Cooperation between Branch and Bound and

Evolutionary Approaches to solve a BiObjective
Flow Shop Problem

Matthieu Basseur, Julien Lemesre, Clarisse Dhaenens and El-Ghazali Talbi

Laboratoire d’Informatique Fondamentale de Lille (LIFL), UMR CNRS 8022,
University of Lille, 59655 Villeneuve d’Asq Cedex, France.
{basseur,lemesre,dhaenens,talbi}@lifl.fr

Abstract. Over the years, many techniques have been established to
solve NP-Hard Optimization Problems and in particular multiobjective
problems. Each of them are efficient on several types of problems or
instances. We can distinguish exact methods dedicated to solve small in-
stances, from heuristics - and particularly metaheuristics - that approx-
imate best solutions on large instances. In this article, we firstly present
an efficient exact method, called the two-phases method. We apply it to
a biobjective Flow Shop Problem to find the optimal set of solutions.
Exact methods are limited by the size of the instances, so we propose
an original cooperation between this exact method and a Genetic Al-
gorithm to obtain good results on large instances. Results obtained are
promising and show that cooperation between antagonist optimization
methods could be very efficient.

1 Introduction

A large part of real-world optimization problems are of multiobjective nature.
In trying to solve Multiobjective Optimization Problems (MOPs), many meth-
ods scalarize the objective vector into a single objective. Since several years,
interest concerning MOPs area with Pareto approaches always grows. Many of
these studies use Evolutionary Algorithms to solve MOPs [1-3] and only few
approaches propose exact methods such as a classical branch and bound with
Pareto approach, an e-constraint method and the two-phases method.

In this paper, we propose to combine the two types of approaches: a meta-
heuristic and an exact method. Therefore, we firstly present a two-phases method
developed to exactly solve a BiObjective Flow Shop Problem (BOFSP) [4]. In
order to optimize instances which are too large to be solved exactly, we propose
and present cooperation methods between Genetic Algorithms (GAs) and the
two-phases method.

In section II, we define MOPs and we present a BOFSP. In section III,
we present the two-phases method applied to the BOFSP, and computational
results. In section IV, we present cooperation schemes between GA and the two-
phases method. Section V presents results on non-solved instances. In the last



section, we discuss on effectiveness of this approach and perspectives of this
work.

2 A BiObjective Flow Shop Problem (BOFSP)

2.1 Multiobjective Optimization Problems (M OPs

Although single-objective optimization may have a unique optimal solution,
MOPs present a set of optimal solutions which are proposed to a decision maker.
So, before presenting BOFSP, we have to describe and define MOPs in a gen-
eral case. We assume that a solution z to such a problem can be described
by a decision vector (zi,za,...,2,) in the decision space X. A cost function
f : X = Y evaluates the quality of each solution by assigning it an objective
vector (y1,Y2,...,Yp) in the objective space Y (see Fig. 1). So, multiobjective
optimization consists in finding the solutions in the decision space optimizing
(minimizing or maximizing) p objectives.

Decision space Objective space

v2
X1 3 yi
f

(Y1y2....yp)

x2

(XLx2,...xn)

Fig. 1. Example of MOP

For the following definitions, we consider the minimization of p objectives. In
the case of a single objective optimization, comparison between two solutions x
and z' is immediate. For multiobjective optimization, comparing two solutions
z and z' is more complex. Here, there exists only a partial order relation, known
as the Pareto dominance concept:

Definition 1. A solution x dominates a solution ' if and only if:

{Vk € [L.p], fr(z) < fr(2')
3k € [1..p]/ fr(z) < fr(z")

In MOPs, we are looking for Pareto Optimal solutions:

Definition 2. A solution is Pareto optimal if it is not dominated by any other
solution of the feasible set.

The set of optimal solutions in the decision space X is denoted as the Pareto
set, and its image in the objective space is the Pareto front. Here we are interested
in a apriori approach where we want to find every Pareto solutions.



