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Abstract
This paper focuses on the problem of how to rank a population of solutions into order of fitness
within a genetic algorithm for multiobjective optimization applications. Attention is paid to the
fact that the set of acceptable solutions to a problem is usually only a small sub-set of all Pareto-
optimal solutions to the problem. Two key concepts essential to the solution of this problem are
identified and explained: range-independence and importance. Six methods (three old and three
new) for solving this multi-fitness ranking problem are described in detail and applied to five test
problems for comparison: four established test functions and an example solid object design task
with ten separate constraints and objectives. Results show that all five methods allow the
generation of Pareto-optimal solutions, but all have different distributions of solutions within the
Pareto-optimal range(s). The bias of each distribution and the resulting quality of solutions
generated by each method is examined and compared. The paper concludes that the new ranking
method 'Sum of Weighted Global Ratios' (SWGR) created as part of this work allows the most
consistent generation of acceptable solutions, whilst also being fully independent of the
multiobjective problem.
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1. Introduction

The genetic algorithm (GA) has been growing in popularity over the last few years as more and more
researchers discover the benefits of its adaptive search. Many papers now exist, describing a multitude
of different types of genetic algorithm, theoretical and practical analyses of GAs and huge numbers of
applications for GAs (Goldberg, 1989; Holland, 1992). A substantial proportion of these applications
involve the evolution of solutions to problems with more than one criterion. More specifically, such
problems consist of several separate objectives, with the required solution being one where some or all
of these objectives are satisfied to a greater or lesser degree. Perhaps surprisingly then, despite the
large numbers of these multiobjective optimization applications being tackled using GAs, only a small
proportion of the literature explores exactly how they should be treated with GAs.

With single objective problems, the genetic algorithm stores a single fitness value for every solution in
the current population of solutions. This value denotes how well its corresponding solution satisfies
the objective of the problem. By allocating the fitter members of the population a higher chance of
producing more offspring than the less fit members, the GA can create the next generation of
(hopefully better) solutions. However, with multiobjective problems, every solution has a number of
fitness values, one for each objective. This presents a problem in judging the overall fitness of the
solutions. For example, one solution could have excellent fitness values for some objectives and poor
values for other objectives, whilst another solution could have average fitness values for all of the
objectives. The question arises: which of the two solutions is the fittest? This is a major problem, for if



there is no clear way to compare the quality of different solutions, then there can be no clear way for
the GA to allocate more offspring to the fitter solutions.

1.1 Defining a Fit Solution
The approach most users of GAs favour to the problem of ranking such populations, is to weight and
sum the separate fitness values in order to produce just a single fitness value for every solution, thus
allowing the GA to determine which solutions are fittest as usual. However, as noted by Goldberg:
"...there are times when several criteria are present simultaneously and it is not possible (or wise) to
combine these into a single number." (Goldberg 1989). In other words, the separate objectives may be
difficult or impossible to manually weight because of unknowns in the problem. Additionally,
weighting and summing could have a detrimental effect upon the evolution of acceptable solutions by
the GA (just a single incorrect weight can cause convergence to an unacceptable solution). Moreover,
some argue that to combine separate fitnesses in this way is akin to comparing completely different
criteria; the question of whether a good apple is better than a good orange is meaningless.

The concept of Pareto-optimality helps to overcome this problem of comparing solutions with multiple
fitness values. A solution is Pareto-optimal (i.e., Pareto-minimal, in the Pareto-optimal range, or on
the Pareto front) if it is not dominated by any other solutions. As stated by Goldberg:

Definition 1.1. A vector x is partially less than y, or x <p y when:
(x <p y) ⇔ (∀ i)(xi <= yi) ∧ (∃ i)(xi < yi)

x dominates y when x <p y. (Goldberg, 1989)

However, it is quite common for a large number of solutions to a problem to be Pareto-optimal (and
thus be given equal fitness scores). This may be beneficial should multiple solutions be required, but it
can cause problems if a smaller number of solutions (or even just one) is desired. Indeed, for many
problems, the set of solutions deemed acceptable by a user will be a small sub-set of the set of Pareto-
optimal solutions to the problems (Fonseca and Fleming 1995b). Manually choosing an acceptable
solution can be a laborious task, which would be avoided if the GA could be directed by a ranking
method to converge only on acceptable solutions. For this work, an acceptable solution (or champion
solution) is defined:

Definition 1.2 A solution is an acceptable solution if it is Pareto-optimal and it is considered to be
acceptable by a human.

1.2 Background
Existing literature seems to approach this ranking problem using methods that can be classified in one
of three ways: the aggregating approaches, the non-Pareto approaches and the Pareto approaches.
Many examples of aggregation approaches exist, from simple 'weighting and summing' (Syswerda
and Palmucci, 1991; Goldberg 1989) to the 'multiple attribute utility analysis' (MAUA) of Horn and
Nafpliotis (1993). Of the non-Pareto approaches, perhaps the most well-known is Schaffer's VEGA
(Schaffer 1984, 1985), who (as identified by Fonseca and Fleming, 1995a) does not directly make use
of the actual definition of Pareto-optimality. Many other non-Pareto methods have been proposed
(Linkens and Nyongesa, 1993; Ryan 1994; Sun and Wang, 1992). Finally the Pareto-based methods,
proposed first by Goldberg (1989) have been explored by researchers such as Horn and Nafpliotis
(1993) and Srinivas and Deb (1995). In addition, many researchers are now introducing 'species
formation' and 'niche induction' in an attempt to allow the uniform sampling of the Pareto set
(Goldberg 1989; Horn and Nafpliotis, 1993). For a comprehensive review, see Fonseca and Fleming
(1995a).

