MOLeCS: Using Multiobjective Evolutionary
Algorithms for Learning

Ester Bernadé i Mansilla and Josep M. Garrell i Guiu

Computer Science Department
Enginyeria i Arquitectura La Salle, Ramon Llull University
Passeig Bonanova, 8, 08022-Barcelona (Spain)
{esterb, josepmg}@salleURL.edu

Abstract. MOLeCS is a classifier system (CS) which addresses its learn-
ing as a multiobjective task. Its aim is to develop an optimal set of rules,
optimizing the accuracy and the generality of each rule simultaneously.
This is achieved by considering these two goals in the rule fitness. The
paper studies four multiobjective strategies that establish a compromise
between accuracy and generality in different ways. The results suggest
that including the decision maker’s preferences in the search process im-
proves the overall performance of the obtained rule set. The paper also
studies a third major objective: covering (the maintenance of a set of
different rules solving together the learning problem), through different
niching mechanisms. After a performance analysis using some bench-
mark problems, MOLeCS is applied to a real-world categorization task:
the diagnosis of breast cancer.

1 Introduction

The learning task performed by a classifier system (CS) is itself multiobjec-
tive [13]: it has to find a concept description, usually represented by a set of
rules, which should be: (a) complete, (b) accurate and (c) minimum. In terms
of classification, a rule set is complete when it covers (satisfies) all the examples,
whereas a rule set is accurate when it classifies the examples correctly (i.e., with-
out misclassification errors). The third objective involves minimizing the number
of rules, in order to obtain concise and comprehensible descriptions. Another re-
lated objective is the system’s capability to express gemeralizations, that is, to
generalize all the similar examples.

These multiple objectives are closely connected. Generalization of equivalent
examples allows more concise representations and leads up to smaller rule sets,
promoting covering. But these objectives are opposed to accuracy in some way.
If the system performs an excessive generalization, the accuracy of classification
will be degraded. Thus, optimizing these conflicting objectives simultaneously
involves a weak equilibrium, which is difficult for a CS to reach and maintain.

The classifier systems’ community has solved this multiobjective learning
task in an implicit way. Holland’s CS [11] uses a credit allocation algorithm to

evaluate each rule efficiency and a mechanism to allow the formation of hierar-
chies, although there is not an explicit pressure towards the formation of general
rules. XCS [21][22] is a classifier system which has shown a strong tendency to
achieve the stated objectives. One of its main strengths is the definition of fit-
ness, based on the prediction accuracy of each rule rather than on the prediction
itself. Although it does not use an explicit bias to favour the generalization of
rules, this is achieved by the application of the GA to environmental niches [22].

MOLeCS is a recent CS [2][3] designed to solve classification tasks by super-
vised learning. Its main contribution is the definition of the accuracy and gener-
ality measures for each rule, and the use of multiobjective solution techniques for
optimizing them simultaneously. In this sense, the learning task is represented
explicitly as a multiobjective problem: the optimization of the accuracy and the
generality of each rule.

This paper studies, under the MOLeCS architecture, the performance of dif-
ferent multiobjective evolutionary algorithms in achieving the learning goals,
which can be summarized as: obtaining the minimum rule set that covers accu-
rately all the examples. Different niching strategies are also considered in order
to maintain a parallel set of rules and thus, achieve covering. First, we place
the MOLeCS system into the CSs and MOEAs (multiobjective evolutionary al-
gorithms) frameworks. In section 3 we describe MOLeCS and discuss different
multiobjective approaches and niching methods. Next, we compare them using
some benchmark problems often tested in the research community. In section 5,
we show the application of MOLeCS to a real classification task based on the
prediction of breast cancer. Finally, we give our conclusions and future work.

2 Background

In this section, a brief overview of classifier systems is made, remarking on the
main differences between previous CSs and MOLeCS. Next, we review the simi-
larities and differences between a typical multiobjective evolutionary algorithm
and a classifier system as MOLeCS.

2.1 Classifier Systems

Typically, learning classifier systems codify each individual as one rule, while
the solution that must be obtained is a complete set of rules (that is, all the
population). Two major issues arise from this approach: (a) the evaluation of
each rule (fitness) and (b) the maintenance of a group of rules.