2.2 Flow Shop Problem (FSP)

The FSP is one of the numerous scheduling problems. Flow-shop problem has
been widely studied in the literature. Proposed methods for its resolution vary
between exact methods, as the branch & bound algorithm [5], specific heuristics
[6] and meta-heuristics [7]. However, the majority of works on flow-shop prob-
lem studies the problem in its single criterion form and aims mainly to minimize
makespan, which is the total completion time. Several bi-objective approaches
exist in the literature. Sayin et al. proposed a branch and bound strategy to solve
the two-machine flow-shop scheduling problem, minimizing the makespan and
the sum of completion times [5]. Sivrikaya-Serifoglu et al. proposed a compari-
son of branch & bound approaches for minimizing the makespan and a weighted
combination of the average flowtime, applied to the two-machine flow-shop prob-
lem [8]. Rajendran proposed a specific heuristic to minimize the makespan and
the total flowtime [6]. Nagar et al. proposed a survey of the existing multicriteria
approaches of scheduling problems [7].

FSP can be presented as a set of N jobs Ji, Jo,..., JJy to be scheduled on M
machines. Machines are critical resources: one machine cannot be assigned to two
jobs simultaneously. Each job J; is composed of M consecutive tasks t;1, ..., timr,
where t;; represents the j* task of the job J; requiring the machine m;. To each
task t;; is associated a processing time p;;. Each job J; must be achieved before
its due date d;. In our study, we are interested in permutation FSP where jobs
must be scheduled in the same order on all the machines (Fig. 2).

M1 h7J 34‘5 JlJG‘JS‘

M2 3234‘ 35‘ J6 JS‘

Ji
- e = =]

Fig. 2. Example of permutation Flow-Shop

In this work, we minimize two objectives: Cp,qz, the makespan (Total com-
pletion time), and T, the total tardiness. Each task t;; being scheduled at the
time s;;, the two objectives can be computed as follows:

Caz = Maa:{s,»M +piM|Z. € [1 .. N]}
N
T = Z [ma;v(O,siM + piv — dz)]

i=1
In the Graham et. al. notation, this problem is denoted [9]: F/perm, d;/(Cpmqz, T)-
C'Maz minimization has been proven to be NP-hard for more than two machines,
in [10]. The total tardiness objective T has been studied only a few times for
M machines [11], but total tardiness minimization for one machine has been
proven to be NP-hard [12]. The evaluation of the performances of our algorithm



has been realized on some Taillard benchmarks for the FSP [13], extended to the
bi-objective case [14] (bi-objective benchmarks and results obtained are available
on the web at http://www.lifl.fr/ basseur).

3 An exact approach to solve BOFSP: the Two-Phases
Method (TPM)

On the Pareto front two types of solutions may be distinguished : the supported
solutions, that may be found thanks to linear combinations of criteria, and non
supported solutions [15]. As supported solutions are the vertices of the convex
hull, they are nearer to the ideal optimal solution, and we can ask why it is
important to look for non supported solutions. Figure 3, shows the importance
of non-supported solutions. It represents the Pareto front for one instance of the
bicriteria permutation flowshop with 20 jobs and 5 machines. This figure shows
that for this example, only two Pareto solutions are supported (the extremes)
and to get a good compromise between the two criteria, it is necessary to choose
one of the non-supported solutions.

1368 o3 T U
supported solutions ¢

1367 | + non-supported solutions  + |

1366 [~ + 3
1365 - b
1364 - 3
1363 - + |
1362 - 3
1361 - H

1360 [~ 3

1359 L L L L L L L L
450 500 550 600 650 700 750 800 850

Fig. 3. Importance of non supported solutions (Pb: ta_20_5_02)

A lot of heuristic methods exist to solve multicriteria (and bicriteria) prob-
lems. In this section we are interested in developing an exact method able to
enumerate all the Pareto solutions for a bicriteria flowshop problem.