1.3 Aims of the Paper
The problem of ranking a population of solutions into order of fitness within a GA is an often
overlooked, but fundamental problem when using a GA to search for solutions to multicriteria
problems. The concept of Pareto-optimality allows a broad definition of which solution is fitter than
another, but not all Pareto-optimal solutions are acceptable solutions.
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Additionally, despite the existence of literature on the subject, there appears to have been little
exploration of the actual nature of this multiobjective solution ranking problem. Many researchers
point out the difficulties of handling noncommensurable objectives and then give their own
multiobjective optimization algorithms, often it seems, giving little thought to whether their methods
actually solve the true problem at all. All too often, such algorithms seem to have been created with
most of the emphasis on whether the method will work, and little on why the method works.

Consequently, this paper will initially focus on the difficulties posed by these problems to GAs, and
will explore exactly why separate criteria can cause problems in a genetic algorithm. A technique to
guide the GA to converge on the smaller subset of acceptable solutions will be introduced. In the light
of this, six different ranking methods will then be described, explored and compared in detail: three
aggregating variants ('sum of weighted objectives' and two novel alternatives), one novel non-Pareto
approach, one non-Pareto approach based on Schaffer's VEGA, and one Pareto approach (Goldberg's
'non-dominated sorting'). As well as assessing the quality of solutions produced, this paper will
examine the previously unknown distribution of solutions produced in the Pareto-optimal range(s) by
each method.

2. Range-Independence

In nature, every living creature must satisfy a large number of objectives sufficiently in order to be
successful (e.g. avoid predators, find food, survive illnesses, reproduce). However, nature cannot (and
has no need to) determine precisely which creature will be more successful (or fitter) than another.
Whilst nature does sometimes attempt to improve the chances of successful creatures passing on their
genes by allowing the physically stronger members of a group to breed more than weaker ones (e.g.
male lions, deer, walruses), criteria such as physical strength can only be indirect approximations to
the overall fitness (ability to produce good offspring) of the creature. Indeed, the criteria used for
mating selection sometimes seems to bear little relation to the fitness of the creature (e.g. the tail of
the peacock). This does not matter greatly, for in nature, the definition of a 'successful' creature is one
which has managed to produce potentially successful offspring. (Note that this is not a tautology of
'Survival of the Fittest' - the fact that a creature has survived doesn't necessarily make it genetically
fit.) Thus the true 'fitness' of a creature tackling the problem of life, can only be determined after its
death.

With genetic algorithms, however, a solution is not considered 'fit' if it has produced good offspring -
quite the reverse: a solution is allocated a greater chance of having offspring if it is identified as being
fit. In these algorithms, fitness now becomes a measure of how well the solution satisfies
mathematical objectives and bears little relation to the real measure used in nature. Therefore, because
a mathematical function is being used to judge fitness, this problem of ranking multiobjective
solutions is purely artificial.

Consequently, the problem has more to do with mathematics than nature. Throughout the evolution by
the GA, every separate objective (fitness) function in a multiobjective problem will return values
within a particular range. Although this range may be infinite in theory, in practice the range of
values will be finite. This 'effective range' of every objective function is determined not only by the
function itself, but also by the domain of input values that are produced during evolution. These
values are the parameters to be evolved by the GA and their exact values are normally determined
initially by random, and subsequently by evolution. The values are usually limited still further by the
coding used, for example 16 bit sign-magnitude binary notation per gene only permits values from -
32768 to 32768. Hence, the effective range of a function can be defined:

Definition 2.1. The effective range of f(x) is the range from min(f(x)) to max(f(x))
for all values of x generated in one run of the GA

Although occasionally the effective range of all of the objective functions will be the same, in most
more complex multiobjective tasks, every separate objective function will have a different effective
range (i.e. the function ranges are noncommensurable; Schaffer 1985). This means that a bad value
for one could be a reasonable or even good value for another, see Fig. 1. If the results from these two
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objective functions were simply added to produce a single fitness value for the GA, the function with
the largest range would dominate evolution (a poor input value for the objective with the larger range
makes the overall value much worse than a poor value for the objective with the smaller range).

Figure 1.  Different effective ranges for different objective functions (to be minimised)

For example, consider the two objective functions:
f11 = x2

f12 = (x - 2)2 / 1000
(both to be minimised).

Given a non-optimal input value, the output value from f11 will normally be three orders of
magnitude worse than that from f12 (i.e. the second function will be approximately one thousand
times closer to the minimum of zero). As can be seen in the simplest of tests, if the outputs from both
were simply summed, the first function would completely dominate the second, resulting in the
effective evolution of a good solution only to the first function.