The fitness evaluation method must provide a scalar measure that weighs
the efficiency of each rule. In traditional classifier systems, this fitness measure
was based on the payoff prediction; that is, the payoff that the classifier would
receive from the environment if its action was selected (e.g. Holland’s CS [11]).
Recently, XCS [21][22] has migrated the fitness from the payoff prediction to the
accuracy of the prediction, which results in better performance. Horn’s study

[13] also addresses the classifier’s accuracy, which is defined as the percentage of
correctly classified examples over the covered training examples.

Different niching mechanisms are proposed in the research community to
ensure covering by the co-evolution of different rules: sharing payoff between
active classifiers (see [13]), performing restricted replacement [9], or translating
the panmictic GA to the active classifiers (match set or action set) which can
be classified as a kind of restricted mating [21],[22].

The classifier system’s ability to evolve generalizations is a major issue that
has recently received a growing interest. In XCS, the application of the GA to the
action sets has resulted in a pressure towards generalizations. The generalization
hypothesis [21] states that given two classifiers (rules) C1 and C2 (both equally
accurate, where C2 is a generalization of C1) the more general rule (C2) tends to
displace the more specific one (C1). This is due to the fact that the more general
rule participates in more action sets, having more reproductive opportunities
and achieving thus more copies. Frey and Slate [8] proposed a CS where fitness
was based on accuracy. A pressure towards generalization was induced using
an “utility” measure. This was computed as the number of correctly classified
examples over the total number of examples seen by the system. Rules with a
low “utility” measure were deleted in order to favour those rules more used.

From the accuracy perspective, our approach is more related to Horn’s
study, since fitness is based on accuracy, computed as the percentage of cor-
rectly classified examples. However, our system is taking account of the classi-
fier generality too, which is a more complex task. Generality in MOLeCS is
considered explicitly in the fitness evaluation stage, in contrast to XCS where
generality is enforced in an implicit way. Frey and Slate also proposed the use
of two different measures similar to ours, although they did not try to optimize
them with multiobjective techniques. In this sense, the application of multiob-
jective techniques is new and offers promising perspectives for learning systems.
Covering in MOLeCS is induced in the replacement stage and it is based on
restricted replacement methods. Although Michigan style classifier systems are
incremental, we have started with a non-incremental proposal. Our main reason
is to understand the task of the multiobjective evaluation and niching, under a
“classic GA” scheme. The migration to an incremental version will be performed
in a near future, with the aim of improving the computational cost.

2.2 MOEAs and CSs

A multiobjective evolutionary algorithm (MOEA) and a learning classifier sys-
tem (CS) have many related points:

— Maintenance of a group of different solutions. The solution of an MOEA is
usually a set of many points, approximating the set of non-inferior solutions
(Pareto optimal set). Similarly, the solution returned by a CS is a set of many
rules, solving together a concept description. In order to find and maintain
such multiple optima, some niching mechanism is required. MOEAs usually
implement sharing, with the aim of obtaining a uniform distribution of the
Pareto front or the Pareto optimal set.

— FEwaluation of an individual. In MOEASs, each solution fitness depends on the
other solutions, as it happens to each rule in the CSs.

Nevertheless, we can highlight some differences:

— Generational and Non-Generational schemes. One desirable feature in CSs is
the on-line performance. This is promoted with a non-generational scheme,
which introduces slight changes into the population by replacing only a small
fraction of the population in each generation. This is not a very common
scheme in MOEAs, although some proposals do exist [17]. Crowding is a
natural way of performing niching in a non-generational scheme. For that
reason, it has widely been used in classifier systems [11], [9].

— Solution returned by the system. Another important issue is the solution that
MOEAs and CSs must obtain. MOEASs usually try to find a well-distributed
population belonging to the Pareto front (or Pareto optimal set), from where
the decision maker (DM) can perform a selection. If we translate this objec-
tive to MOLeCS, it should be expected to find the Pareto front corresponding
to the generality and the accuracy goals. When we use the system in the ex-
ploitation mode, the DM has to select the best rules from all the available
rules in the Pareto optimal set. Which rules should be used? If we want to
perform accurate classifications, it seems obvious to choose always the most
accurate rules. Therefore, we can state our learning problem as a particular
multiobjective problem (MOP) where the DM’s choices are known a priori.
We can take profit of that by guiding the search towards the preferred areas
of the DM.

