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Abstract

This paperfocuseson the problemof how to rank a populationof solutionsinto order of fithess
within a geneticalgorithm for multiobjective optimizationapplications Attention is paid to the
factthatthe setof acceptablesolutionsto a problemis usuallyonly a small sub-sebf all Pareto-
optimal solutionsto the problem.Two key conceptsessentiato the solution of this problemare
identified and explained:range-independena@nd importance Six methods(threeold andthree
new) for solving this multi-fitness ranking problem are describatktailandappliedto five test
problemsfor comparisonfour establishedestfunctionsandan examplesolid objectdesigntask
with ten separateconstraintsand objectives. Results show that all five methodsallow the
generatiorof Pareto-optimasolutions but all havedifferent distributionsof solutionswithin the
Pareto-optimalrange(s).The bias of eachdistribution and the resulting quality of solutions
generatedy eachmethodis examinedand comparedThe paperconcludeghatthe newranking
method'Sumof WeightedGlobal Ratios'(SWGR) createdas part of this work allows the most
consistentgenerationof acceptablesolutions, whilst also being fully independentof the
multiobjective problem.
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1. Introduction

The geneticalgorithm(GA) hasbeengrowingin popularityoverthelastfew yearsasmoreandmore
researchers discover the benefits of its adaptive search. pageysnow exist, describinga multitude
of differenttypesof geneticalgorithm,theoreticaland practicalanalyse®of GAs andhugenumbersof

applicationsfor GAs (Goldberg,1989;Holland, 1992).A substantiaproportionof theseapplications
involve the evolution of solutionsto problemswith morethan one criterion. More specifically, such
problems consist of several separate objectives, with the regoitgtbnbeingonewheresomeor all

of theseobjectivesare satisfiedto a greateror lesserdegree Perhapssurprisingly then, despitethe
large numbers of these multiobjective optimization applications being tacilegGAS, only a small

proportion of the literature explores exactly how they should be treated with GAs.

With single objective problems, the genetic algorithm stores a single fithess vadwerfgsolutionin
the currentpopulationof solutions.This value denoteshow well its correspondingsolution satisfies
the objectiveof the problem.By allocatingthe fitter membersof the populationa higher chanceof
producing more offspring than the less fit members,the GA can createthe next generationof
(hopefully better) solutions.However,with multiobjective problems,every solution hasa numberof
fithnessvalues,one for eachobjective. This presentsa problemin judging the overall fithess of the
solutions.For example onesolutioncould haveexcellentfitnessvaluesfor someobjectivesand poor
valuesfor other objectives,whilst anothersolution could have averagefitness valuesfor all of the
objectives. The question arises: which of the two solutions is the fittest? Thigism@problem,for if



thereis no clearway to comparethe quality of different solutions,thentherecanbe no clearway for
the GA to allocate more offspring to the fitter solutions.

11 Defining a Fit Solution

Theapproachmostusersof GAs favourto the problemof rankingsuchpopulationsjs to weightand
sumthe separatditnessvaluesin orderto producejust a single fithessvalue for everysolution,thus
allowing the GA to determinewhich solutionsare fittest as usual. However,as noted by Goldberg:
"...therearetimeswhenseveralcriteria are presentsimultaneoushandit is not possible(or wise) to
combinetheseinto a singlenumber."(Goldberg1989).1n otherwords,the separat@bjectivesmay be
difficult or impossibleto manually weight becauseof unknownsin the problem. Additionally,
weightingandsummingcould havea detrimentaleffect uponthe evolution of acceptablesolutionsby
the GA (justa singleincorrectweightcancauseconvergencdo an unacceptablsolution). Moreover,
somearguethat to combineseparatditnessedn this way is akin to comparingcompletelydifferent
criteria; the question of whether a good apple is better than a good orange is meaningless.

The concept of Pareto-optimality helps to overcome this problem of comparing solutionsultiple
fitnessvalues.A solutionis Pareto-optimali.e., Pareto-minimaljn the Pareto-optimatange,or on
the Pareto front) if it imot dominated by any other solutions. As stated by Goldberg:

Definition 1.1. A vectorx is partially less thag, orx <py when:
(x<py) = (@) <=yi) OO <yi)

x dominatesy whenx <py. (Goldberg, 1989)

However,it is quite commonfor a large numberof solutionsto a problemto be Pareto-optima({and
thus be given equal fithess scores). This may be beneficial should msdiiplionsbe required but it
can causeproblemsif a smallernumberof solutions(or evenjust one)is desired.Indeed,for many
problemsthe setof solutionsdeemedacceptabldy a userwill bea small sub-sebf the setof Pareto-
optimal solutionsto the problems(Fonsecaand Fleming 1995b). Manually choosingan acceptable
solution can be a laborioustask, which would be avoidedif the GA could be directedby a ranking
methodto convergeonly on acceptablesolutions.For this work, an acceptable solution (or champion
solution) is defined:

Definition 1.2 A solutionis anacceptable solution if it is Pareto-optimaandit is consideredo be
acceptabléy a human.

12 Background

Existing literature seems to approach this ranking problem using methods that can be diassiéed
of threeways: the aggregatingapproachesthe non-Paretcapproachesnd the Paretoapproaches.
Many examplesof aggregatiorapproache®xist, from simple ‘weighting and summing'(Syswerda
andPalmucci,1991; Goldberg1989)to the 'multiple attributeutility analysis'(MAUA) of Horn and
Nafpliotis (1993). Of the non-Paretcapproachesperhapsthe mostwell-known is Schaffer'sVEGA
(Schaffer1984,1985),who (asidentified by FonsecandFleming,1995a)doesnot directly makeuse
of the actual definition of Pareto-optimality.Many other non-Paretomethodshave been proposed
(LinkensandNyongesa1993; Ryan1994; Sunand Wang, 1992). Finally the Pareto-basecdhethods,
proposedfirst by Goldberg(1989) have beenexploredby researchersuch as Horn and Nafpliotis
(1993) and Srinivas and Deb (1995). In addition, many researchersre now introducing 'species
formation' and 'niche induction' in an attemptto allow the uniform sampling of the Paretoset
(Goldberg1989; Horn and Nafpliotis, 1993).For a comprehensiveeview, seeFonsecaand Fleming
(1995a).