Thus, the only way to ensure that all objectives in a multiobjective problem are treated equally by the
GA is to ensure that all the effective ranges of the objective functions are the same (i.e. to make all the
objective functions commensurable), or alternatively, to ensure that no objective is directly compared
to another. In other words, either the effective ranges must be converted to make them equal, and a
range-dependent ranking method used, or a range-independent ranking method must be used.
Typically, range-dependent methods (e.g. 'sum of weighted objectives', 'distance functions', and 'min-
max formulation') require knowledge of the problem being searched to allow the searching algorithm
to find useful solutions (Srinivas and Deb, 1995). Range-independent methods require no such
knowledge, for being independent of the effective range of each objective function makes them
independent of the nature of the objectives and overall problem itself. Thus, multiobjective ranking
methods that are range-dependent or range-independent can be defined:

Definition 2.2. Given objective function(s) of a problem: f1..n(x)
and a solution vector to the problem: s

A multiobjective ranking method is range-dependent if the fitness of s changes when the effective
range(s) of f1..n(x) change (and s is scaled correspondingly).

A multiobjective ranking method is range-independent if the fitness of s does not change when the
effective range(s) of f1..n(x) change (and s is scaled correspondingly).

For example, the standard 'sum of weighted objectives' method favoured by so many, uses the weights
to make the effective domains of each objective equal, then provides a single fitness value by summing
the resulting values. This is a range-dependent method, for it relies completely on the weights being
set precisely for every problem. Should any of the objectives be changed, or the allowable domain of
input values be changed (perhaps by a change in coding, or seeding the initial population with
anything other than random values), then these weights may have to be changed.

Alternatively, the non-dominated sorting method, and variants of it, is a range-independent method. It
requires no weighting of the objective values, for the fitness values from each objective function are
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never directly compared with each other. Only values from the same objective are ever compared in
the process of determining the non-dominance of solutions (Goldberg 1989). For complex
multiobjective problems, this range-independence is extremely advantageous: good results do not
depend on the ability of the user to fine-tune weights correctly. However, a disadvantage of non-
dominated sorting is that all Pareto-optimal solutions are considered equally good, regardless of what
the user actually regards as being acceptable.

Hence, there is one other vital, and usually overlooked requirement that a good ranking method
should satisfy: the ability to increase the importance of some objectives with respect to others in the
ranking of solutions, to allow search to be directed to converge on the smaller subset of acceptable
solutions.

3. Importance

On separate occasions, many researchers have independently noted that with highly complex search
problems, searching efficiency can be increased, and time can be reduced, by increasing the
importance of a particular part, or objective(s) of that problem (Dowsland, 1995; Marett and Wright,
1995). This is often achieved either by introducing objectives to the search algorithm one at a time (or
in distinct 'stages') with the most important first, or by simply weighting the most important objectives
more heavily. Indeed, experience shows that many users of GAs and the 'sum of weighted objectives'
ranking method are inadvertently increasing the importance of certain objectives without being aware
of it, as they fine-tune their weights to improve evolution.

Intentionally determining which objectives are more important in a problem can be a matter of debate,
but to improve evolution time, it seems that often the best results are gained by making the most
difficult to satisfy objectives the most important. However, some problems require that certain
objectives have differing levels of importance just to allow evolution of an acceptable solution. (For
example, the optimization of an electronic device has the design criteria: cost, speed, size and power
consumption. For some devices, a low cost is overwhelmingly important, for others, a high speed is of
greatest importance.)

Aggregation ranking methods (typically range-dependent) usually guide the GA to converge upon a
single 'best compromise' solution. For the purposes of this paper, the best compromise solution is
defined:

Definition 3.1. A best compromise solution is the solution with the sum of (weighted) objective
fitnesses minimised.

However, with additional guidance in the form of importance weightings, this best compromise
solution can be made the same as the required solution, allowing the GA to converge directly to an
acceptable solution. Thus, producing a single best compromise solution is not always a disadvantage.
However, to accurately set the values of importance, a range-independent method is perhaps more
desirable since a range-dependent method requires objectives to be weighted twice - once to make the
function ranges commensurable, and once to specify increased importance.

Nevertheless, the more favoured ranking methods do not employ aggregation (and typically are range-
independent). They are usually used with some form of niching and speciation method to allow the
GA to generate not one, but a range of non-dominated (Pareto-optimal) solutions. (Niching can also
help the quality of solutions by preventing excessive competition between distant solutions; Goldberg
1989.) The user is then required to select the preferred solution from this range of different solutions.
However, particularly for problems with many objectives, only a small proportion of Pareto-optimal
solutions may be acceptable solutions. This means that even when hundreds of different solutions are
generated by the GA, there can be no guarantee that an acceptable solution will be among them.
Moreover, for such large problems, it is not always feasible to allow the user to pick the preferred
solution from a truly representative range of Pareto-optimal solutions: the number to be considered
may be too large. Thus, the ranking method needs further information, to guide the algorithm to
converge more closely to truly acceptable solutions within the range of Pareto-optimal solutions. This
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information is 'importance' - by specifying which objectives must be satisfied more than others, the
GA can converge more closely to acceptable solutions, not just Pareto-optimal solutions.

Significantly, importance can be used in this way, regardless of what the individual objective
functions represent. Hence, objective functions that represent wildly different things can be judged
against each other. Often, when two functions represent different things, regardless of the degree of
similarity between their effective ranges, they are, perhaps improperly, called noncommensurable. To
clarify this term, for this work, commensurable functions are defined:

Definition 3.2. Two or more functions are commensurable if the difference between the  effective
ranges of the functions is insignificant (i.e., the differences between the minimum and maximum of
each must be negligible), regardless of what these functions represent.