3 Description of the system

Each individual in MOLeCS codifies a rule (classifier) of type: rule : condition —
action. The condition is the conjunction of tests over the problem attributes. It
is represented by the ternary string: {0, 1, #}*, with length equal to the number
of describing attributes. The symbol '#’ (don’t care) matches all values of an
attribute, so it permits us to express generalizations. The action part of the rule
is represented by the binary string: {0, 1}\.

Each individual must have a fitness value in order to apply the appropriate
selective pressure. This is not an easy task, since each classifier does not represent
a complete solution to the overall problem. In fact, each rule r; can match a
different number of examples and can predict those examples in different degrees
of accuracy. We compute these two features for each rule in the population:

covered examples (r;)

lity(r;) =
generality(r:) # examples in the training set

(1)

correctly classified examples (r;)
covered examples (r;)

accuracy(r;) =

(2)

If fitness is only based on accuracy the search will be biased towards accurate
but too specific rules. This can result in an enhancement of the solution set,

poor covering, etc. On the contrary, basing fitness on generality will result in low
performance (in terms of classification accuracy). The solution is to balance these
two characteristics (accuracy and generality) and optimize them simultaneously.
Our hypothesis is that a multiobjective approach will lead the search towards
general and accurate rules, resulting in a minimum, complete and accurate set
of rules. We have tested and compared different multiobjective strategies, which
are described in section 3.1.

Once the fitness assignment phase is performed, the GA proceeds to the selec-
tion and recombination stages. Selection is performed with stochastic universal
sampling (SUS) [1].

As stated before, a concept description must be complete; that is, all the input
examples must be covered. We use the term covering as the ratio of instances
covered by the entire rule set RS to the size of the training set:

examples covered by RS
examples in the training set

covering = (3)
Promoting general classifiers is not sufficient to reach a 100% of covering. The
genetic algorithm can tend, due to the genetic drift [10], to one general and
accurate classifier and usually one classifier does not solve the overall problem.
Therefore, we must enforce the co-evolution of a set of fit rules by niching mech-
anisms. Niching in MOLeCS is performed in the replacement stage (section 3.2).

Once the system has learned, it is used under an exploit or test phase. It works
as follows. An example coming from the test set is presented. Then, the system
finds the matching rules and applies the fittest rule to predict the associated
action or class. As explained before, in case of equally fit rules, the most accurate
rule is chosen.

3.1 Multiobjective Learning

In the previous section, we have defined our learning as a multiobjective problem
(MOP). Now, we formalize the concepts mentioned before. Next, we consider
different multiobjective algorithms to solve our MOP.

Definition 1 The MOP evaluation function, F : X — Y maps decision vari-
ables x = (x1,...,x,) € X to vectorsy = (y1...yx) € Y. In MOLeCS, the decision
variables are the rules, while the objective vectors, of dimensionality k=2, are
of type: y = F(x) = (f1(x), f2(x)), where f1(x) = accuracy(x) computed from
equation (2) and f2(x) = generality(x), from equation (1).

Definition 2 Our multiobjective learning problem is defined as follows:
Mazimize y = F(x) = (accuracy(x), generality(x))
where x 1is the decision vector, and accuracy(x) and generality(x) are de-
scribed by equations (2) and (1) respectively.

There are several MOEA techniques [7], [5], [18]. We have tested and compared
four different algorithms, representative of three main algorithmic approaches !:
a Pareto-approach, a non-Pareto approach and a plain aggregating approach.

Pareto-based Approach. We consider the Pareto approach proposed by Gold-
berg [9], which consists of ranking the population into non-dominated sets and
then, assigns fitness according to this rank.

The Pareto approach gives the same selective pressure to non-dominated
objective vectors. Suppose we have two objective vectors: y1 = (1,0.6) and
y2 = (0.5,0.9), being non-dominated as depicted in figure 1(a). In this case, the
Pareto approach assigns them the same rank. This means that the final solution
set returned by the system can contain overgeneral rules (e.g., vector y2) as well
as maximally general rules? (e.g., vector y;). Nevertheless, in the exploitation
phase, these overgeneral rules will not be selected, because they can degrade
the classification performance. The decision maker will always choose the best
accurate rules (i.e. the maximally general rules).

Our hypothesis is that these overgeneral rules do not contribute significantly
to our final solution. Indeed, they can degrade our search towards an accurate
rule set, because they consume resources from the population and thus, they
may prevent other accurate rules from being explored.

