre-
sent the translation and scaling transformations with the matrices T ′

i and S′

i,
respectively, equation (36) has the form

F (x) =

n
∑

i=1

{f ′

i(xRi)T
′

iS
′

i + fbias} (42)

and we can define R′

i = T ′

iS
′

i, and

F (x) =

n
∑

i=1

[f ′

i(xRi)R
′

i + fbias] (43)

If fbias is constant, it can be added as a second translation transformation
T ′′

i , defining R′

i = T ′

iS
′

iT
′′

i . Therefore, equation (36) is reduced to

F (x) =
n
∑

i=1

f ′

i(xRi)R
′

i (44)

After computing the transformation matrices Ri and R′

i, the computation
of the composite function F (x) is easily done using matrix multiplication.
The values used for the scaling transformations wi and λi are related to the
maximum value of the functions fi and to the relative size of the search space,
respectively, as indicated in Section 6.

In the work of Singh and Deb [18] a test function is proposed, providing
the desired positions of the optima and a radius that defines the region in
which the optimum is located. The function is described by equation (45).

f(x) =

{

hk

[

1 − d(x,k)
rk

αk

]

, if dik ≤ rk

0, otherwise
(45)

This is more like a max function applied on a radius basis. It is not a
coincidence that the function is similar to the equation to compute fitness
sharing in genetic algorithms [19]. As we saw in Section 6, the use of a max
or a min function allows the definition of regions in which the composite
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function is not differentiable. In this case, in the regions in which there is
no intersection between the regions that contain the optima, the composite
function f is constant with a value of 0. Another drawback is that depending
on the value of αk, the regions in which the optima lie can be very sharp.

In the work of Gallagher and Yuan [20], they use composition of expo-
nential functions. The general equation for exponential functions is shown in
equation (46).

g(x) =

[

1

(2π)
n

2 |Σ| 12
exp

(

−1

2
(x − µ)Σ−1(x − µ)T

)]
1

n

(46)

where µ is a vector of means, that is, basically a translation of the center
of the exponential. In this case, Σ is a square n× n covariance matrix, which
corresponds to both scale and rotation transformations. They also suggest two
types of composite functions:

F (x) =
m
∑

i=1

wigi(x) (47)

and

G(x) = max
i

{wigi(x)} (48)

We discussed the features of each of these approaches in Section 6. It is
easy to show that the baseline function in equation (46) is the exponential
function

ex2

(49)

As they do not use homogeneous coordinates, the argument

(x − µ)Σ−1(x − µ)T (50)

represents translation, rotation and scaling transformations. In homoge-
neous coordinates, the argument can be rewritten as

(xTRS)2 (51)

with T , R and S being translation, rotation and scaling transformations,
respectively.
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In a recent work of Rönkkönen et al. [3], a test function generator is pro-
posed, in which three families of functions are defined: Cosine, Quadratic and
Common families. They use rotation, translation and a non-homogeneous scal-
ing using Bezier functions. They do not use homogeneous coordinates. The
Cosine family is defined by equation (52).

fcos(y) =

∑D

i=1 − cos((Gi − 1)2πyi) − α cos((Gi − 1)2πLiyi)

2D
(52)

The functions of the Quadratic family are computed using equation (53).

fquad(x) = min
i

[

(x − pi)
T B−1

i (x − pi) − vi

]

(53)

As indicated before, the argument of these functions can be written as
(xTRS)2 which is the Sphere function. The Quadratic family coincides with
the composition of the Sphere functions using the min function as described in
Section 6. The Common family function consists of the Branin, Himmelblau,
Shubert, Six-hump camelback, Vincent and the 1st & 3rd Deb’s function which
are functions in which the number of variables cannot be incremented. They
do not use homogeneous coordinates either.

Finally, the work of Morrison and De Jong [21] is one of the few test func-
tions generators designed to test algorithms for dynamic environments. They
use function composition with the max function described by equation (54).

f(x, y) = max
i

[

Hi − Ri

√

(x − xi)2 + (y − yi)2
]

(54)

This is the Sphere function with the addition of a square root and the
use of both a translation transformation Hi, and a scaling transformation Ri.
They do not use rotation, since the scaling transformation is homogeneous
and a rotation does not have any effect, as indicated in Section 6.