13 Aims of the Paper

The problem of ranking a populationof solutionsinto order of fithesswithin a GA is an often
overlooked, but fundamentalproblem when using a GA to searchfor solutionsto multicriteria
problems.The conceptof Pareto-optimalityallows a broaddefinition of which solutionis fitter than
another, but not all Pareto-optimal solutions are acceptable solutions.



Additionally, despitethe existenceof literature on the subject,there appearsto have been little
explorationof the actualnatureof this multiobjective solution ranking problem. Many researchers
point out the difficulties of handling noncommensurablebjectives and then give their own
multiobjectiveoptimizationalgorithms,oftenit seemsgiving little thoughtto whethertheir methods
actually solvethe true problemat all. All too often, suchalgorithmsseemto havebeencreatedwith
most of the emphasis avhether the method will work, and little owhy the method works.

Consequentlythis paperwill initially focuson the difficulties posedby theseproblemsto GAs, and
will exploreexactlywhy separateriteria can causeproblemsin a geneticalgorithm.A techniqueto
guide the GA to convergen the smallersubsebf acceptablesolutionswill beintroduced.n thelight
of this, six differentranking methodswill thenbe describedexploredand comparedn detail: three
aggregatingsariants(‘sumof weightedobjectives'andtwo novel alternatives) one novel non-Pareto
approachpnenon-Paret@approactbasedon Schaffer'syEGA, andoneParetoapproachGoldberg's
'non-dominatedsorting’). As well as assessinghe quality of solutions produced,this paper will
examinethe previouslyunknowndistributionof solutionsproducedn the Pareto-optimatange(s)oy
each method.

2. Range-Independence

In nature,everyliving creaturemust satisfy a large numberof objectivessufficiently in orderto be
successfu(e.g.avoid predatorsfind food, surviveillnessesyeproduce)However,naturecannot(and
hasno needto) determinepreciselywhich creaturewill be more successfulor fitter) than another.
Whilst naturedoessometimesattemptto improvethe chanceof successfutreaturegpassingon their
genesby allowing the physically strongermembersf a groupto breedmore thanweakerones(e.g.
malelions, deer,walruses)criteria suchas physicalstrengthcan only be indirect approximationgo

the overall fitness (ability to producegood offspring) of the creature.Indeed,the criteria usedfor

mating selectionsometimeseemdo bearlittle relationto the fitnessof the creature(e.g. the tail of

the peacock). This doe®t mattergreatly,for in nature the definition of a 'successfukreatures one
which hasmanagedo producepotentially successfubffspring. (Note that this is not a tautology of

'Survival of the Fittest'- the fact that a creaturehassurviveddoesn'tnecessarilynakeit genetically
fit.) Thusthetrue fitness'of a creaturetackling the problemof life, canonly be determinedafter its

death.

With geneticalgorithms,however,a solutionis not consideredfit' if it hasproducedgood offspring -

quite the reverse: a solution is allocated a gredtanceof havingoffspringif it is identifiedasbeing
fit. In these algorithms, fithess now becomesa measureof how well the solution satisfies
mathematical objectives and bears little relation to the real measure unsgdrivTherefore because
a mathematicalfunction is being usedto judge fitness, this problem of ranking multiobjective
solutions is purely artificial.

Consequently, the problem has more to do with mathematics than nature. Throughout the evolution by
the GA, every separateobjective (fitness) function in a multiobjective problemwill return values

within a particularrange.Although this range may be infinite in theory, in practicethe range of
valueswill befinite. This 'effectiverange'of every objectivefunction is determinednot only by the

function itself, but also by the domain of input valuesthat are producedduring evolution. These
valuesare the parameterdo be evolvedby the GA andtheir exactvaluesare normally determined

initially by random,andsubsequentlyy evolution. The valuesare usuallylimited still further by the
codingused,for examplel6 bit sign-magnitudéinary notationper geneonly permitsvaluesfrom -

32768 to 32768. Hence, tk#ective range of a function can be defined:

Definition 2.1.  Theeffective range of f(x) is the range from mif(k)) to maxg(x))
for all values o generated in one run of the GA

Although occasionallythe effective rangeof all of the objectivefunctionswill be the same,in most
more complexmultiobjective tasks,every separateobjective function will have a different effective
range(i.e. the function rangesare noncommensurable&chaffer1985). This meansthat a bad value
for onecouldbe areasonabl®r evengoodvaluefor anotherseeFig. 1. If the resultsfrom thesetwo



objectivefunctionswere simply addedto producea singlefitnessvaluefor the GA, the function with
the largestrangewould dominateevolution(a poorinput valuefor the objectivewith the largerrange
makes the overall value much worse than a poor value for the objective with the smaller range).

effective range 1
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Figure 1. Different effective ranges for different objective functions (to be minimised)

For example, consider the two objective functions:
fin. = x2
fip, = (x- 2)2/ 1000
(both to be minimised).

Given a non-optimal input value, the output value from f14 will normally be three orders of

magnitudeworsethan that from f15 (i.e. the secondfunction will be approximatelyone thousand
timescloserto the minimum of zero).As canbe seenin the simplestof tests,if the outputsfrom both

were simply summed,the first function would completely dominatethe second,resulting in the

effective evolution of a good solution only to the first function.