If we know the decision preferences in advance, we may guide the GA more
efficiently towards these preferences. For that reason, we have designed a mod-
ification of the Pareto approach which gives a bias towards accurate rules. As
shown in figure 1(b), inside each group of non-dominated classifiers a second level
of ranking is performed, based on the accuracy of classifiers. In the following,
we will refer to the Pareto original approach as PR (Pareto ranking) and to the
modified algorithm with the accuracy bias as PAR (Pareto-accuracy ranking).

Population-based non-Pareto Approach. Using the idea of promoting the
most accurate areas, we have designed a population-ranking method, based on
the lexicographic ordering. The algorithm ranks the population according to the
accuracy objective. When two or more individuals equally accurate are found,
they are ordered by the generality objective. In this way, we state that the
first goal to be achieved is accuracy (in order to obtain accurate classifiers)
and second, these classifiers must be as general as possible. An example of this
ranking, which we term accuracy-generality ranking (AGR), is depicted in figure

1(c).

! We consider here the MOEA classification scheme made by Fonseca and Fleming in
[7].

% Kovacs [14] defines a maximally general rule as an accurate rule (accuracy=1.0)
which cannot be more general without becoming inaccurate. A rule being inaccurate
due to excessive generalizations, is called an overgeneral rule. A suboptimally general
rule is an accurate rule that can be more general (have more '#’) without losing its
accuracy.

Fig. 1. Multiobjective evaluation methods: Pareto ranking (PR), Pareto-accuracy
ranking (PAR) and accuracy-generality ranking (AGR).

Plain Aggregating Approach. The weighted sum (WS) approach weighs
and sums up all the objectives obtaining directly a scalar fitness value. Our
multiobjective problem is then solved as: max),_; w;y; where w is the weight
vector that must be set depending on the relative importance of the objectives.
When we test MOLeCS with well-known problems (see section 4), we can tune
these coeflicients properly. In this case, we use the WS as a bound from where
the other algorithms can be compared.

A Priori and A Posteriori Preference Articulation. From the DM’s per-
spective, PAR, AGR and WS can be classified as a priori preference articulation
methods [19], because they use the decision preferences in the fitness/selection
stage. Our preferences are: “those accurate rules being as general as possible”
or in other words, the mazimally general rules.

On the contrary, the Pareto based approach (PR) does not use these pref-
erences until the exploitation phase, when the learning process has finished.
Therefore, it searches for a compromise between the accuracy and the generality
goals. From the resulting set of non-dominated solutions, the DM has to select
the maximally general rules a posteriori.

In sections 4 and 5, we will test if the methods based on a priori prefer-
ence articulation can outperform the solution given by a posteriori preference
articulation method as the Pareto approach.

3.2 Niching

Niching methods are the key point for classifier systems to evolve a population of
diverse rules. We enforce niching in the replacement stage using crowding strate-
gies. We have analysed crowding, two variants of crowding including selective
pressure and deterministic crowding.

Crowding (or crowding factor model, CF) was introduced by De Jong [6].
The algorithm tries to preserve the diversity of population, by replacing each
new individual (from the offspring population) by a similar one in the parents

population. To be exact, the new individual is compared to a subpopulation of
¢f members and the member with the highest similarity is replaced.

In order to induce a convergence pressure in the CF model, two variants are
tested: CIF and CC. Both try to replace a “low fitness and similar individual”.
The former differs from the CF model in the selection of the subpopulation
of ¢f members. Instead of selecting them randomly, the selection is performed
with a probability inversely proportional to fitness. The second variant, which
we term CC, was used in the Simple Classifier System (SCS) [9]. The method
consists of selecting each member going to the cf-subpopulation from a bucket
of ¢sp individuals. The worst individual from the csp-bucket is inserted into the
cf-subpopulation. Then, the algorithm proceeds as the CF model.

Deterministic crowding (DC) makes a competition between each pair of
{parent,offspring}, choosing the competing pairs with a minimum-distance cri-
terion [15]. The child only replaces its parent when its fitness is greater.