Hence, given a problem with two commensurable objective functions, whatever each one represents
(be it cars or carrots), solution vectors to the problem can have their fitnesses precisely set, using the
relative importance values of the objectives.

For example, consider the problem of packing a bag before going mountaineering. In this simplified
example, the person has to choose between the amount of climbing equipment and the amount of food
to be packed in the bag. How much of each should be packed? Many researchers would state that the
two are non-commensurable and cannot be directly compared by a computer, and so would present a
human user with a number of alternative solutions to choose from. Clearly, in reality, the ideal
solution depends on the length of time of the trip, and the difficulty of the climb. If the trip is to take
two days, and will involve only a hike in some hills, then more food is required than climbing
equipment. However, if the climb will involve an hour scaling a vertical cliff, then more climbing
equipment is required than food. In other words, a human picks a solution based on the relative
importance of the two objectives. Moreover, there is no good reason not to specify these relative
importance values for the computer, and let the computer pick the same solution (without the need for
a human to consider potentially hundreds of different Pareto-optimal solutions). Hence, importance
can be defined as:

Definition 3.3. Importance is a simple way to give a ranking method additional problem-specific
information, in order to direct a GA to converge to acceptable solutions within a smaller subset of the
Pareto-optimal range, by favouring those solutions closer to the optima of functions with increased
importance, in proportion to this increased importance.

Unfortunately, there is no easy way to increase the importance of one objective in relation to another,
without the two objectives being directly compared to each other. In other words, whilst it is simple to
specify increased importance with a range-dependent method such as 'sum of weighted objectives'
(just increase the weights), with a range-independent method such as non-dominated sorting,
specifying importance is more complex. (Fonseca forces a kind of importance with his 'preference
articulation' method, (Fonseca and Fleming 1995b) but this requires detailed knowledge of the ranges
of the functions themselves, involves human interaction, and is not a continuous guide to evolution.)
Thus, alternative methods of ranking multiobjective solutions are required, that are ideally range-
independent, allow the easy specification of importance, and can accurately judge fitness levels of
solutions.

4. Multiobjective Ranking Methods

There follows descriptions of six different ranking methods. The first two are the most commonly
used methods: the range-dependent 'weighted sum' (aggregation) method and the range-independent
Pareto non-dominated sorting. The next three are novel range-independent methods, developed in an
attempt to allow importance to be specified with such methods. The techniques used within these
methods are not new, but they have as yet been rarely, if at all, used to rank multiobjective populations
within a genetic algorithm. Finally, the sixth method is a range-independent method based on
Schaffer's VEGA. Algorithms can be found in the appendix.
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Method 1: Sum of Weighted Objectives (SWO)
This is perhaps the most commonly used method because of its simplicity. All separate objectives are
weighted to make the effective ranges equivalent (and to specify importance) and then summed to
form a single overall fitness value for every solution. These values are then used by the GA to allocate
the fittest solutions a greater chance of having more offspring. (Because of the similarity in nature and
performance between this method and many of the other 'classical' methods (Srivinas and Deb, 1995),
only this classical method will be described and explored in detail.)

Method 2: Non-Dominated Sorting (NDS)
Described by Goldberg (1989), this range-independent method and variants of it are commonly used.
The fitnesses of the separate objectives are treated independently and never combined, with only the
value for the same objective in different solutions being directly compared. Solutions are ranked into
'non-dominated' order, with the fittest being the solutions dominated the least by others (i.e. having
the fewest solutions partially less than themselves). These fittest can then be allocated a greater
probability of having more offspring by the GA.

Method 3: Weighted Average Ranking (WAR)
This is the first of the alternative ranking methods proposed. The separate fitnesses of every solution
are extracted into a list of fitness values for each objective. These lists are then individually sorted into
order of fitness, resulting in a set of different ranking positions for every solution for each objective.
The average rank of each solution is then calculated, with this value allowing the solutions to be
sorted into order of best average rank. Thus, the higher an average rank a solution has, the greater its
chance of producing more offspring. Since all objective fitnesses are treated separately, this method is
range-independent. This technique allows the specification of importance by the weighting of average
ranking values for each solution.

Method 4: Sum of Weighted Ratios (SWR)
This is the second of the novel ranking methods proposed for GAs and is basically an extension to
SWO (method 1). The fitness values for every objective are converted into ratios, using the best and
worst solution in the current population for that objective every generation. More specifically:

fitness ratio
fitness value fitness value

fitness value fitness valuei
i_

( _ min( _ ))

(max( _ ) min( _ ))
= −

−

This removes the range-dependence of the solutions, and they can be weighted (for the setting of
importance) and summed to provide a single fitness value for each solution as with the first method.

Method 5: Sum of Weighted Global Ratios (SWGR)
This method is the third of the novel proposed ranking methods for GAs, and is a variation of SWR
(method 4). Instead of the separate fitnesses for each objective in every solution being converted to a
ratio using the current population best and worst values, the globally best and worst values are used.
Again the importance of individual objectives can be set by weighting the appropriate values.