Thus,the only way to ensurethat all objectivesin a multiobjectiveproblemaretreatedequallyby the

GA is to ensure that all the effective ranges of the objective functions are the satoen@keall the

objectivefunctionscommensurable)r alternatively,to ensurethat no objectiveis directly compared
to another.In otherwords, eitherthe effective rangesmustbe convertedto makethemequal,anda

range-dependentanking method used, or a range-independentanking method must be used.
Typically, range-dependemhethodg(e.g.'sumof weightedobjectives',distancefunctions',and'min-

max formulation’)requireknowledgeof the problembeingsearchedo allow the searchingalgorithm
to find useful solutions (Srinivas and Deb, 1995). Range-independennethodsrequire no such
knowledge,for being independentof the effective range of each objective function makesthem
independentf the natureof the objectivesand overall problemitself. Thus, multiobjective ranking
methods that areange-dependent or range-independent can be defined:

Definition 2.2.  Given objective function(s) of a problem: f, (X
and a solution vector to the problem: S

A multiobjectiveranking methodis range-dependent if the fithessof s changeswvhen the effective|
range(s) of, (x) change (andis scaled correspondingly).

A multiobjectiveranking methodis range-independent if the fitnessof s does not changewhenthe
effective range(s) df, (x) change (andis scaled correspondingly).

For example the standardsumof weightedobjectivesmethodfavouredby so many,usesthe weights
to make the effective domains of each objective equal, then provides a single fithess galueniryg
the resultingvalues.This is a range-dependemhethod,for it reliescompletelyon the weightsbeing
setpreciselyfor everyproblem.Shouldany of the objectivesbe changedpr the allowabledomainof
input valuesbe changed(perhapsby a changein coding, or seedingthe initial populationwith
anything other than random values), then these weights may have to be changed.

Alternatively, the non-dominated sorting method, and variants of it, is a range-inde paetieod.It
requiresno weighting of the objectivevalues,for the fithessvaluesfrom eachobjectivefunction are



neverdirectly comparedwith eachother.Only valuesfrom the sameobjectiveare evercomparedn
the process of determining the non-dominanceof solutions (Goldberg 1989). For complex
multiobjective problems, this range-independencs extremely advantageousgood results do not
dependon the ability of the userto fine-tune weights correctly. However,a disadvantageof non-
dominatedsortingis thatall Pareto-optimakolutionsare considerecequallygood,regardles®f what
the user actually regards as being acceptable.

Hence,thereis one other vital, and usually overlookedrequirementthat a good ranking method

shouldsatisfy: the ability to increasehe importanceof someobjectiveswith respectto othersin the

ranking of solutions,to allow searchto be directedto convergeon the smallersubsetof acceptable
solutions.

3. Importance

On separateccasionsmany researchertaveindependentlynotedthat with highly complexsearch
problems, searchingefficiency can be increased,and time can be reduced, by increasingthe
importanceof a particularpart, or objective(s)of that problem(Dowsland,1995; Marett and Wright,

1995). This is often achieved either by introducing objectivéise searchalgorithmoneatatime (or

in distinct 'stages') with the most important first, or by simply weighting the impsirtantobjectives
moreheavily. Indeed,experienceshowsthat manyusersof GAs andthe 'sumof weightedobjectives’
rankingmethodareinadvertentlyincreasinghe importanceof certainobjectiveswithout beingaware
of it, as they fine-tune their weights to improve evolution.

Intentionally determining which objectives are more important in a problem camb#exof debate,
but to improve evolutiontime, it seemsthat often the bestresultsare gainedby making the most
difficult to satisfy objectivesthe most important. However, some problems require that certain
objectiveshavediffering levels of importancejust to allow evolutionof an acceptablesolution. (For

example the optimizationof an electronicdevicehasthe designcriteria: cost,speed size and power
consumption. For some devices, a losstis overwhelminglyimportant,for others,a high speeds of

greatest importance.)

Aggregationranking methods(typically range-dependent)sually guide the GA to convergeupona
single 'bestcompromise’solution. For the purposesof this paper,the best compromise solution is
defined:

Definition 3.1. A best compromise solutionis the solution with the sum of (weighted) objective
fithnesses minimised.

However, with additional guidancein the form of importanceweightings, this best compromise
solution canbe madethe sameasthe requiredsolution, allowing the GA to convergedirectly to an
acceptablesolution. Thus, producinga single bestcompromisesolutionis not alwaysa disadvantage.
However,to accuratelyset the valuesof importance,a range-independemnnethodis perhapsmore
desirablesincea range-dependemethodrequiresobjectivesto be weightedtwice - onceto makethe
function ranges commensurable, and once to specify increased importance.

Nevertheless, the more favoured ranking methods do not employ aggrégattypically arerange-
independent)They are usually usedwith someform of niching and speciationmethodto allow the
GA to generatenot one,but a rangeof non-dominatedqPareto-optimalsolutions.(Niching canalso
helpthe quality of solutionsby preventingexcessivecompetitionbetweendistantsolutions;Goldberg
1989.)The useris thenrequiredto selectthe preferredsolutionfrom this rangeof different solutions.
However,particularly for problemswith many objectives,only a small proportionof Pareto-optimal
solutionsmay be acceptablesolutions.This meanshat evenwhenhundred<f different solutionsare
generatedoy the GA, therecan be no guaranteethat an acceptablesolution will be amongthem.
Moreover,for suchlarge problemsi,it is not alwaysfeasibleto allow the userto pick the preferred
solution from a truly representativeangeof Pareto-optimabkolutions:the numberto be considered
may be too large. Thus, the ranking method needsfurther information, to guide the algorithm to
convergemorecloselyto truly acceptablesolutionswithin the rangeof Pareto-optimakolutions.This



informationis ‘importance- by specifyingwhich objectivesmust be satisfiedmore than others,the
GA can converge more closely to acceptable solutions, not just Pareto-optimal solutions.

Significantly, importancecan be usedin this way, regardlessof what the individual objective
functionsrepresentHence,objective functionsthat represenwildly different things can be judged
againsteachother. Often, whentwo functionsrepresendifferent things, regardlesf the degreeof
similarity betweertheir effectiverangesthey are,perhapsmproperly,callednoncommensurabl&.o
clarify this term, for this workgommensurable functions are defined:

Definition 3.2. Two or more functionsare commensurable if the differencebetweenthe effective)
rangesof the functionsis insignificant(i.e., the differencesbetweenthe minimum and maximum of
each must be negligible)ggardless of what these functions represent.