4 Experimental Results

4.1 Design of Experiments

We first analyse the learning performance of the system with two well-known
learning tasks, usually tested in the CSs’ community [21], [16]: the multiplexer
problem and the parity problem. This election is made for several reasons. First,
for the simplicity to test our system, since the desired solution is known. Second,
because they represent two different types of problems. The multiplexer allows
generalizations in its rules; so the bias towards generality is desirable for the
achievement of a minimal set. On the contrary, the parity problem does not
need any generality pressure, since all the rules required to describe the problem
must be specific. In this sense, we will test the ability of MOLeCS (and its
multiobjective algorithms) to scale to the different levels of generalization.

The results are shown for the multiplexer with 11 inputs (11-mux) and the
parity problem with 5 inputs (5-par). Each problem is tested with: four multiob-
jective strategies (PR, PAR, AGR and WS) and four different niching methods
(CF, CIF, CC and DC). We also compare our results with a single-objective EA,
optimizing only accuracy (i.e., using the WS approach with w = (1,0)).

Each result is the average of five runs using different seed numbers. The pa-
rameters settings for the 11-mux problem are: population size = 800, Pgen=0.3
(probability of generalization in the initialization of population and in the mu-
tation operator), G=0.2 (generation gap), p. = 0.9 (probability of crossover),
pm=0.01 (probability of mutation per gene). If DC is used, p. = 1.0 according
to the algorithm definition. The crowding methods CF, CC and CIF require
the subpopulation sizes. They are tuned previously, and here we only show the
results obtained with the best parameters (whose values are reported in the cor-
responding figures). In case of the 5-par problem, the parameters settings are
the same, except for the population size that is 250.

4.2 Metrics of Performance

In order to test the learning performance of the system, we will use the following
metrics:

— Cowvering. This is the ratio of training instances covered by the population,
as defined in equation (3). This measure is related to the ability of the
niching methods to maintain multiple rules. Covering can also be improved
if generalizations are found.

— Accuracy. Two metrics of accuracy can be performed on the overall rule set.
The first one, termed as crude accuracy (CA) [12], is defined as the number of
correctly classified examples over the covered examples. The second measure,
or corrected crude accuracy (CCA), is the ratio between the correct classified
examples and the total number of examples presented to the system.

— Size of the solution set. One desirable goal in learning is to minimize the size
of the solution set. If the set is small, it is more explanatory and easier to
understand by the human experts. We will consider the size of the solution
set as the number of different rules.

— Optimal Population. Kovacs [14] defines an optimal population (denoted
as [O]) as having three characteristics: it is complete, non-overlapping and
minimal. In case of the 6-multiplexer problem, the optimal population in
MOLeCS consists of 8 rules, of type: 01#04#+:0. In the 11-multiplexer prob-
lem, [O] consists of 16 rules, while the 5-parity problem needs 32 rules. This
measure is useful for testing if the developed rules have reached the optimal
generality, in comparison to accuracy and covering that do not necessary
give us this information. In the multiplexer problem, reaching a 100% of
accuracy and covering does not imply directly that [O] has been reached.

— Learning speed. Although the speed measure is more important in the test
epoch (exploit phase), the speed in the training epoch is also desirable, spe-
cially when the system has to learn from real-world applications.

4.3 Results

Figure 2 shows a summary of the results obtained in the 11-multiplexer problem.
A graph represents a fixed niching method, and inside each one there is a curve
for each multiobjective strategy. The curves plot the CCA (corrected crude ac-
curacy), which is measured over all the training examples. Covering is not shown
since all methods achieved the 100%. The WS approach was previously tuned
to w = (0.75,0.25).

The main differences arise between the crowding methods. CF is the method
with the worst accuracy, which ranges from 0.70 to 0.80 (see figure 2(a)). Adding
a selective pressure in the replacement stage improves the performance. This
happens specially with CC -see figure 2(c)-, where accuracy is about 0.90. These
results are obtained for subpopulation sizes of 30/30. Nevertheless, this method is
very sensitive to the parameter settings. When the size of the csp-subpopulation
raises up, increasing the selective pressure, the accuracy (not reported here)

Accuracy

Accuracy

09 r 1 09 r

0.8 prushTEE 08 |

Accuracy

"o 200 400 600 800 1000 0 200 400 600 800 1000
iterations iterations

(a) CF, with cf=30 (b) CIF, with cf=30

Accuracy

0.7 1

0.6 PR —— 1 0.6 PR —— 7

PAR - PAR -
AGR - AGR
WS ws
05 . . . h 05 . . .
0 200 400 600 800 1000 0 200 400 600 800 1000
iterations iterations
(c) CC, with csp/cf=30/30 (d) DC