Method 6: Weighted Maximum Ranking (WMR)
This ranking method is based on Schaffer's VEGA (Schaffer 1984, 1985). VEGA forms lists of fitness
values of each solution for each objective. The fittest n solutions from each list are then extracted, and
random pairs are selected for reproduction. This is equivalent to WAR (method 3) except that the
maximum rank of each solution for all objectives is used to determine the overall rank, instead of the
average. Importance levels can be set in a similar way to those in WAR. Note that the additional
heuristic used by Schaffer to encourage 'middling' values (Schaffer 1984) was not implemented in
WMR.
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5. Application of the Ranking Methods:
Test Functions F1~F4

5.1 Test Functions
To explore and compare the performance of the six ranking methods, they were applied in turn to four
different test functions: f1 to f4. The first three are identical to those used by Schaffer (1984,1985),
whilst f4 is identical to Fonseca's f1 (Fonseca and Fleming 1995b). Each function was chosen to
represent a different class of function (i.e., each has different numbers of Pareto-optimal ranges and/or
best compromise solutions). All functions are to be minimised, see Table 1 and Fig. 2.

FUNCTION: DESCRIPTION:

f1 = x1
2 + x2

2 + x3
2

A single-objective, three parameter function with
an optimal at (0,0,0).

f21 = x2

f22 = (x - 2)2
A simple twin-objective single parameter function
with a Pareto-optimal range between 0 and 2, and
a best compromise solution of 1.

f31 = -x where x <= 1
-2 + x where 1 < x <= 3
4 - x where 3< x <= 4
-4 + x where 4 < x

f32 = (x - 5)2

A twin-objective single parameter function with
two disjoint Pareto-optimal ranges: 0 to 2 and 4 to
5. This has a single best compromise solution of
4.5

f41 = 1 - exp( -(x1 - 1)2 - (x2 + 1)2)
f42 = 1 - exp( -(x1 + 1)2 - (x2 - 1)2)

A twin-objective function this time with two
parameters. This has a single Pareto-optimal
range along the line (-1,1) to (1,-1), but two equal
best compromise solutions at the optima of each
function: (-1,1) and (1,-1).

Table 1.  The four test functions used to compare the ranking methods.
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Figure 2.  Graphs of the four test functions with Pareto-optimal ranges shown by grey shaded regions
and best compromise solutions marked with dotted lines.

All five methods were used with a basic genetic algorithm using binary coding, a population of 50,
and running for 100 generations. Probability of crossover was 1.0, probability of mutation was 0.05.
Although this GA used elitist selection techniques, with all of the ranking methods described in this
paper it is possible to use alternatives.

To the authors knowledge, there has been no previous work investigating the distribution of solutions
generated with multiobjective ranking methods. Hence, the distributions produced by methods 1-6 for
each function were calculated by running the GA between 1,000 and 10,000 times (depending on the
function). It was assumed that the distribution of solutions produced by a series of runs of this
algorithm would not differ significantly from the distribution of solutions obtained by an algorithm
with niching or other speciation techniques.

5.2 Evolved Results: F1
The first experiment performed with each method was simply to allow the GA to minimise f1. This
function was used to validate that each method would rank solutions to single-objective problems
correctly (as was done for VEGA by Schaffer, 1985). As expected, every method allowed the GA to
converge on, or very near to, the optimal solution of (0,0,0), every time. (The distributions of solutions
for this function are all at a single point and hence are not shown.)
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Figure 3.  Distributions of solutions within the Pareto-optimal range for function F2.

5.3 Evolved Results: F2
The next experiment involved minimising F2. To give some idea of the quality and distribution of
solutions, 1000 test runs were performed for each method. All methods allowed the GA to produce
Pareto-optimal solutions every time, however, as fig. 3 shows, the distribution of these solutions on
the Pareto front for this function are very different for each method. SWO and SWGR both produced
solutions very close to or exactly the best compromise value of 1.0. SWR also favoured this value, but
with a larger 'spread', with the numbers of solution produced falling almost logarithmically the further
from the best compromise value they were. NDS showed a fairly even distribution throughout the
Pareto-optimal range, and WMR favoured solutions at either function optima, with nothing in
between. WAR gave the most unexpected and fascinating distribution, with solutions close to each
optima and close to the best compromise value being favoured, all other Pareto-optimal values being
less commonly produced, see fig. 3.

Additionally for F2, the average solution of each method was calculated to give an indication of how
balanced these distributions were. In other words, no matter what value(s) of Pareto-optimal solution
were favoured, the mean value should be the centre value of 1.0 (for F2).  Table 2 (F2 test 1) shows
that all methods produced mean solutions close to 1.0.
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Best
Compromise

SWO NDS WAR SWR SWGR WMR

F2 test 1 1.0 1.00922 0.93999 1.10226 1.21556 0.98763 0.97595

F2 test 2 1.0 2.01459 0.85992 1.17007 1.22672 0.98825 0.99532

F2 test 3 1.333 1.37837 N/A 2.01466 1.66141 1.310 1.45757

Table 2.  Average solutions for each ranking method in F2 tests 1-3.

Two further tests were performed using F2. For the second test, f21 was temporarily changed to:
f21 = x2 / 1000
to demonstrate the range-independence (or lack of it) for each method. As Table 2 (F2 test 2) shows,
after 1000 test runs for each method, SWO (method 1) clearly demonstrates its range-dependence by
converging on average to the optimal of f22 instead of near to 1.0. All other methods show their
range-independence by continuing to give mean solution values close to 1.0.

