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Abstract. Path relinking algorithms have proved their efficiency in sin-
gle objective optimization. Here we propose to adapt this concept to
Pareto optimization. We combine this original approach to a genetic al-
gorithm. By applying this hybrid approach to a bi-objective permutation
flow-shop problem, we show the interest of this approach.

In this paper, we present first an Adaptive Genetic Algorithm dedicated
to obtain a first well diversified approximation of the Pareto set. Then, we
present an original hybridization with Path Relinking algorithm, in order
to intensify the search between solutions obtained by the first approach.
Results obtained are promising and show that cooperation between these
optimization methods could be efficient for Pareto optimization.

1 Introduction

In solving Multi-objective Optimization Problems (MOPs), many methods scalar-
ize the objective vector into a single objective. However, since several years, in-
terest concerning MOPs using Pareto approaches always grows. Many of these
studies use Evolutionary Algorithms (EAs) to solve MOPs [1-3].

The evolutionary approach called scatter search, and its generalized form
called Path Relinking (PR), contrast with other evolutionary procedures, such
as genetic algorithms, by providing unifying principles for joining solutions based
on generalized path constructions. Joining solutions can be realized in both de-
cisional and the objective spaces. Path relinking algorithms have recently been
investigated in a number of studies for single-objective optimization, and es-
pecially in [4], where the Flow-shop problem is solved, in its single objective
form.

In this paper, we propose a multi-objective approach to integrate Path relink-
ing algorithms into EAs. We have to take into account several classical questions
to implement a PR algorithm, and we propose some solutions for Pareto opti-
mization. We have to define which distance operator has to be to used to join
solutions. We propose a distance measure to compute distance in respect to an
efficient neighborhood operator, the Shift operator. Then we define techniques to
have an initial population (with EA), neighborhood generation to approach goal
solutions from initial solutions, and path selection between solutions. Then, we
propose to integrate path relinking into Pareto evolutionary algorithms to solve



MOPs. We combine an Adaptive Genetic Algorithm (AGA) with Path relinking
technique. In order to evaluate the effectiveness of this hybridization, we apply
it to solve a Bi-Objective Flow-shop Scheduling Problem (BOFSP).

This paper is organized as follows. In section 2, we present the BOFSP. In
section 3, we present a Pareto EA (AGA) developed to find an initial Pareto pop-
ulation. In section 4, we present cooperation between AGA and multi-objective
Path relinking. Section 5 presents results on a large class of instances, which
are non-exactly solved with exact approaches. In the last section, we discuss the
effectiveness of this approach and perspectives of this work.

2 A Bi-Objective Flow Shop Problem (BOFSP)

The Flow-shop Scheduling Problem (FSP) is one of the numerous scheduling
problems. The FSP has been widely studied in the literature. Proposed methods
for its resolution vary between exact methods such as the branch & bound algo-
rithm [5], specific heuristics [6] and meta-heuristics [7]. However, the majority of
works on flow-shop problem studies the problem in its single criterion form and
aims mainly to minimize makespan, which is the total completion time. Some
bi-objective approaches exist in the literature. Sayin et al. proposed a branch
and bound strategy to solve the two-machine flow-shop scheduling problem, min-
imizing the makespan and the sum of completion times [5]. Sivrikaya-Serifoglu
et al. proposed a comparison of branch & bound approaches for minimizing the
makespan and a weighted combination of the average flowtime, applied to the
two-machine flow-shop problem [8]. Rajendran proposed a specific heuristic to
minimize the makespan and the total flowtime [6]. Nagar et al. proposed a survey
of the existing multi-criteria approaches of scheduling problems [7].

FSP can be presented as a set of N jobs Ji,Js,...,Jy to be scheduled on
M machines. Machines are critical resources: one machine cannot be assigned
to two jobs simultaneously. Each job J; is composed of M consecutive tasks
ti1,-..,tinm, where t;; represents the jth task of the job J; requiring the machine
m;. To each task ¢;; is associated a processing time p;;. Each job J; must be
achieved before its due date d;. In our study, we are interested in permutation
FSP where jobs must be scheduled in the same order on all the machines.