Hence,given a problemwith two commensurabl@bjective functions,whatevereachone represents
(beit carsor carrots),solutionvectorsto the problemcanhavetheir fitnessegreciselyset, usingthe
relative importance values of the objectives.

For example,considerthe problemof packinga bagbeforegoing mountaineeringln this simplified

example, the person has to choose betwlee@amountof climbing equipmentandthe amountof food

to be packedin the bag.How muchof eachshouldbe packed™any researchergiould statethat the
two arenon-commensurabland cannotbe directly comparedoy a computer,and sowould presenta
human user with a numberof alternativesolutionsto choosefrom. Clearly, in reality, the ideal
solutiondepend®n the lengthof time of thetrip, andthe difficulty of the climb. If thetrip is to take
two days, and will involve only a hike in some hills, then more food is requiredthan climbing

equipment.However,if the climb will involve an hour scalinga vertical cliff, then more climbing

equipmentis requiredthan food. In other words, a humanpicks a solution basedon the relative
importance of the two objectives.Moreover,thereis no good reasonnot to specify theserelative
importance values for the computer, and letatvaputermick the same solution (without the needfor

a humanto considerpotentially hundredsof different Pareto-optimakolutions).Hence,importance
can be defined as:

Definition 3.3.  Importance is a simple way to give a ranking methodadditional problem-specifi¢
information,in orderto directa GA to convergeo acceptableolutionswithin a smallersubsebf the
Pareto-optimatrange,by favouring thosesolutionscloserto the optima of functionswith increased
importance, in proportion to this increased importance.

Unfortunately thereis no easyway to increasethe importanceof oneobjectivein relationto another,
without the two objectives being directpmparedo eachother.In otherwords,whilst it is simpleto

specify increasedmportancewith a range-dependenmethodsuch as 'sum of weightedobjectives'
(just increasethe weights), with a range-independeninethod such as non-dominatedsorting,
specifyingimportanceis more complex. (Fonsec&orcesa kind of importancewith his 'preference
articulation'method,(FonsecandFleming1995b)but this requiresdetailedknowledgeof the ranges
of the functionsthemselvesinvolveshumaninteraction,andis not a continuousguideto evolution.)
Thus, alternativemethodsof ranking multiobjective solutionsare required,that are ideally range-
independentallow the easyspecificationof importance,and can accuratelyjudge fitness levels of

solutions.

4. Multiobjective Ranking Methods

Therefollows descriptionsof six different ranking methods.The first two are the most commonly
usedmethodsthe range-dependenveightedsum’ (aggregationnethodand the range-independent
Paretonon-dominatedorting. The nextthreeare novelrange-independemiethodsdevelopedn an
attemptto allow importanceto be specifiedwith such methods.The techniquesusedwithin these
methods are not new, but they have as yet been rarely, if at all, used to rank multiopggmilagons
within a genetic algorithm. Finally, the sixth methodis a range-independentethod basedon
Schaffer's VEGA. Algorithms can be found in the appendix.



Method 1: Sum of Weighted Objectives (SWO)

This is perhapghe mostcommonlyusedmethodbecausef its simplicity. All separatebjectivesare
weightedto makethe effective rangesequivalent(and to specify importance)and then summedto
form a single overall fitness value feverysolution. Thesevaluesarethenusedby the GA to allocate
the fittest solutions a greater chance of having more offspring. (Because of the similaaityreand
performance between this method amanyof the other'classicalmethodqSrivinasandDeb, 1995),
only this classical method will be described and explored in detail.)

Method 2: Non-Dominated Sorting (NDS)

Describedby Goldberg(1989),this range-independemhethodandvariantsof it arecommonlyused.
The fitnesseof the separatebjectivesare treatedindependentliyand nevercombined,with only the

valuefor the sameobjectivein differentsolutionsbeingdirectly compared Solutionsare rankedinto

'non-dominatedobrder, with the fittest beingthe solutionsdominatedthe leastby others(i.e. having
the fewest solutions partially less than themselves)Thesefittest can then be allocateda greater
probability of having more offspring by the GA.

Method 3: Weighted Average Ranking (WAR)

This is thefirst of the alternativerankingmethodsproposedThe separatditnessesof everysolution
are extracted into a list of fitness values for each objective. These lists amdiligually sortedinto

orderof fitness,resultingin a setof different ranking positionsfor everysolutionfor eachobjective.
The averagerank of eachsolutionis then calculated,with this value allowing the solutionsto be

sortedinto orderof bestaverageaank. Thus,the higheranaveragaanka solutionhas,the greaterits

chanceof producingmoreoffspring. Sinceall objectivefitnessesaretreatedseparatelythis methodis

range-independenthis techniqueallowsthe specificationof importanceby the weightingof average
ranking values for each solution.

Method 4: Sum of Weighted Ratios (SWR)

This is the secondof the novel ranking methodsproposedor GAs andis basicallyan extensionto
SWO (methodl). The fitnessvaluesfor everyobjectiveare convertednto ratios, usingthe bestand
worst solution in the current population for that objective every generation. More specifically:

(fitness_valug — min( fitness_value))
(max( fitness_value) — min( fitness_value))

fitness_ratiq =

This removesthe range-dependencaf the solutions,and they can be weighted (for the setting of
importance) and summed to provide a single fithess value for each solution as with the first method.

Method 5: Sum of Weighted Global Ratios (SWGR)

This methodis the third of the novel proposedanking methodsfor GAs, andis a variationof SWR
(method4). Insteadof the separatditnessedor eachobjectivein everysolutionbeingconvertedto a
ratio usingthe current populationbestandworstvalues,the globally bestand worst valuesare used.
Again the importance of individual objectives can be set by weighting the appropriate values.