Finally, for the third test with F2, the importance of f22 was doubled for every method capable of
supporting importance (the two objectives being otherwise unchanged from the first test). By
increasing the importance, the best compromise solution is changed from 1.0 to 1.333. Only three
methods: SWO, SWR and SWGR, all successfully produced values close to this new desired value (see
Table 2, F2 test 3). NDS does not support importance, and WMR just doubled the frequency of
optimal solutions to f22 (giving a deceptive mean solution), without actually producing any values
between the two function optima. Finally, and somewhat unexpectedly, WAR simply converged every
time to the optimal of f22.

Upon investigation, it emerged that WAR does not permit the specification of gradual importance
values. On the face of it, it would seem that increasing the weighting of the ranking value for more
important objectives should introduce some level of additional importance for these objectives.
Interestingly though, in practice it does not appear to be possible to gradually increase 'importance'
values: either all objectives are treated equally, or the objective with the increased weight dominates
all other objectives completely. Somewhat counter-intuitively, it seems that no matter how large or
small an increase is made to a weight, it will make that objective dominate all others.

11



Phenotype
F

re
qu

en
cy

0

200

400

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

Phenotype

F
re

qu
en

cy

0

50

100

150

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

Sum of Weighted Objectives (SWO) Non-dominated Sorting (NDS)

Phenotype

F
re

qu
en

cy

0

100

200

300

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

Phenotype

F
re

qu
en

cy

0

200

400

600

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

Weighted Average Ranking (WAR) Sum of Weighted Ratios (SWR)

Phenotype

F
re

qu
en

cy

0

500

1000

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

Phenotype

F
re

qu
en

cy
0

200

400

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

Sum of Weighted Global Ratios (SWGR)Weighted Maximum Ranking (WMR)

Figure 4.  Distributions of solutions within the Pareto-optimal ranges (shown by grey shaded regions)
for function F3.

5.4 Evolved Results: F3
Experiments were then performed using F3 with each method in turn. The function F3 is significant
since it has two disjoint Pareto-optimal ranges. Nevertheless, the distribution of solutions for this
function was surprisingly consistent with those for F2. As before, SWO and SWGR almost always
converged to solutions near to the best compromise value of 4.5 (for F3). Again, SWR favoured the
best compromise solution with a slightly larger 'spread', but this time some solutions close to the
optimal of f31 were also produced. NDS gave a fairly even distribution of solutions within the two
Pareto-optimal ranges, and WMR again only generated solutions at the optima of the two objectives,
with none in between. Finally, WAR showed its highly unusual distribution once more, by favouring
solutions close to the optima of both objectives (including both minima of the multimodal objective
f31), and the best compromise solution to a lesser degree.
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Figure 5.  Distributions of solutions within the Pareto-optimal range for function F4.

5.5 Evolved Results: F4
Finally, experiments were performed using F4 with each method in turn. Again, consistent
distributions of solutions were obtained. It should be noted that F4 is a significant type of function
because solutions between the optima of the two objectives are worse than at one optima or the other.
This results in two equal best compromise solutions, one at each optima. Hence, although SWO and
SWGR this time showed two peaks of distribution, these lie on the best compromise solutions, just as
before. Once again, SWR favoured the best compromise solutions with a slightly larger 'spread'. As
before, WMR favoured the two optima of the functions with nothing in between. NDS again produced
a distribution of solutions covering the entire Pareto-optimal range, but for this function an
unexpected and unwelcome bias towards the middle of the range was evident (where most solutions
are very poor). Finally, WAR showed its typically unusual distribution, again favouring values close to
the optima of the objectives (and the best compromise solutions, as they are the same for F4), with
other Pareto-optimal values being favoured less.

5.6 Explaining The Distributions
It should be stressed that all six of the ranking methods allow a GA to produce almost nothing but
Pareto-optimal solutions. It is clear, however, that the distribution of these solutions within the Pareto-
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optimal range is a highly significant factor in determining whether an acceptable solution will be
produced.

As shown above, each ranking method consistently seems to favour certain types of Pareto-optimal
solution, based upon three factors: the Pareto range(s), the separate optimum or optima for each
objective and the best compromise solution(s) of the function. These patterns of distributions remain
consistent even with more unusual functions with multiple Pareto-ranges (F3) and multiple best
compromise solutions (F4).

Upon consideration, these distributions are explicable. The three aggregation-based ranking methods:
SWO, SWR and SWGR must inevitably favour the best compromise solution(s) to a problem, by
definition. (The best compromise solution is the solution with sum of weighted objectives minimised,
so any ranking method that sums objectives in any way, should allow convergence close to exactly the
best compromise value.) NDS gives all non-dominated solutions equal rank, so a fairly even
distribution throughout the Pareto-optimal range (range of non-dominated solutions) is to be expected.
WMR bases the fitness of a solution on the maximum rank the solution has for any objective, so this
predictably will result in the generation of solutions only at the optimal of one objective, with nothing
in between (a high rank equates to a good value for that objective). Finally, even the unexpected
distributions of WAR are explicable. WAR bases the fitness of a solution on the average rank for
every objective. This means that a solution with a very high rank for one objective and a low rank for
another will be judged equally fit compared to a solution with 'middling' ranks for two objectives. In
other words, solutions close to optima of objective functions will be favoured, as will solutions close to
the best compromise solution(s).

6. Application of the Ranking Methods:
Solid Object Design

6.1 The Problem
To allow the investigation of the multiobjective techniques described previously on a larger and more
difficult problem, they were all applied to a design creation problem consisting of 36 parameters and
10 constraints and objectives.