In this work, we minimize two objectives: Ci,q4z, the makespan (total com-
pletion time), and T, the total tardiness. Each task ¢;; being scheduled at the
time s;;, the two objectives can be computed as follows:

Craz = Mam{SiM +piM|7: S []. N]}

N
T = Z [maz(0, sips + pine — di)]

=1
In the Graham et al. notation [9], this problem is denoted: F /perm, d; /(Cpmaz, T).

In [10] Ciee minimization has been proved to be NP-hard for more than
two machines. The total tardiness objective T has been studied only a few times



for M machines [11], but total tardiness minimization for one machine has been
proved to be NP-hard [12]. The evaluation of the performances of our algorithm
has been realized on some Taillard benchmarks for the FSP [13], extended to
the bi-objective case [14].

3 An Adaptive Genetic Algorithm (AGA)

In this part, we present AGA which is applied to MOFSP. AGA’s objective is
to explore a large and diversified part of the landscape, to offer good solutions
to the hybrid part of the algorithm (i.e. PR in our case). AGA proposes an
adaptive selection between different mutation operators. In a first time, let us
present classical operators of AGA:

— Initialization: Individuals are generated randomly.

— Selection: Elitist selection with NSGA ranking [15].

— Crossover Operator: 2-point crossover (See Fig. 1).

Mutation Operators: Adaptive selection between 4 mutation operators: inser-

tion, reciprocal exchange, random and inversion operator (See Fig. 2,3,4,5).

Adaptive selection is described below.

— Diversification: Combined Sharing (sharing is realized in the decision space
and in the objective space). Niche sizes are defined adaptively after each GA
generation [16].

— Replacement: Generational (the population is automatically replaced by the
new individuals).

— Stopping criterion: Fixed time.
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Fig. 1. 2-point crossover operator.

An Adaptive Mutation Selection

Whatever the problem, we can choose between many mutation and crossover
operators. Many evaluations must be done on each operator in order to know
its effectiveness. Moreover, the efficiency of an operator may change during the
evolution process. An operator may offer a better convergence at the beginning
of the GA, but this convergence may stop earlier than with another operator.
The success of an operator may also depends on the instance of the problem.

! bi-objective benchmarks and results obtained are available on the web at http:
//www.1lifl.fr/"basseur



Fig. 4. Random operator. Fig. 5. Inversion operator.

Therefore, we have proposed an adaptive Pareto GA, in which the choice of
the operator is done dynamically during the search. The purpose is to change
the probability selection of each operator according to its efficiency.

This adaptive mechanism has the interest to diversify the Pareto population
by the use of several operators. Moreover, it allows us to define the best operator
to use for the PR algorithm presented in the next section.

To adapt mutation rate during the GA, each mutation operator M; applied
to the individual I was associated with a progress value (I, is the individual
I modified by the mutation M;). This progress value allows to refine mutation
rates after each GA generation. This approach has been initially proposed by
Hong et al. [17] for the single-objective case. To have a good evaluation of each
operator in the multi-objective case, we use the elitist and ranking approach .
As a consequence, the progress value is expressed as follows:

(Tus,) = Cy, * (Rgn’ )k &

with Cr,, = ﬁ (Cr1,,. is an elitist coefficient), where Ry,, is the rank of the
; o ; ;

solution after mlftation, Ry is the rank of the solution before mutation, and k
is how much we encourage the progress performed by a mutation operator. For
our application, we set k to 2.

Then, the global progress of a mutation M; is defined as follows:

> (1)
Progress(M;) = S=——= 2
gress(M;) = 5= @
The new selection probabilities are computed proportionally to these values,
with a minimum selection probability of 4:
Py Progress(M;)

. = 1-—
© Y Progress(Mj) *(1—nxd)+9 ®)




In figure 6, we show an example of mutation rate on a problem with 100
jobs and 5 machines. Global results (detailed in [18]) show that shift operator
is the most efficient neighborhood operator for this instance, and for the other
instances.

0.38

T T
Swap operator
L . S1Iaﬁ perator ------ |
Random operator -----
Inversion operator - - - -
034 g R i
03 7

0.26 j%ﬂ/M\/WW/\A

022 [P, .

0.18 | | | | 1
0 20000 40000 60000 80000 100000

Fig. 6. Mutation rate evolution during GA run: ta_100_5_01 instance

Computational results presented in the last section show that AGA obtain a
good initial approximation of the Pareto front. In order to improve these results
by intensify the search within the set of solutions founded by AGA, we propose
a cooperative scheme between AGA and Path relinking.