Method 6: Weighted M aximum Ranking (WMR)

This ranking method is based on Schaffer's VEGA (Schaffer 1984, MIB6A formslists of fithess
values of each solution for eaohjective.Thefittest n solutionsfrom eachlist arethenextractedand
randompairs are selectedfor reproduction.This is equivalentto WAR (method3) exceptthat the
maximum rank of eachsolutionfor all objectivesis usedto determinethe overallrank, insteadof the
averageImportancelevels can be setin a similar way to thosein WAR. Note that the additional
heuristicusedby Schafferto encouragémiddling' values(Schaffer1984) was not implementedin
WMR.



5.

5.1

Test Functions

Application of the Ranking M ethods:
Test FunctionsF1~F4

To explore and compare the performance of the six ranking methods, they were iappliado four
different testfunctions:f; to f4. The first threeareidenticalto thoseusedby Schaffer(1984,1985),
whilst f4 is identicalto Fonseca'd; (Fonsecaand Fleming 1995b). Each function was chosento
represent a different class of function (i.e., each has different numbers of Pareto-@ptgashnd/or
best compromise solutions). All functions are to be minimised, see Table 1 and Fig. 2.

FUNCTION:

DESCRIPTION:

A single-objective three parameterfunction with
an optimal at (0,0,0).

2
(x- 22

A simpletwin-objectivesingle parametefunction
with a Pareto-optimatangebetweer0 and 2, and
a best compromise solution of 1.

-X wherex <=1
-2+X wherel <x<=3
4 -x where 3x<=4
-4 +x where 4 <

(x- 57

A twin-objective single parameterfunction with
two disjoint Pareto-optimakngesO to 2 and4 to
5. This hasa single bestcompromisesolution of
4.5

1-exp( b - 1P - (¢, + 1)
1-exp( -k + 1P - (%o - 1)

A twin-objective function this time with two
parameters.This has a single Pareto-optimal
rangealongtheline (-1,1)to (1,-1), but two equal
bestcompromisesolutionsat the optima of each
function: (-1,1) and (1,-1).

Table 1. The four test functions used to compare the ranking methods.
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Figure2. Graphs of the four test functions with Pareto-optimal ranges shown by grey shaded regions
and best compromise solutions marked with dotted lines.

All five methodswere usedwith a basicgeneticalgorithmusing binary coding, a populationof 50,
andrunningfor 100 generationsProbability of crossovemas 1.0, probability of mutationwas 0.05.

Althoughthis GA usedelitist selectiontechniquesyvith all of the rankingmethodsdescribedn this
paper it is possible to use alternatives.

To the authorsknowledge therehasbeenno previouswork investigatingthe distribution of solutions
generatedvith multiobjectiverankingmethodsHence the distributionsproducedoy methodsl-6 for
eachfunctionwere calculatedoy runningthe GA betweenl,000and 10,000times (dependingon the
function). It was assumedhat the distribution of solutionsproducedby a seriesof runs of this

algorithmwould not differ significantly from the distribution of solutionsobtainedby an algorithm
with niching or other speciation techniques.

52 Evolved Results: F1

The first experimentperformedwith eachmethodwas simply to allow the GA to minimisef. This
function was usedto validate that eachmethodwould rank solutionsto single-objectiveproblems
correctly (aswasdonefor VEGA by Schaffer,1985). As expectedgevery methodallowedthe GA to

converge on, or very near to, the optimal solution of (0,0,0), every time. (The distrilnftsmistions
for this function are all at a single point and hence are not shown.)
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Figure 3. Distributions of solutions within the Pareto-optimal range for fundtigon

5.3 Evolved Results: F2

The next experimentinvolved minimising F,. To give someidea of the quality and distribution of

solutions,1000testruns were performedfor eachmethod.All methodsallowed the GA to produce
Pareto-optimakolutionseverytime, however,asfig. 3 shows,the distribution of thesesolutionson

the Paretaofront for this function arevery differentfor eachmethod.SWO and SWGRboth produced
solutionsvery closeto or exactlythe bestcompromisevalueof 1.0. SWR alsofavouredthis value,but
with a larger 'spread’, with the numbers of solution produced falling almost logarithntiesilyther
from the bestcompromisevalue they were. NDS showeda fairly evendistribution throughoutthe
Pareto-optimalrange, and WMR favoured solutions at either function optima, with nothing in

between WAR gavethe mostunexpectedand fascinatingdistribution, with solutionscloseto each
optimaand closeto the bestcompromisevalue beingfavoured,all other Pareto-optimalaluesbeing
less commonly produced, see fig. 3.

Additionally for F,, the averagesolutionof eachmethodwascalculatedo give an indication of how
balancedhesedistributionswere.In otherwords,no matterwhat value(s)of Pareto-optimakolution
werefavoured,the meanvalue shouldbe the centrevalueof 1.0 (for Fy). Table2 (F, test1) shows
that all methods produced mean solutions close to 1.0.
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Best SWO NDS WAR SWR SWGR WMR
Compromise
Fotest 1 1.0 1.00922 | 0.93999 | 1.10226 | 1.21556 | 0.98763 | 0.97595
F,test 2 1.0 2.01459 | 0.85992 | 1.17007 | 1.22672 | 0.98825 | 0.99532
F,test 3 1.333 1.37837 N/A 2.01466 | 1.66141 1.310 1.45757

Table 2. Average solutions for each ranking metho&jrtests 1-3.

Two further tests were performed usifg For the second tedt,; was temporarily changed to:

faq =

x2 / 1000

to demonstratéhe range-independender lack of it) for eachmethod.As Table2 (F, test2) shows,
after 1000testrunsfor eachmethod,SWO (method1) clearly demonstrategts range-dependendsy
convergingon averageto the optimal of f,, insteadof nearto 1.0. All other methodsshow their
range-independence by continuing to give mean solution values close to 1.0.