It can be clearly seen, by examining some of the wide range of literature describing the application of
genetic algorithms to some of the numerous problems in design, that research in this area is
flourishing, with some remarkable results (Adeli and Cheng, 1994; Holland, 1992). Applications
range from optimization of existing designs (e.g. a high-bypass jet engine turbine as described by
Holland, 1992) to the creation of 'artistic' pictures and shapes (Dawkins, 1986; Todd and Latham,
1992). However, as yet, very little research has been performed in the area of solid object design
creation using GAs, i.e. the evolution of entirely new designs of solid objects from purely random
beginnings (Bentley and Wakefield 1995a, 1995b, 1996a, 1996b).

To allow a genetic algorithm to evolve such designs in this way, a suitable representation of solids is
required. This representation must be capable of describing the geometry of designs with the
minimum of parameters, whilst allowing the freedom to manipulate the shape of a represented design
in almost any way. To achieve this, a spatial-partitioning representation was created in previous work
(Bentley and Wakefield 1995a). For the sake of simplicity, it can be compared to a number of
'building blocks', or primitives each with its own position, width, depth and height (the more
advanced aspects of this representation are not being considered in this brief example). Giving a GA
this amount of freedom when evolving the geometry of designs allows the generation of new
conceptual designs (Bentley and Wakefield 1996a) - the most difficult part of the design process to
automate.

The evolutionary design task was to evolve a set of portable, free-standing steps from a population
initialised randomly. A good solution to this design task would be a reasonably light set of steps,
capable of supporting the weight of a heavy person on each step in turn (suitable for use, for example,
in a library). Three steps were desired. The number of primitives permitted for each potential design
was limited to just six (giving 36 shape-definition parameters). This limitation immediately increases
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the difficulty of the problem, since inevitably, three primitives are required for the three steps, leaving
only three remaining to support the steps sufficiently at the required heights. In total, some ten
separate criteria are required to fully specify (and evaluate) the designs: maximum size, minimum
size, desired mass, flat surfaces (three criteria), supportive surfaces (three criteria), and being
unfragmented. The required design should have the fitnesses for all criteria minimised. More detailed
descriptions of these criteria can be found in Bentley and Wakefield (1995b).

Using these ten criteria, a simple genetic algorithm was used to evolve a selection of designs. The GA
used populations of 100, binary-coding, elitist selection, crossover and mutation as before and was
allowed to run for 1000 generations. Where possible, test runs were performed with and without
importance values set for the problem. Because of lengthy execution times, 15 test runs were
performed for each algorithm. Figure 6 shows the number of almost fully minimised criteria (values
from 0.0 to 10.0), low-valued criteria (10.0 to 50.0) and high-valued criteria (values of 50 upwards)
for the best designs produced by each method. Distributions of solutions could not be calculated for
this multidimensional problem; solutions are judged more on how acceptable they appear to be (i.e.
how well-formed the designs are, as judged by a human).

6.2 Evolved Results
NDS and WMR both produced the most disappointing results. Since neither allow the guidance of the
GA to any desirable subsets of Pareto-optimal solutions with importance, most designs were
unacceptable. It was common to see designs evolved with fundamental and highly important aspects
missing (such as correct size), since a solution is considered optimal by these ranking methods if just
a single objective is minimised. Figure 6 shows clearly the small number of objectives that were fully
minimised by these methods. Figure 7 (right) shows the best design evolved using NDS, the low
quality clearly illustrates that this problem does require a ranking method capable of directing
evolution to more acceptable non-dominated solutions.

The GA using WAR (method 3) produced some slightly disappointing results, since it too could not be
directed during the search process by importance. However, since it does favour best compromise
solutions, unlike WMR, results were slightly improved and more consistent in their quality compared
to WMR and NDS. Figure 6 illustrates the increased number of minimised objectives.

SWR allowed the GA to generate better results, as can been seen from the increase in the number of
minimised (or nearly so) criteria shown in fig. 6. As expected, results were not consistently good,
because of the fairly 'spread-out' distribution generated by this method. However, SWO and SWGR
both produced equally good results - better by far than the best generated using any of the other
methods. Both consistently converged to acceptable solutions (as defined by relative importance
values), see example design shown in fig. 7 (left). The number of minimised objectives was higher
(see fig. 6). The only difference between the two was of course, that the range-dependent SWO
required a substantial amount of time spent fine-tuning weights, whilst the range-independent SWGR
only required the simple setting of importance values (a considerably easier task).
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Figure 7. Well-formed evolved design of steps using SWGR (left).
Mal-formed evolved design of steps using NDS (right).

7. Performance Of The Ranking Methods

For all tests, the five ranking methods all guided the genetic algorithm to produce non-inferior (non-
dominated) solutions. Indeed, after tens of thousands of test runs, only a tiny handful of solutions were
not Pareto-optimal. What varied for each method was the distribution and bias of the results within
the Pareto-optimal front, and the ability of 'importance' to guide this bias to allow a GA to converge to
a smaller subset of Pareto-optimal solutions.

SWO (sum of weighted objectives), the first and simplest of all methods examined, gave solutions all
close to or exactly the best compromise solution(s). This method does not produce a range of Pareto-
optimal solutions - it will always force the GA to converge as quickly as possible to a (Pareto-optimal)
compromise solution. Although it is possible to make this best compromise solution the same as the
desired solution by setting importance weightings, in practice determining the exact values of the
weights is often very difficult. As the results show, with correct weights, the results can be very good,
but this range-dependent method, despite being the simplest and quickest, is not practical for anything
other than simple problems.