4 A Multi-objective Path Relinking Algorithm

Path Relinking (PR) was originally proposed by Glover [19] as an intensification
strategy exploring trajectories connecting elite solutions obtained by tabu search
or scatter search. [20] offers a good overview of this technique.

In this section we propose a cooperation scheme between PR and AGA in the
multi-objective case. The goal is to show the interest of this type of approach,
to improve solutions obtained by AGA. In our knowledge, a PR algorithm has
already been proposed to solve Flow-shop problem, but only in its single objec-
tive optimization form [4]. The concept of PR algorithm is schematized in figure
7. Two solutions are chosen in an initial population (if possible, good solutions).
Then by iterative applications of neighborhood operator, join the first solution
to the second. These two solutions are called initiating and guiding solutions.
During the algorithm, solutions are evaluated, and in order to improve efficiency
of PR algorithms, some of them are selected to be improved by a local search
algorithm.

Path relinking is naturally an extension of scatter search algorithms. Only a
few studies propose scatter search algorithms to solve MOPs [21]. A study by
Gandibleux et al. [22] propose to incorporate PR principles in a multiobjective
heuristic using genetic heritage. In a general way, many questions have to be
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Fig. 7. Path Relinking: the concept

considered before designing a PR algorithm. Several answers exist for single
objective optimization, but they have to be reconsidered for the multi-objective
case. We have to establish these following mechanisms:

— Neighborhood structure.

— Distance measure (correlated, or not, with the neighborhood).

— Selection criteria, to choose solutions to link.
Path selection, to establish which path(s) has to be generated.
Improvement of solutions. A local search algorithm may be applied on so-
lutions belonging to the path. A mechanism of solutions selection to apply
the local search algorithm has to be proposed.

Here we propose a first initiative to answer these difficulties, but there are still
some open questions.

4.1 Neighborhood operator

In order to link solutions, we need to select a neighborhood operator which
allows us to generate the intermediate solutions. In [4], Reeves and Yamada
propose a distance measure for the swap operator, but not for the shift operator.
Then they propose other distance measures which are not correlated with these
operators. Here, we choose the most powerful operator of AGA algorithm applied
on BOFSP: the shift operator. We propose next a distance measure in respect
to this operator.

4.2 Distance in decision space

Genotypic distance between two solutions S; and S, in respect to the shift
operator, is: dperm = N — 8102, Where N is the number of jobs, and 5,4, is the
size of the greatest shared substring between S; and Ss. In the appendix, we
prove that dperm(S1,52) is a distance, and that it corresponds to the minimum
number of permutations required to join S; with Ss.

Computing a greatest shared substring between two solutions is a well-known
problem in the genomic community. Computing a greatest shared substring be-
tween two solutions is a classical application of dynamic programming [23]. We
implement this algorithm to compute distance between solutions in the decision
space, its complexity is in O(N?).



An example of distance between two solutions x and y obtained by computing
a greatest shared substring is shown in figure 8. In this example, three inversions
are necessary to link x from y - the jobs 2, 4 and 6 have to be moved to link these
solutions. They correspond to the set of jobs which are not in the greatest shared
substring between the two solutions (let remark us that the greatest shared sub-
string is not necessary unique: the substrings 13478’ and ’12478’ can be viewed
as largest shared substring too). As in many Path relinking implementations, we
choose to generate only minimum path between solutions.
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Fig. 8. Distance between two solutions x and y

4.3 Initial solutions for path relinking

In many single objective optimization path relinking algorithms, good local op-
tima solutions are chosen to be linked. We can favor distant solutions to favor
the exploration of the search space, or adjacent solutions to favor intensification
of the search around good solutions. Then, in the multi-objective case, it may
be interesting to link solutions which are closed to each other in the objective
space in order to intensify the search around solutions with similar quality on
the different objectives.

For this study, we randomly choose among Pareto solutions obtained by the
GA. After linking the two first solutions, we compute the new Pareto set. The
selection of the two next solutions to link is realized on this set.

4.4 Neighborhood generation

We use the insertion neighborhood operator to generate the path from a solution
z to a solution y. The goal is to explore only solutions which reduce distance
between the generated solution and y.