A method, called the Two-Phases Method, has been proposed by Ulungu
and Teghem to initially solve a bicriteria assignment problem [15]. This method
is in fact a very general scheme that could be applied to other problems at
certain conditions. It has not yet been very often used for scheduling applications
where the most famous exact method for bicriteria scheduling problems is the
e-constraint approach, proposed by Haimes et al. [16]. This section presents the
application of the scheme of the two-phases method to the bicriteria flow shop
problem under study.



3.1 The two-phases method

Here we present the general scheme of the method. It proceeds in two phases. The
first phase finds all the supported solutions and the second all the non-supported
ones.

Fig. 4. Search direction.  Fig. 5. New searches. Fig. 6. Non supported so-

lutions.

— The first phase consists in finding supported solutions with aggregations of
the two objectives C; and Cs in the form A\ C; + AyCs. It starts to find
the two extreme efficient solutions that are two supported solutions. Then it
looks recursively for the existence of supported solutions between two already
found supported solutions 2" and z* (we suppose z\" < z{* and 2{” > {")
according to a direction perpendicular to the line (2" 2°) (see figure 4), while
defining A\; and \o as follows: A\; = zér) — zés), Ao = z§s) — zy). Each new
supported solution generates two new searches (see figure 5).

— The second phase consists in finding non-supported solutions. Graphically,
any non-supported solution between z" and z® belongs to the triangle repre-
sented in figure 6. This triangle is defined by 2", z® and Y, which is the point
[zfs),zy)] . Hence, the second phase consists in exploiting all the triangles,
underlying each pair of adjacent supported solutions, in order to find the

non-supported solutions.

3.2 Applying the two-phases method to a bicriteria flow shop
problem

The interesting point of the two-phases method, is that it solves exactly a bicri-
teria problem without studying the whole search space. Hence we want to apply
it to solve BOFSP for which the complete search space is too large to enable a
complete enumeration. But this method is only a general scheme and applying it
to a given problem requires a monocriterion exact method to solve aggregations.

As this scheduling problem (even in its monocriterion form) is NP-Hard, we
decided to develop a branch-and-bound method. A large part of the success of a
branch-and-bound is based on the quality of its lower bounds. As the makespan
minimization has been widely studied, we have adapted an existing bound for



this criterion whereas for the total tardiness we propose a new bound. Details
about these bounds may be found in [4].

The search strategy used is “a depth first search” where at each step, the
node with the best bound is chosen. Moreover, a large part of the tardiness (T')
value is generated by the last scheduled jobs. So the construction of solutions
places jobs either at the beginning or at the end of the schedule, in order to have
a precise estimation of the final T value fastly.

3.3 Improvements of the two-phases method

The two-phases method can be applied to any bicriteria problem. Applying it
to scheduling problems allows improvements:

— Search of the extremes: The calculation of the extremes may be very long for
scheduling problems as there exists a lot of solutions with the same value for
one criterion. Hence, we propose to find extremes in a lexicographic order. A
criterion is first optimized and then the second, without degrading the first
one.

— Search intervals: The objective of the first phase is to find all the supported
solutions in order to reduce the search space of the second phase. But when
supported solutions are very near to each other, it is not interesting to look
for all of them, as it will be very time consuming. Moreover, in the second
phase, the search is, in fact, not reduced to the triangle shown on figure 6
but to the whole rectangle (zér), Y, zfs), 0). Hence, during the second phase,
it is possible to find supported solutions that still exists. Then to avoid
uninteresting branch-and-bounds we propose to execute a first phase only
between solutions far from each other (a minimal distance is used).

3.4 Results

Table 1 presents results obtained with the two-phases method on the studied
problems. The first column describes the instances of the problem: ta_number
of jobs_number of machines_.number of the instance. Then the three following
columns indicate computational time with three different versions : the original
two-phases method, the method with improvements proposed, and its parallel
version!. It shows that both, improvements and parallelization allow to solve
problems faster. Sequential runs have been executed on a 1.00Ghz machine. The
parallel version has been executed on eight 1.1Ghz machines.