Finally, for the third testwith F,, the importanceof f,, was doubledfor every methodcapableof
supporting importance (the two objectives being otherwise unchangedfrom the first test). By
increasingthe importance the bestcompromisesolution is changedfrom 1.0 to 1.333. Only three
methods: SWO, SWR and SWGR, all successfully produced values close to this new desired value (see
Table 2, F, test 3). NDS doesnot supportimportance,and WMR just doubledthe frequencyof

optimal solutionsto f,, (giving a deceptivemeansolution), without actually producingany values
betweerthe two function optima.Finally, andsomewhatnexpectedlyWAR simply convergecevery

time to the optimal of;-.

Upon investigation,it emergedthat WAR doesnot permit the specificationof gradualimportance
values.On the faceof it, it would seemthat increasingthe weighting of the ranking value for more
important objectives should introduce some level of additional importancefor these objectives.
Interestinglythough,in practiceit doesnot appearto be possibleto graduallyincreaseimportance’
values:eitherall objectivesaretreatedequally,or the objectivewith the increasedveight dominates
all other objectivescompletely. Somewhatcounter-intuitively,it seemsthat no matter how large or
small an increase is made to a weight, it will make that objective dominate all others.
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Figure 4. Distributions of solutions within the Pareto-optimal ranges (shown by grey shaded regions)
for functionF.

54 Evolved Results: F3

ExperimentaverethenperformedusingF3 with eachmethodin turn. The function F3 is significant
sinceit hastwo disjoint Pareto-optimakanges.Neverthelessthe distribution of solutionsfor this
function was surprisingly consistentwith thosefor F,. As before, SWO and SWGR almostalways
convergedo solutionsnearto the bestcompromisevalue of 4.5 (for F3). Again, SWR favouredthe
bestcompromisesolution with a slightly larger 'spread’,but this time somesolutionscloseto the
optimal of f3; were also produced NDS gavea fairly evendistribution of solutionswithin the two
Pareto-optimatangesand WMR againonly generatedolutionsat the optimaof the two objectives,
with nonein betweenFinally, WAR showedits highly unusualdistributiononcemore, by favouring
solutionscloseto the optima of both objectives(including both minima of the multimodal objective
f31), and the best compromise solution to a lesser degree.
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Figure5. Distributions of solutions within the Pareto-optimal range for fundtign

55 Evolved Results: F4

Finally, experimentswere performed using F, with each method in turn. Again, consistent
distributionsof solutionswere obtained.It shouldbe notedthat F, is a significanttype of function
becausesolutionsbetweerthe optimaof the two objectivesareworsethanat oneoptimaor the other.
This resultsin two equalbestcompromisesolutions,one at eachoptima.Hence,althoughSWO and
SWGRthis time showedwo peaksof distribution,theselie on the bestcompromisesolutions,just as
before.Onceagain,SWR favouredthe bestcompromisesolutionswith a slightly larger'spread’' As
before, WMR favoured the twaptimaof the functionswith nothingin betweenNDS againproduced
a distribution of solutions covering the entire Pareto-optimalrange, but for this function an
unexpectedind unwelcomebiastowardsthe middle of the rangewas evident(wheremost solutions
are very poor). Finally, WAR showed its typically unusual distribution, again favouring values close to
the optima of the objectives(and the bestcompromisesolutions,as they are the samefor F,), with
other Pareto-optimal values being favoured less.

5.6 Explaining The Distributions

It shouldbe stressedhat all six of the ranking methodsallow a GA to producealmostnothing but
Pareto-optimal solutions. It is clear, however, that the distribution of these solutions witRar ¢he-
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optimal rangeis a highly significant factor in determiningwhetheran acceptablesolution will be
produced.

As shownabove,eachranking methodconsistentlyseemsto favour certaintypesof Pareto-optimal
solution, basedupon three factors: the Paretorange(s),the separateoptimum or optima for each
objectiveand the bestcompromisesolution(s)of the function. Thesepatternsof distributionsremain
consistenteven with more unusualfunctions with multiple Pareto-range¢F3) and multiple best
compromise solutiong=).

Upon considerationthesedistributionsareexplicable.The threeaggregation-basegnkingmethods:
SWO, SWR and SWGR must inevitably favour the best compromisesolution(s)to a problem, by
definition. (The bestcompromisesolutionis the solutionwith sum of weightedobjectivesminimised,
so any ranking method thaetimsobjectivesin anyway, shouldallow convergenceloseto exactlythe
best compromisevalue.) NDS gives all non-dominatedsolutions equal rank, so a fairly even
distribution throughout the Pareto-optimal range (range of non-dominated solutionisg expected.
WMR baseghe fitnessof a solutionon the maximumrank the solutionhasfor any objective,so this
predictablywill resultin the generatiorof solutionsonly at the optimal of oneobjective,with nothing
in between(a high rank equatesto a good value for that objective).Finally, eventhe unexpected
distributionsof WAR are explicable. WAR basesthe fithessof a solution on the averagerank for
everyobjective.This meanghata solutionwith a very high rankfor one objectiveanda low rank for
anotherwill be judgedequallyfit comparedo a solutionwith 'middling’ ranksfor two objectives.In
other words, solutions close to optima of objective functions wilabeured,aswill solutionscloseto
the best compromise solution(s).

6. Application of the Ranking M ethods:
Solid Object Design

6.1 The Problem

To allow the investigationof the multiobjectivetechniquesiescribedoreviouslyon a largerandmore
difficult problem,theywereall appliedto a designcreationproblemconsistingof 36 parameterand
10 constraints and objectives.

It canbeclearly seen py examiningsomeof the wide rangeof literaturedescribingthe applicationof
genetic algorithms to some of the numerousproblemsin design, that researchin this area is
flourishing, with someremarkableresults (Adeli and Cheng, 1994; Holland, 1992). Applications
rangefrom optimization of existing designs(e.g. a high-bypasget engineturbine as describedby
Holland, 1992) to the creationof "artistic' picturesand shapegDawkins, 1986; Todd and Latham,
1992). However, as yet, very little researchhas beenperformedin the areaof solid object design
creationusing GAs, i.e. the evolution of entirely new designsof solid objectsfrom purely random
beginnings (Bentley and Wakefield 1995a, 1995b, 1996a, 1996b).