So, after defining the set of “well placed” jobs, by computing the largest
shared substring between z and y, we have to move misplaced jobs in order to
increase the size of this largest shared substring.

Then, we compute the available positions for misplaced jobs, as shown in
figure 9. On this example, a greatest shared substring is first computed and
represented in this figure by encircled jobs (i. e. the string 13578). Possible
moves to apply to z to approach y are also computed for jobs 2, 4 and 6. These
available positions are chosen to increase the size of the largest shared substring,
and so to decrease the distance between the current solution and the guiding
solution.
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Fig. 9. Neighbors explored (greatest shared substring represented by encircled solu-
tions)

Possible moves

4.5 Generation of the Path

We can generate from x a set of neighbors which reduce the distance between this
solution z and the goal solution y. Now, we have to choose which path we will
generate to iterate this mechanism and explore the largest landscape possible.

A first possible approach is to generate all the possible paths. But with
this approach, the number of explored solutions grows exponentially with the
distance between the two considered solutions. So, experimentally, we have to
explore only a subset of the possible paths. Many PR algorithms which select a
subset of the possible paths propose to explore only the best solutions generated.
In the multi-objective case, the best solutions are those which are non-dominated
by all the neighborhood. This set is represented in figure 10 (eligible solutions).
In order to reduce the size of the exploration, we apply a random aggregation
of the objectives to select only one solution in the set of eligible solutions (fig.
10). In future works, it is conceivable to select the totality of the set of eligible
solutions, with a mechanism which limits the size of the exploration.
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Fig. 10. Path Relinking algorithm: neighborhood exploration.



4.6 A Pareto Local Search

To affine Pareto solutions found by the Path Relinking algorithm, we implement
a population-based local search or Pareto Local Search (PLS). Local searches
are realized after each PR generation. The local search technique is described in
algorithm 1. The neighborhood structure used for this algorithm is the insertion
operator.

Algorithm 1 PLS algorithm
Generate an initial Pareto set PO (in our case, with PR algorithm)
do
S+ PO.
Generate the neighborhood PN, for each solution z of S'.
Let PO be the set of non-dominated solutions of S’ Uy PN,.
Until PO=S" (the population has reached the local optima).
Let PO* be the Pareto optimal set of PO* U S’.
Return the Pareto set PO*

To introduce PLS in PR algorithm, we select the set of non-dominated so-
lutions discovered during the PR algorithm. Then we apply the PLS algorithm
with this set of solutions as initial population. This mechanism is shown in figure
11. Let remark us that PLS algorithm may comsume larger computation time
if the problem size or the number of objective increase. In this case, PLS algo-
rithm may be implemented with other mecanisms as clustering, neighborhood
restriction, etc. to be effective.

A Solution selected for PLS
f2 A Solution on the path

><‘ solution A

A
2N
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/ solution B
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Fig. 11. Path relinking algorithm with local search.



5 Experimental results

5.1 Quality assessment of Pareto set approximation

Solutions’ quality can be assessed in different ways. Here, we use the contribution
metric [24] to evaluate the proportion of Pareto solutions given by each front,
and the S metric [25] which evaluate the dominated area with a reference point.
This metric is advised in [26].

Contribution metric: The contribution of a set of solutions PO; relatively to
a set of solutions PQOs is the ratio of non-dominated solutions produced by PO
in PO*, where PO* is the set of Pareto solutions of PO, U POs.
— Let PO be the set of solutions in PO; N PO>.
— Let Wy (resp. W3) be the set of solutions in POy (resp. PO,) that dominate
some solutions of PO, (resp. POy).
— Let L; (resp. Lz2) be the set of solutions in POy (resp. PO5) that are domi-
nated by some solutions of PO3 (resp. POy).
— Let N; (resp. N3) be the other solutions of POy (resp. PO3): N; = PO; \
LEPL 1wl + Vi |

Cont(PO,/PO3) = PO

S metric: A definition of the S metric is given in [25]. Let PO be a non-
dominated set of solutions. S metric calculates the hyper-volume of the multi-
dimensional region enclosed by PO and a reference point Z,;.

Let PO; and PO be two sets of solutions. To evaluate quality of PO; against
PO,, we compute the ratio (S(PO;1) — S(PO3))/S(PO,). For the evaluation,
the reference point is the one with the worst value on each objective among all
the Pareto solutions found over the runs.