NDS (non-dominated sorting) usually produced solutions with no significant bias; if a solution is
Pareto-optimal, it is considered acceptable by this method. Although it is a range-independent method
with no parameters to fine-tune, it is slow, difficult to implement, and has no obvious way to make use
of importance values. Results for this method were surprisingly poor, perhaps because of the lack of
niching, but more likely because this method lacks the ability to guide the GA to converge to
acceptable Pareto-optimal solutions.

WAR (weighted average ranking) again produced a wide range of non-dominated solutions, but this
time with a highly distinct bias towards solutions close to the minimum of each objective function. It
also showed a bias towards the best compromise solutions. Compared to the other methods, results
using WAR were average for all problems. Again, this method is a range-independent method with no
parameters to fine-tune, but it is perhaps simpler to implement and is faster in execution than the
second method. Unfortunately, weighting for importance has no gradual effect (either all objectives
are treated equally, or one dominates completely).

SWR (sum of weighted ratios) also produced a range of non-dominated solutions, this time with a
strong bias towards the best compromise solution, the frequency of solutions falling almost
logarithmically the further they were from this solution. Because this method supports importance,
this bias can be moved to allow the GA to favour any Pareto-optimal solution. In this way, the
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problem-specific knowledge encompassed in the importance values can be used to guide the GA to
produce higher numbers of acceptable non-dominated solutions. Being range-independent, having the
ability to add importance to objectives, and producing a range of solutions makes this perhaps the
most versatile of the six. However, despite also being fast and easy to implement, the results were not
exceptional for the solid-object design application.

SWGR (sum of weighted global ratios) like the first method, produced just a single non-dominated
solution as close to a best compromise solution as possible. Being range-independent, it will normally
treat all objectives equally without the need for any fine-tuning of weights. Since it does support
importance, it can be made to guide the GA to converge to a single, acceptable solution on the Pareto-
optimal front. The method is fast and simple to implement, and as the test results show, the quality of
solutions is as good as (and sometimes better than) those produced by the first method - without the
lengthy time spent on fine-tuning parameters.

Finally, WMR (weighted maximum ranking), only produced solutions with one objective fully
satisfied (i.e. similar numbers of solutions at each objective minimum to the problem). Unlike WAR,
there were no other solutions produced 'between' the separate function optima. This behaviour was
noted in VEGA by Schaffer (1984), who introduced an additional heuristic in an attempt to increase
the numbers of 'middling' values. This range-independent method requires the same implementation
and execution time as WAR. Importance changes the relative numbers of solutions at each objective
minimum. Results with this method were poor.

8. Conclusions

This paper has made three significant advances in the area of multiobjective function optimisation
with genetic algorithms:

1. The problem of ranking solutions to multicriteria problems has been investigated, with the
clarification of some commonly used terminology, and the identification of two key factors:
range-independence and importance.

If the ranking method is not range-independent, then one or more objectives in the problem can
dominate the others, resulting in evolution to poor solutions. Thus, a ranking method should not
just be independent of individual applications (i.e. problem independent), as stated by Srivinas
and Deb (1995), it should be independent of the effective ranges of the objectives in individual
applications (i.e. range-independent). When the ranking method is range-independent, it requires
no problem-specific knowledge to set and fine-tune parameters before it will work. Thus, a range-
independent method will also be independent of the applications themselves.

Giving certain objectives in a problem greater importance allows the GA to produce not just non-
dominated solutions, but a smaller subset of acceptable non-dominated solutions. As was seen in
section 6, ranking methods which support importance allow the consistent evolution of
considerably improved solutions compared to those that do not support importance.

2. Using this new understanding of the problem, three novel ranking methods were created, in an
attempt to embrace both factors of the problem.

All three of these new methods: 'weighted average ranking' (WAR), 'sum of weighted ratios'
(SWR), and 'sum of weighted global ratios' (SWGR) are range-independent. SWR and SWGR
both support importance fully. This compares favourably with most existing ranking methods,
such as 'sum of weighted objectives' (SWO) which is range-dependent, and 'non-dominated
sorting' (NDS) and VEGA's 'weighted maximum ranking' (WMR) which do not support
importance.

3. Three standard ranking methods were compared with the three novel methods, using four well-
known test functions and one more complex solid object design task. Significantly, the quality
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and distribution of results was examined. Until now, the distribution of most types of ranking
methods was unknown.

All methods produced Pareto-optimal solutions, but the consistent distributions of these solutions
was revealing. For applications where multiple solutions are required, it is clear that NDS, WMR
and the new WAR method all give potentially useful distributions of solutions. Should some user-
alterable bias in the distribution of solutions be required, SWR would be an appropriate choice.
However, for many applications, these methods would still produce hundreds of alternative
'optimal' solutions for a human to laboriously (and unnecessarily) search through, with no
guarantee that any would be acceptable to him/her. For this type of application, SWGR should be
used. This new range-independent method performs as well as or better than all other methods,
allowing a GA to consistently evolve a single acceptable optimal solution regardless of the
multiobjective problem. Indeed, this multiobjective ranking method has now been used to tackle a
wide range of different solid object design problems with great success (Bentley and Wakefield,
1996b).
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