8 Guidelines to build a test function generator

So far we have discussed the basics of the test functions generators such as
linear transformations and function composition, giving some advice on how
to apply linear transformations to obtain a desired feature, and on the types
of function compositions most commonly used. We have also reviewed some
of the state-of-the-art test function generators available in the specialized
literature. Using this knowledge, we can now offer some guidelines to create
a test function generator.

The use of homogeneous coordinates is encouraged. Building a routine to
transform a point in the search space into homogeneous coordinates is simple
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and the transformation itself does not consume a big amount of computer
time. However, by using it, we are allowed to write all our linear transforma-
tions as a single matrix, and we can apply all of them to a point in a single
operation. Returning a transformed point from homogeneous coordinates to
the search space also requires a simple operation.

Using linear transformations allows to modify the properties of a test func-
tion without altering it at all. Thus, it is not necessary to build new test
functions, since those already available can be used. A suitable combination
of linear transformations can break the regularities of a test function, and
there is no limit on the number of linear transformation that can be used.
However, it is important to keep in mind that some regularities cannot be
easily changed with linear transformations, as when having radial symmetry,
or a regular spacing of the optima as in the Rastrigin function.

We are not limited to linear transformations, since function composition
can be used to create new test functions. Like when using linear transfor-
mations, any available test function can be used in function composition. In
previous sections we have described the features and drawbacks of the two
approaches most commonly used for function composition. The use of any of
them should be decided according to the features that are desired for the test
functions to be generated.

Finally, the use of test function families can simplify the process of creating
new test functions. For example, quadratic functions are easy to implement
and can be manipulated using linear transformations to break regularities.
Their use in function composition is also simple, since the search range and the
function values do not change much when linear transformations are applied.

9 Conclusions

It is necessary to have test functions with properties that are more challenging
for any optimization algorithm, particularly, those of metaheuristic nature
(such as particle swarm optimization). We believe that this would lead to the
development of more robust and effective algorithms.

Most of the test functions currently available for validating single-objective
particle swarm optimization algorithms have regularities such as symmetry,
uniform location of the optima, etc. These features can be exploited by meta-
heuristics such as PSO, and may turn out to be not as difficult to solve as
originally intended.

Some of these drawbacks of the currently available test functions can be
avoided by adopting transformations, but, as seen in this chapter, a more
in-depth knowledge of the effect of such transformations is required before
applying them, in order to avoid unexpected side-effects. Another alternative
is to use function composition, but again, some previous knowledge about this
procedure is required as well, in order to obtain the intended effects.
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In this chapter, we have also reviewed the most representative test function
generators reported in the specialized literature. Our review has shown that
such generators are relatively complicated to implement, and that, in some
cases, the test functions generated do not exhibit features that are sufficiently
challenging for a metaheuristic. It is evidently necessary to produce new test
function generators which are easier to implement, to configure and to use,
and that, at the same time, produce test functions with more challenging
features. The main intention of this chapter has been, precisely, to motivate
the design of such a test function generator, adopting the transformations and
function composition procedures described here.

Following the examples presented in this chapter, it can be clearly seen
that the use of homogeneous coordinates simplifies the application of linear
transformations. However, homogeneous coordinates are not used in any of
the test function generators that we found in the specialized literature.

10 Future work

The development of a truly simple and configurable test function generator
is still an active topic of research. As we have seen in this chapter, the use
of homogeneous coordinates can simplify the computations in a test function
generator, and provides a more intuitive use of the linear transformations,
hence the importance of incorporating homogeneous coordinates in test func-
tion generators.

We also believe that the generation of test functions must be focused
on the features that we are interested on (e.g., non-uniform location of the
local optima), rather than on the complexity of the test function itself (e.g.,
high nonlinearity in the objective function), since very scarce evidence exists
regarding the actual features that turn out to be difficult for an algorithm
such as PSO (or any other metaheuristic for that sake).

It is also desirable that the test function generators offer enough flexibility
to allow a variety of combinations of features that we are interested in ana-
lyzing. Some of the most popular test functions in the current literature do
not offer such flexibility. For example, in the Rastrigin function the optima
are arranged in a regular lattice and it is impossible to break this property
using linear transformations. The use of quadratic functions is therefore, more
suitable, since it allows the addition of as many optima as needed, and each
optima can be individually manipulated.
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