5.2 Computational results

Evaluations were realized for 10 runs per instance, on a 1.6Ghz machine. We
test the different algorithms of several instances proposed in [14]. The smallest
instances are exactly solve in a bi-objective exact approach proposed by Lemesre
et al. [27]. We test the different approaches on instances with 50 and 100 jobs.
We compare performance of AGA with PR against results obtained only
with AGA. In the experiments, runs are realized with a specified time limit
(1000 minutes in our experiments). For all tests, 10 runs have been done on each
benchmark. For the cooperative approach (AGA + PR), we choose to run AGA
for 10% of the total run time. Results of tested instances are listed in tables 1, 2
and 3, with:
— SMin, respectively Cnin, i the minimum value of S, respectively of the
contribution.
— SMax, respectively Cmax, is the maximum value of S, respectively of the
contribution.



— Average is the average value.

— Std dev is the average deviation between the different measures.

— Avg Imp is the average improvement realized by AGA+PR against AGA
in terms of dominance area.

Table 1. Quality assessment (S metric): S(AGA).

S(AGA)

Benchmark | Swmin Smax | Average |Std dev
ta_50_10_.01 | 516521 | 828610 | 709023.6 | 93279.2
ta_50_20_01 1841592 | 2476210 | 2170418.6 |205943.7
ta_100_5_01 | 431760 | 446264 | 439799.2 | 5526.3
ta_100-10_01 | 5414203 | 6956336 | 6218845.8 |464814.8
ta_100-20_01 |17167424(20139584|19117894.4|866011.0

Table 2. Quality assessment (S metric): S(AGA+PR)

S(AGA+PR)

Benchmark SMin Smax | Average (Std dev|Avg Imp
ta_50-10_01 870448 | 1065523 | 988079.6 | 67443.2 | 39.4%
ta_50.20_01 |2853166 | 3113992 | 3020664.0 | 93279.6 | 39.2%
ta_100.5_01 445695 | 446878 | 446323.0 286.2 1.5%
ta_100_10_01 | 7813940 | 8148625 | 7978420.0 | 93335.8 | 28.3%
ta_100_20_01 |26209816|28745238|27752835.2(690416.0| 45.2%

Table 3. Quality assessment (Contribution metric): Cont(AGA/AGA+PR) - 1000
minutes runs

Cont(AGA+PR/AGA)
Benchmark | Cwmin|Cmax|Average|Std dev
ta_50.10_01 1.00 | 1.00 1.000 0.000
ta_50-20_01 1.00 | 1.00 1.000 0.000
ta_100_5_01 0.71 | 1.00 0.836 0.085
ta_100.10_01 | 1.00 | 1.00 1.000 0.000
ta_100.20_01 | 1.00 | 1.00 1.000 0.000

The instance ta_N _M _n, correspond to the bi-criteria version of the number n
problem with N jobs and M machines in Taillard’s benchmarks. Results show a
great improvement for all the instances excepting ta_100_5_01. For this problem,
we can expect that we are really near the optimal Pareto front. In fact, the



best value for C),,, Objective given by the hybrid algorithm is the optimal value
(found by single objectives algorithms). For the other instances evaluated, with
10 and 20 machines, improvement, in term of dominance area, varies from 27.7%
and 45.2%. Table 3 shows that for these problems, all the Pareto set generated by
AGA+ PR algorithm dominate those generated by AGA (C(AGA+PR/AGA) =
1.00). Figure 12 shows an example of Pareto set generated. The first Pareto set
is generated by AGA. The second corresponds to the same algorithm in a longer
run. The third corresponds to the path relinking algorithm applied on the first
Pareto set.
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Fig. 12. Result on ta_50_20_01 instance.

6 Conclusion and perspectives

In this paper, we have first presented an Adaptive Genetic Algorithm to solve
MOPs. This approach has been applied on a BOFSP. Then we have proposed
a multi-objective path relinking algorithm, with a distance measure correspond-
ing to the best neighborhood operator we select during AGA experiments. We
propose several mechanisms to answer some difficulties of multi-objective path
relinking implementation. Then we have proposed an original hybridization be-
tween AG A and path relinking to improve results. This approach has been tested,
and its effectivenesses has been shown in comparison with Pareto fronts ob-
tained by AGA algorithm. These results show the interest of cooperation with
path relinking, which can be applied after many meta-heuristics, and especially
evolutionary algorithms.