4 Using the two-phases approach to approximate the
optimal Pareto front
4.1 Motivations

Exact methods are always limited by the size of the problem. Moreover, when the
optimal Pareto front is not reached, these methods do not give good solutions. So,

! The parallel version is described in [4]



Table 1. Results of two-phases method.

Time
Instances |Original With With
method |improvements|parallelization

ta_20-5_01 30” 17 no need
ta_20_5_02 15’ 14 no need
ta_20.10_01|one week 2 days 1 day
ta_20_10_02| one week 2 days 1 day
ta_20-20_01| Unsolved Unsolved few weeks

for these problems, heuristics are usually proposed. In this section, we propose
to use the adaptation of the TPM to improve Pareto fronts obtained with a
heuristic. Firstly, we briefly present the hybrid GA which will cooperate with
TPM. Then we propose several cooperation mechanisms between TPM and the
hybrid GA.

4.2 An Adaptive Genetic/Memetic Algorithm (AGMA)

In order to optimize solutions of FSP, AGMA algorithm has been proposed in
[17]. AGMA is firstly a genetic algorithm (GA) which proposes an adaptive
selection between mutation operators. Crossover, selection and diversification
operators are described in [18]. Moreover, AGMA proposes an original hybrid
approach: the search alternates adaptively between a Genetic Algorithm and a
Memetic Algorithm (MA). The hybridization works as follows: Let Ppo. be the
value of the modification rate done on the Pareto front POx computed on the
last generations of the GA. If this value goes below a threshold «, the MA is
launched on the current GA population. When the MA is over, the Pareto front
is updated, and the GA is re-run with the previous population (Algorithm 1).

Computational results presented in [17] show that we have a good approxi-
mation of the Pareto front. In order to improve these results, we propose some
cooperative schemes between AGMA and TPM.

4.3 Cooperation between AGMA and TPM

Recently, interest for cooperation methods grows. A large part of them are hy-
brid methods, in which a first heuristic gives solution(s) to a second one which
upgrades its (their) quality [19]. But different Optimization Methods (OMs) can
cooperate in several ways as shown in figure 7. This cooperation can be sequen-
tial (a), often called hybridization. The search can also alternate between two
OMs (b). The alternativity may be decided thanks to thresholds (c¢). Finally a
cooperation can be established, with one method integrated in a mechanism of
the second one with or without threshold (d).

Here we present three cooperation methods that combine the two-phases
method (TPM) and the Adaptive Genetic/Memetic Algorithm (AGMA) pre-



Algorithm 1 AGMA algorithm
Create an initial population
while run time not reached do
Make a GA generation with adaptive mutation
Update POx an Ppox
if P < o then
/* Make a generation of MA on the population */
Apply crossover on randomly selected solutions of PO to create a set of new
solutions.
Compute the non-dominated set PO’ on these solutions
while New solutions found do
Create the neighborhood N of each solution of PO’
Let PO’ be the non-dominated set of N | J PO’
end while
Update POx an Ppox
end if
Update selection probability of each mutation operator
end while

— automatic transition
—--——» transition by threshold

OM1 OM2 OoM1 OoM2

P
OM1 oM2 OM1| OM2
N

(b) (d)

Fig. 7. Examples of cooperation scheme

sented before. The first one is an exact method which uses the Pareto set ob-
tained with AGMA to speed up TPM. But the computational time of TPM still
grows exponentially with the size of the instances. So, for the next approaches
running on larger problems, we add constraints to TPM, to guide the algorithm
despite of the loss of the guaranty to obtain the optimal Pareto set.

These three methods use the cooperation scheme (a). But we can apply these
methods with the other cooperation schemes, which are more evolved.

Approach 1 - An improved exact approach: Using AGMA solutions
as initial values: In this approach, we run the whole two-phases method. For
every branch-and-bounds of the TPM, we consider the best solutions given by
the meta-heuristic as initial values. Therefore we can cut a lot of nodes of the
branch-and-bound and find all optimal solutions with this method.