To allow a geneticalgorithmto evolvesuchdesignsn this way, a suitablerepresentationf solidsis
required. This representatiormust be capableof describingthe geometry of designswith the
minimum of parametersyhilst allowing the freedomto manipulatethe shapeof a representediesign
in almostanyway. To achievethis, a spatial-partitioningepresentatiomascreatedn previouswork
(Bentley and Wakefield 1995a). For the sake of simplicity, it can be comparedto a number of
'building blocks', or primitives each with its own position, width, depth and height (the more
advancedispectf this representatiomre not beingconsideredn this brief example).Giving a GA
this amount of freedom when evolving the geometry of designsallows the generationof new
conceptual designs(Bentley and Wakefield 1996a)- the mostdifficult part of the designprocessto
automate.

The evolutionarydesigntask was to evolve a setof portable,free-standingstepsfrom a population
initialised randomly. A good solution to this designtask would be a reasonablylight set of steps,
capable of supporting theeightof a heavypersonon eachstepin turn (suitablefor use,for example,
in alibrary). Threestepsweredesired.The numberof primitives permittedfor eachpotentialdesign
waslimited to just six (giving 36 shape-definitiorparameters)This limitation immediatelyincreases
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the difficulty of the problemsinceinevitably,threeprimitives arerequiredfor the threestepsjeaving
only three remainingto supportthe stepssufficiently at the required heights.In total, someten
separatecriteria are requiredto fully specify (and evaluate)the designs:maximumsize, minimum
size, desired mass, flat surfaces(three criteria), supportive surfaces(three criteria), and being
unfragmentedTherequireddesignshouldhavethe fithessedor all criteriaminimised.More detailed
descriptions of these criteria can be found in Bentley and Wakefield (1995b).

Using these ten criteria,samplegeneticalgorithmwasusedto evolvea selectionof designsThe GA

usedpopulationsof 100, binary-coding,elitist selection,crossoverand mutation as beforeand was
allowed to run for 1000 generationsWhere possible,test runs were performedwith and without
importancevalues set for the problem. Becauseof lengthy executiontimes, 15 test runs were
performedfor eachalgorithm.Figure 6 showsthe numberof almostfully minimisedcriteria (values
from 0.0 to 10.0),low-valuedcriteria (10.0to 50.0) and high-valuedcriteria (valuesof 50 upwards)
for the bestdesignsproducedby eachmethod.Distributionsof solutionscould not be calculatedfor

this multidimensionalproblem;solutionsare judgedmore on how acceptablehey appearto be (i.e.

how well-formed the designs are, as judged by a human).

6.2 Evolved Results

NDS and WMR both producdtie mostdisappointingresults.Sinceneitherallow the guidanceof the
GA to any desirable subsetsof Pareto-optimalsolutions with importance, most designs were
unacceptablelt wascommonto seedesignsevolvedwith fundamentabnd highly importantaspects
missing(suchascorrectsize),sincea solutionis consideredptimal by theseranking methodsf just
a singleobjectiveis minimised.Figure 6 showsclearly the small numberof objectivesthat werefully
minimised by thesemethods.Figure 7 (right) showsthe bestdesignevolved using NDS, the low
quality clearly illustrates that this problem does require a ranking method capableof directing
evolution to more acceptable non-dominated solutions.

The GA using WAR (method 3) produced some slightly disappointing results, since it too could
directedduring the searchprocessby importance.However,since it doesfavour best compromise
solutions,unlike WMR, resultswereslightly improvedand more consistenin their quality compared
to WMR and NDS. Figure 6 illustrates the increased number of minimised objectives.

SWR allowedthe GA to generatebetterresults,ascanbeenseenfrom the increasein the numberof

minimised (or nearly so) criteria shownin fig. 6. As expectedresultswere not consistentlygood,
becausef the fairly 'spread-outtistribution generatecdy this method.However,SWO and SWGR
both producedequally good results- betterby far than the best generatedusing any of the other
methods.Both consistentlyconvergedto acceptablesolutions (as defined by relative importance
values),seeexampledesignshownin fig. 7 (left). The numberof minimised objectiveswas higher
(seefig. 6). The only difference betweenthe two was of course,that the range-depender5WO

requireda substantiaamountof time spentfine-tuningweights,whilst the range-independei8WGR
only required the simple setting of importance values (a considerably easier task).

B minimised [ low-valued [ highvaued

problem objectives

SWO NDS WAR SWR SWGR WMR

Figure 6. The number of minimised, low and high valued objectives
for the best designs produced with each method.
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Figure 7. Well-formed evolved design of steps using SWGR (left).
Mal-formed evolved design of steps using NDS (right).

7. Performance Of The Ranking Methods

For all tests,the five rankingmethodsall guidedthe geneticalgorithmto producenon-inferior (non-
dominated) solutions. Indeed, after tens of thousands of test runs, only a tiny hasdfutiohswere
not Pareto-optimalWhat varied for eachmethodwasthe distribution and bias of the resultswithin
the Pareto-optimal front, and the ability of ‘importance’ to guide this bakbtwa GA to convergeto
a smaller subset of Pareto-optimal solutions.

SWO (sumof weightedobjectives) the first and simplestof all methodsexamined gavesolutionsall
closeto or exactlythe bestcompromisesolution(s).This methoddoesnot producea rangeof Pareto-
optimal solutions - it will always force the A convergeasquickly aspossibleto a (Pareto-optimal)
compromisesolution. Althoughit is possibleto makethis bestcompromisesolutionthe sameasthe
desiredsolution by setting importanceweightings,in practicedeterminingthe exactvaluesof the
weightsis oftenvery difficult. As theresultsshow,with correctweights,the resultscanbe very good,
but this range-dependent method, despite being the simplest and quickegtracticalfor anything
other than simple problems.