These results could be improved by adding other mechanisms of Path Re-
linking algorithms, such as replacing a genetic operator of AGA with the PR
algorithm, or using a more evolved path selection. Another interesting approach
could be to change the transition rules between AGA and PR. We can adapt
the transition in respect to the evolution rate of the Pareto set.



Moreover, the hybrid approach presented in this article can be easily paral-
lelized, by running several path generations and local searches simultaneously.
This work will be integrated in the framework ParaDisEO (Parallel and Dis-
tributed Evolutionary Objects) [28].
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Appendix

We want to prove that dperm is a distance measure and that only minimum paths
are generated. Let us introduce several notations:

— Shift(i,j, X) corresponds to the permutation generated by moving the it
job of a sequence to a new position j.

— posx (i) corresponds to the position of the job i in a permutation X.

— GSS(X,Y) corresponds to the greatest shared substring between two per-
mutations X and Y.

First, let us introduce a trivial lemma (proved in [29]):

Lemma 1 For all the permutations X andY , dperm (X,Y)—1 < d(X, Shift(i,j,Y)) <
dX,Y)+1

In fact, the largest shared substring between X and Y can not vary more
than 1 by deleting and adding a ’letter’ (job).
Now, let introduce another lemma:



Lemma 2 For all the permutations X andY of a size N, with dperm (X,Y) # 0,
34,5 € [0..N] | dperm(Shift(i,j,X),Y) = dperm(X,Y) — 1.

Proof: Let X and Y be two permutations. If X # Y, then dx € Y with
z & GSS(X,Y). Let y (resp. z) be the nearest predecessor (resp. successor) of
zin X with y € GSS(X,Y) (resp. z).

Given Y' = Shift(z,posy(y) + 1,Y) 2. Set U = GSS(X,Y). U can be
described as: Uy yzls. Let U' = GSS(X,Y"). So,U' = UryzzUs (x is now between
y and z, either in X than in Y). So, [U/'| = [U| + 1.

As a consequence, for all X, Y with X # Y, we can apply a Shift operator
to increase the size of the greatest shared substring of the two permutations. So,
lemma 2 is proved.

With the two lemma presented, let us prove that dperm is a distance. We
have to establish 3 properties:

— dperm is symmetrical: (dperm (X,Y) = dperm (Y, X)). This property is triv-
ially verified with the definition of the largest shared substring between two
permutations.

— Space separation by dperm: (dperm (X,Y) =0 & X =Y). Trivial property
t00. If, dperm (X,Y) = 0 then |[GSS(X,Y)] = N,s0 GSS(X,Y)=X =Y.
Then X =Y.

— Triangular inequality: (V{X,Y, Z}, dperm (X, Z) < dperm (X, Y)+dperm (Y, Z)).
This property need a recurrence proof, proposed below.

Let X and Z be two permutations. Let us define the proposition P,: “VY
with dperm(X,Y) < n, we have the relation dperr(X,Z) < dperm(X,Y) +
dperm (Y, Z)?. With the space separation, we have P, verified. Let us suppose
P,, verified.

Set Y with dperm (X,Y) <n+1.

If dperm(X,Y) < n, the inequality is verified according to the recurrence
hypothesis. If dperm(X,Y) = n + 1, we show previously that we can find i, j
with Y/ = Shift(i,5,Y) and dperm(X,Y") = dperm(X,Y) — 1. So, according
to the recurrence hypothesis, dperm (X, Z) < dperm (X, Y") + dperm (Y, Z). As a
consequence, with lemma 1 and 2 and the recurrence relation:

dperm (X, Y) = dperm (X, Y") + 1
dperm (X; Z) < dperm (X; YI) + dperm (YI; Z)
dperm (Ya Z) > dperm (YI7 Z) -1

As a consequence:

dperm (X, Y) + dperm (Y, Z) > dperm (X, Y') + 1 + dperm (Y', Z) — 1
dperm (Xa Y) + dperm (Y7 Z) > dperm (X7 Z)

The recurrence hypothesis is verified at the rank n + 1. So, the triangular
inequality is verified with dperm, which is a distance measure.

% we can choose every element in the interval [posy (y) + 1, posy (2)].