The time required to solve a given problem is of course smaller if the distance
between the initial front (given by the meta-heuristic) and the optimal front is



small. If the distance between them is null, the TPM will be used to prove that
solutions produced by AGMA are optimal.

Even if this approach reduces the time needed to find the exact Pareto front,
it does not allow to increase a lot the size of the problems solved.

Approach 2 - Using TPM as a Very Large Neighborhood Search
(VLNS): Neighborhood search algorithms (also called local search algorithms)
are a wide class of improvement heuristics where at each iteration an improv-
ing solution is found by exploring the “neighborhood” of the current solution.
Ahuja et. al remark that a critical issue in the design of a neighborhood search
is the choice of the neighborhood structure [20]. In a general case, larger is the
neighborhood, more efficient is the neighborhood search. So, VLNS algorithms
consist in exploring exponential neighborhood in a practical time to get better
results. In [20], several exponential neighborhoods techniques are exposed. Here,
we propose to use TPM as a VLNS algorithm.

The idea is to reduce the space explored by the TPM by cutting branches
when the solution in construction is too far from the initial Pareto solution. An
efficient neighborhood operator for FSP is the insertion operator [17]. So, we
allow TPM to explore only the neighborhood of an initial Pareto solution which
consists of solutions that are distant from less than §,,,, insertion operator
applications from it:

The following example represents an example of solution construction using
VLNS approach from the initial solution abedefghij. In this example two sets
of jobs are used: The first one (initialized to {}) represents the current partially
constructed solution and the second one (initialized to {abedefghij}) represents
jobs that have to be placed. During the solution construction, § value (initially
set to 0) is incremented for each breaking order with the initial solution. If
0 = Omaz, then no more breaking order is allowed, so in this case, only one
schedule is explored:

Example (constraint: d,,4, = 2):

— Initialization: {},{abedefghij} (represents: {jobs scheduled},{jobs to be placed})

— We firstly place the two first jobs: {ab}, {cdefghij}. § = 0.

— Then we place job g, so we apply insertion operator on the remaining jobs:
{abg}, {cdefhij}. For the moment, the distance § between the initial solution
and the current solution is 1 (one breaking order).

— Then we place jobs ¢ and d: {abgced}, {efhij}. 6 = 1.

— Then we place job h: {abgedh},{efij}. d = 2.

— Here, § = &4z, 50 the last jobs have to be scheduled without breaking order.

So, the single solution explored is the schedule {abgcdhefij}, {}, with 6 = 2.
Others possible schedules are too far from the initial solution.

The size of the insertion neighborhood is in ©(NN?), so the size of the space
explored by TPM may be approximated (for dpaz << N) by ©(IN2%ma=). Hence,
we have to limit d,,,, value, especially on instances with many jobs.



Approach 3 - A local optimization with TPM: This third cooperation
limits the size of the explored space, while reducing it to a partition of Pareto
solutions proposed by AGMA. So TPM is applied on regions of Pareto solutions.

The main goal of this approach is to limit the size of the trees obtained by
the TPM, in order to apply this approach to large instances. In this section, we
will present a non-exact two-phases method in which we only explore a region of
the decisional space. So, we select partitions of each solution obtained by AGMA
algorithm. Then we explore all the solutions obtained with modifications of these
partitions using the two-phases method. After having explored a partition for
all the Pareto set, we extract the new Pareto set from the obtained solutions.

This Simple Partitionning Post Optimization Branch & Bound (SPPOBB)
works as follows:

The two-phases method explores the tree by placing jobs either at the be-
ginning or at the end of the schedule. So, if the partition is defined from job Xj;
to job Xj, it places, jobs 0..X; — 1 at the beginning of the schedule and jobs
X; + 1..N at the end. Then it explores the remaining solutions of the tree by
using the two-phases method technique.