NDS (non-dominatedsorting) usually producedsolutionswith no significant bias; if a solution is
Pareto-optimal, it is considered acceptabléhiy method.Althoughit is a range-independemhethod
with no parameters to fine-tune, it is slow, difficult to implement, and has no obvious weakénise
of importancevalues.Resultsfor this methodwere surprisinglypoor, perhapshecauseof the lack of
niching, but more likely becausethis method lacks the ability to guide the GA to convergeto
acceptable Pareto-optimal solutions.

WAR (weightedaverageranking) againproduceda wide rangeof non-dominatedolutions,but this
time with a highly distinct biastowardssolutionscloseto the minimum of eachobjectivefunction. It

also showeda bias towardsthe bestcompromisesolutions.Comparedto the other methods,results
using WAR were average for all problems. Again, this method is a range-independent wittha
parametergo fine-tune,but it is perhapssimplerto implementand is fasterin executionthan the
secondmethod.Unfortunately,weighting for importancehasno gradualeffect (either all objectives
are treated equally, or one dominates completely).

SWR (sum of weightedratios) also produceda rangeof non-dominatedsolutions,this time with a
strong bias towards the best compromise solution, the frequency of solutions falling almost
logarithmically the further they were from this solution. Becausethis methodsupportsimportance,
this bias can be movedto allow the GA to favour any Pareto-optimalsolution. In this way, the
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problem-specifickknowledgeencompasseth the importancevaluescan be usedto guidethe GA to
producehighernumbersof acceptablenon-dominatedolutions.Being range-independenhavingthe
ability to add importanceto objectives,and producinga rangeof solutionsmakesthis perhapsthe
mostversatileof the six. However,despitealsobeingfastand easyto implement,the resultswerenot
exceptional for the solid-object design application.

SWGR (sum of weightedglobal ratios) like the first method,producedjust a single non-dominated
solutionascloseto a bestcompromisesolutionaspossible Beingrange-independenit, will normally
treat all objectivesequally without the needfor any fine-tuning of weights. Since it doessupport
importance, it can be made to guide @ to convergdo a single,acceptableolutionon the Pareto-
optimal front. The methodis fastandsimpleto implement,andasthetestresultsshow,the quality of
solutionsis asgoodas (and sometimedetterthan) thoseproducedby the first method- without the
lengthy time spent on fine-tuning parameters.

Finally, WMR (weighted maximum ranking), only produced solutions with one objective fully
satisfied(i.e. similar numbersof solutionsat eachobjectiveminimumto the problem).Unlike WAR,
therewere no other solutionsproducedbetweenthe separatdunction optima. This behaviourwas
notedin VEGA by Schaffer(1984),who introducedan additionalheuristicin an attemptto increase
the numbersof 'middling’ values.This range-independemhethodrequiresthe sameimplementation
andexecutiontime asWAR. Importancechangeghe relative numbersof solutionsat eachobjective
minimum. Results with this method were poor.

8. Conclusions

This paperhasmadethreesignificant advancesn the areaof multiobjective function optimisation
with genetic algorithms:

1. The problem of ranking solutionsto multicriteria problemshas been investigated,with the
clarification of some commonly used terminology, and the identification of two key factors:
range-independence and importance.

If the rankingmethodis not range-independent, thenone or more objectivesin the problemcan
dominatethe others,resultingin evolutionto poor solutions.Thus,a ranking methodshouldnot
just be independenbf individual applications(i.e. problemindependent)as statedby Srivinas
andDeb (1995),it shouldbe independenbf the effective ranges of the objectivesin individual
applicationgi.e. range-independent}¥henthe rankingmethodis range-independenit, requires
no problem-specific knowledge to set and fine-tune paramméoseit will work. Thus,arange-
independent method will also be independent of the applications themselves.

Giving certainobjectivesin a problemgreaterimportance allowsthe GA to producenot just non-
dominatedsolutions,but a smallersubsebf acceptable non-dominatedolutions.As wasseenin
section 6, ranking methods which support importance allow the consistent evolution of
considerably improved solutions compared to those that do not support importance.

2. Using this new understandingf the problem,threenovel ranking methodswere created,n an
attempt to embrace both factors of the problem.

All three of thesenew methods:'weightedaverageranking' (WAR), 'sum of weightedratios’
(SWR), and 'sum of weightedglobal ratios' (SWGR) are range-independenSWR and SWGR
both supportimportancefully. This comparedavourablywith most existing ranking methods,
such as 'sum of weighted objectives’' (SWO) which is range-dependenand 'non-dominated
sorting' (NDS) and VEGA's 'weighted maximum ranking' (WMR) which do not support
importance.

3. Threestandardanking methodswere comparedwith the threenovel methods,using four well-
known test functionsand one more complexsolid objectdesigntask. Significantly, the quality
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anddistribution of resultswas examined.Until now, the distribution of most typesof ranking
methods was unknown.

All methodsproducedPareto-optimasolutions,but the consistendistributionsof thesesolutions
wasrevealing.For applicationsvheremultiple solutionsarerequired,it is clearthatNDS, WMR

and the new WAR method all giymtentiallyusefuldistributionsof solutions.Shouldsomeuser-
alterablebiasin the distribution of solutionsbe required,SWR would be an appropriatechoice.
However, for many applications,these methodswould still produce hundredsof alternative
‘optimal’ solutions for a humanto laboriously (and unnecessarily)searchthrough, with no

guaranteghatanywould be acceptableéo him/her.For this type of application,SWGRshouldbe
used.This newrange-independemhethodperformsaswell asor betterthanall other methods,
allowing a GA to consistentlyevolve a single acceptable optimal solution regardlessof the
multiobjective problem. Indeed, this multiobjective rankingthodhasnow beenusedto tacklea
wide rangeof different solid objectdesignproblemswith greatsuccesgBentleyand Wakefield,
1996b).
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