Figure 8 shows an example of hybridization by the two-phases method - it
can be applied for other branch and bound methods. In this figure, we consider
an initial solution a,b,...,4,J, which is on the Pareto front obtained by AGMA
algorithm. In this example, N = 10, the partition size is 4, and is applied from
job number 4 to 7, i.e jobs d,e, f,g in the schedule. The first phase consists in
placing the first three jobs at the beginning of the schedule. Then, it places the
last three jobs at the end of the schedule (a job j placed in queue is symbolized
by —j). Then, we apply the two-phases method on the remaining jobs. After
cutting several nodes, 5 complete schedules have been explored:

— a,b,c,-j,-i,-h,d -e,f,g which corresponds to the schedule abcdfgehij

— a,b,c,-j-i,-h,d,-g,e,f which corresponds to the schedule abcdefghij (the initial
solution)

— a,b,c,-j,-i,-h,d,-g,f,e which corresponds to the schedule abcdfeghij

— a,b,c,-j,-i,-h,g,-d,-e,f which corresponds to the schedule abcgfedhij

— a,b,c,-j,-i,-h,g,-d,-f,e which corresponds to the schedule abcgefdhij

Parameters:
Different parameters have to be set to have an efficient search without having
a too large time expense.

— Size of the partitions: The cardinality of the Pareto set obtained with AGMA
algorithm varies between several tens and two hundred solutions. In order
to obtain solutions rapidly, we limit the size of partitions to 15 jobs for the
10-machines instances, and 12 jobs for the 20-machines instances. So each
two-phases execution can be solved in several seconds or minutes.

— Number of partitions for each solution: Enough partitions of the complete
schedule have to be considered to treat each job at least once by TPM
approach. Moreover, it is interesting to superpose consecutive partitions to
authorize several moves of a same job during optimization. Then, a job which



z
\
jo} a
z | \
| a T
a \
24 \ b ¢
Xi| X | b | |
a \ c -l
alo|efale|t]o[n[ili| > | > . > o |
b -j -
Initial solution | - | \
c | -i -h
—i ‘ g
‘ h A E AN
-h d/\ - 5 ~g ~d >65¢
e f g A
fgef -e -f
I
g f e f e

Fig. 8. Example: one partition exploration

is early scheduled could be translated at the end of the schedule by successive
moves. On the other side, the more partitions we have, the more processing
time is needed. So we take 8 partitions for the 50-jobs instances, 16 partitions
for the 100-jobs instances and 32 partitions for the 200-jobs instances.

5 Results

We test the first approach to prove optimality of Pareto fronts on small instances.
This approach reduces the time needed by the TPM to exactly solve these in-
stances. Then we test the last two approaches. Results are comparable on 50
machines instances, but the computational time of the VLNS approach is expo-
nential, so we present here only the results obtained with SPPOBB. However,
the other approaches give some perspectives about cooperation mechanisms.

In this part, we firstly present performance indicators to evaluate effectiveness
of this approach. Then we apply these indicators to compare the fronts obtained
before and after cooperation with SPPOBB.

5.1 Quality assessment of Pareto set approximation

Solutions’ quality can be assessed in different ways. We can observe graphically
progress realized as in figures 9 and 10. Here, we use the contribution metric
[21] to evaluate the proportion of Pareto solutions given by each front, and the
S metric, as suggested in [22], to evaluate the dominated area.

Contribution metric: The contribution of a set of solutions PO, relatively to
a set of solutions PO, is the ratio of non-dominated solutions produced by PO,
in PO*, where PO* is the set of Pareto solutions of PO; U PO,.

— Let PO be the set of solutions in PO; N POs.



6200 T T 11300 T T T T T

6150 | SPPOB il 120} § % SPPOBB Paretoset o |
6100F o, B 1200 © + B
+
6050 - %+ B 11150 - B
% 6000 - @t B % 11100 - B
= =
O 5050 %k B O 11050 | 4 . B
5900 [ M g W0 @ 3 N B
L & 4 L o + 4
5850 10950 -
‘% % R
r d o o, B 10900 [ ° 00 + q
5800 on orod O 80 R G
5750 . . . . . 10850 . . . . . . . | .
2000 6000 8000 10000 12000 14000 16000 38000 40000 42000 44000 46000 48000 50000 52000 54000 56000 58000
Tardiness Tardiness

Fig. 9. SPPOBB results: instance with 100 Fig. 10. SPPOBB results: instance with
jobs and 10 machines. 200 jobs and 10 machines.

— Let W1 (resp. W) be the set of solutions in PO; (resp. POs) that dominate
some solutions of PO, (resp. POy).

— Let Ly (resp. L2) be the set of solutions in PO, (resp. PO,) that are domi-
nated by some solutions of PO, (resp. POy).

— Let Ny (resp. N2) be the other solutions of PO; (resp. PO2): N; = PO; \
(POUW,; UL).

PO
Lo AES A

Cont(PO,/PO,) = PO

S metric: A definition of the S metric is given in [23]. Let PO be a non-
dominated set of solutions. S metric calculates the hyper-volume of the multi-
dimensional region enclosed by PO and a reference point Z,.y.

Let POy and PO- be two sets of solutions. To evaluate quality of PO; against
PO,, we compute the ratio (S(PO1) — S(P02))/S(PO2). For the evaluation,
the reference point is the one with the worst value on each objective among all
the Pareto solutions found over the runs.

5.2 Computational results

We use S and Contribution metrics to compute improvements realized on fronts.
Tests were realized for 10 runs per instance, on a 1.6Ghz machine. Tables 2 and
3 show the results obtained for these metrics.

Table 2 shows that improvements realized on 50*10 and 50*20 instances were
small in a general case. In fact we have an average improvement of 18.8 per cent
of the initial Pareto set for the 50*%10 instance, and 4.8 per cent for the 50%20
instance. For the other problems, a large part of the new Pareto set dominates
the initial set of Pareto solutions. Table 3 shows a good progression of the Pareto
front for large problems, especially for the 200 jobs* 10 machines instance.

Table 4 shows that the time required to realize the set of two phases is almost
regular despite of the branch & bound approach.



Table 2. Quality assessment (contribution metric): C(SPPOBB/AGMA)

Problem|ta_50_10_01 ta_50_20_01 ta_100-10_01 ta_100_20_01 ta_200-10_01

Cuin 0.54 0.51 0.96 0.73 1.00
CuMaz 0.63 0.55 1.00 0.96 1.00
Average 0.594 0.525 0.986 0.876 1.000
Std dev 0.026 0.015 0.015 0.062 0.000

Table 3. Quality assessment (S metric): S(SPPOBB)/S(AGMA)

Problem|ta_50_10_01 ta_50_20_01 ta_100-10_01 ta_100_20_01 ta_200-10_01

Sumin 0.02% 0.01% 0.75% 0.28% 8.35%

SuMaz 0.46% 0.27% 2.10% 1.92% 15.57%
Average| 0.185% 0.093% 1.199% 0.970% 13.094%
Std dev 0.122% 0.095% 0.387% 0.412% 1.974%

6 Conclusion and perspectives

In this paper, we have first presented an exact approach and a metaheuristic
approach to solve MOPs. These approaches have been applied on a BOFSP.
Then we have proposed original approaches to upgrade metaheuristic results by
using an exact method i.e. the two-phases method. These approaches were tested,
and their effectivenesses were shown by improvements realized on Pareto fronts
obtained with AGMA algorithm. These results show the interest of this type of
methods, which can be improved by adding other mechanisms to explore a large
region of the search space without exploring a great part of the solutions. In the
future, cooperation could be made in a hybrid way to combine the partitionning
and the VLNS approaches. Another way for cooperation between evolutionary
and exact approaches, without considering partitions of optimal solution, is to
extract information from these solutions to reduce sufficiently the size of the
search space.

References

1. Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary algorithms for
solving Multi-Objective Problems. Kluwer, New York (2002)

2. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chich-
ester, UK (2001)

3. Zitzler, E., Deb, K., Thiele, L., Coello, C.A.C., Corne, D., eds.: Proceedings of
the First International Conference on Evolutionary Multi-Criterion Optimization
(EMO 2001). Volume 1993 of Lecture Notes in Computer Science., Berlin, Springer-
Verlag (2001)

4. Lemesre, J.: Algorithme parallele exact pour 'optimisation multi-objectif: appli-
cation & l'ordonnancement. Master’s thesis, University of Lille (2003)



Table 4. Run time

Problem|ta_50_10_01 ta_50_20_01 ta_100_10_01 ta_100_20_01 ta_200_10_01

Thrin 3h16’ 5h33’ 28h171’ 37h26’ 63h24’
Trax 5h26’ 6h19’ 52h44’ 65h02’ 122h45’
Average 4h19’ 5h49’ 35h54’ 50h25’ 90h53’
Std dev 42 25’ 8h05’ 7h58’ 17h16’

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Sayin, S., Karabati, S.: A bicriteria approach to the two-machine flow shop schedul-
ing problem. European journal of operational research (1999) 435-449
Rajendran, C.: Heuristics for scheduling in flowshop with multiple objectives.
European journal of operational research (1995) 540-555

Nagar, A., Haddock, J., Heragu, S.: Multiple and bicriteria scheduling: A litterature
survey. European journal of operational research (1995) 88-104

Sivrikaya, F., Ulusoy, G.: A bicriteria two-machine permutation flowshop problem.
European journal of operational research (1998) 414-430

Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. In: Annals of
Discrete Mathematics. Volume 5. (1979) 287-326

Lenstra, J.K., Kan, A.H.G.R., Brucker, P.: Complexity of machine scheduling
problems. Annals of Discrete Mathematics 1 (1977) 343-362

Kim, Y.D.: Minimizing total tardiness in permutation flowshops. European Journal
of Operational Research 83 (1995) 541-551

Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is np-hard.
Mathematics of operations research 15 (1990) 483-495

Taillard, E.: Benchmarks for basic scheduling problems. European Journal of
Operations Research 64 (1993) 278-285

Talbi, E.G., Rahoual, M., Mabed, M.H., Dhaenens, C.: A hybrid evolutionary
approach for multicriteria optimization problems : Application to the flow shop.
In Zitzler, E.| et al., eds.: Evolutionary Multi-Criterion Optimization. Volume 1993
of LNCS., Springer-Verlag (2001) 416-428

Visée, M., Teghem, J., Pirlot, M., Ulungu, E.: The two phases method and branch
and bound procedures to solve the bi-objective knapsack problem. Journal of
Global Optimization Vol. 12 (1998) p. 139-155

Haimes, Y., Ladson, L., Wismer, D.: On a bicriterion formulation of the problems
of integrated system identification and system optimization. IEEE Transaction on
system, Man and Cybernetics (1971) 269-297

Basseur, M., Seynhaeve, F., Talbi, E.G.: Adaptive mechanisms for multi-objective
evolutionary algorithms. In: Congress on Engineering in System Application
CESA’03, Lille, France (2003)

Basseur, M., Seynhaeve, F., Talbi, E.G.: Design of multi-objective evolutionary
algorithms: Application to the flow-shop scheduling problem. In: Congress on
Evolutionary Computation CEC’02, Honolulu, USA (2002) 1151-1156

Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8 (2002)
541-564

Ahuja, R.K., zlem Ergun, Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discrete Appl. Math. 123 (2002) 75-102



21.

22.

23.

Meunier, H., Talbi, E.G., Reininger, P.: A multiobjective genetic algorithm for
radio network optimisation. In: CEC. Volume 1., Piscataway, New Jersey, IEEE
Service Center (2000) 317-324

Knowles, J.D., Corne, D.W.: On metrics for comparing non-dominated sets. In
Center, 1.S., ed.: Congress on Evolutionary Computation (CEC’2002). Volume 1.,
Piscataway, New Jersey (2002) 711-716

Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and
applications. Master’s thesis, Swiss federal Institute of technology (ETH), Zurich,
Switzerland (1999)