Fig. 2. Results in the 1l-multiplexer problem. Comparison between four different
crowding methods: CF, CIF, CC and DC. Each niching method is shown for each mul-
tiobjective evaluation method: PR, PAR, AGR and WS with w = (0.75, 0.25). Curves
show the corrected accuracy average over five runs, traced along 1000 iterations.

decreases. The results achieved with deterministic crowding -figure 2(d)- out-
perform all previous results. Accuracy reaches 1.0 in the early generations. The
method balances appropriately the selective pressure and the maintenance of
niches, reaching the optimal performance. These results are consistent with other
niching studies which demonstrate the superiority of DC on different test prob-
lems [16].

When the appropriate crowding method is used, there are no significant dif-
ferences between the four multiobjective algorithms, in terms of accuracy and
speed performance.

In the 5-par problem, the behaviour of the different niching methods is similar
to the 11-mux problem (see figure 3). What is important to mention here is
the difference in performance that arises between some multiobjective methods.
Figure 3(d) shows that the Pareto approach has the poorest accuracy (with a
value of 0.78). This is because PR does not establish any preference towards

Accuracy

Accuracy

09 r

0.8 r

Accuracy

0.6 PR — A
PAR -
AGR
ws
05 . . . h 05 . . . h
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
iterations iterations
(a) CF, with cf=10 (b) CIF, with cf=10
1F S—
Vanatl
09 "~
0.8 > 08
g
3
8
07} 1 < o7t
06 1 PR —— 7 06 1 PR ——
PAR - PAR -
AGR - AGR
WS ws
05 . . . h 05 . . .
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
iterations iterations
(c) CC, with csp/cf=10/10 (d) DC

Fig. 3. Results in the 5-parity problem. Comparison between four different crowding
methods: CF, CIF, CC and DC. Each niching method is shown for each multiobjective
evaluation method: PR, PAR, AGR and WS with w = (1, 0). Curves show the corrected
accuracy average over five runs, traced along 2000 iterations.

the rule accuracy, but towards a compromise between generality and accuracy.
Thus, PR seeks for overgeneral rules as well as for maximally general rules.
These results confirm our hypothesis about the presence of overgeneral rules
in the population. They do not contribute to the expected solution, preventing
other desirable accurate rules from being explored. Adding a preference towards
accurate rules, as PAR and AGR do, improves the previous results. WS has
the best speed, although its application depends on the appropriate knowledge
about the weight vector settings. In these results, w = (1,0), which is the same
as a single objective optimization towards accuracy.

Table 1 reports the different performance measures obtained from the final
rule set (after learning is performed). In the 11-mux problem, all the multiob-
jective approaches have achieved the same performance, except for PR which
presents the highest rule set size (217). The last row in the table shows the re-
sults obtained by a single-objective learning (SO), optimizing accuracy. Covering

Table 1. Results in the 11-mux and 5-par problems, summarized for the different
multiobjective strategies and compared to a single optimization method (row labeled
as SO). DC is used as the crowding method. In case of the 11-mux, w = (0.75,0.25). In
case of 5-par problem, w = (1,0), which is the same as the single-objective algorithm.
Cov is covering, CCA is the corrected accuracy, Size is the number of different rules
and %[O0] is the percentage of the optimal population reached by the final rule set.
These measures are computed from the final rule set (obtained when the training epoch
has finished).

11-multiplexer 5-parity
Cov |CCA |Size|%[O]||Cov|CCA|Size|%[O]
PR 1 1 (217 1 1 10.78| 21 |0.60
PAR| 1 1 |40 1 ({099 34 |0.99
AGR| 1 1 |40 1 10.99| 34 |0.99

WS 1 1 |40

SO 10.93[0.93 791 110.99) 321 0.98

=1 e

achieves only 93% of the examples, while the final rule set is much more complex
than the other approaches (with 791 different rules) and the optimal population
is not reached at all.

In the 5-par problem, PR has converged with 0.78 of accuracy and only
60% of the expected optimal population. In fact, the population has collapsed
to the non-inferior solutions, which represent only two points in the objective
space. The first one, with objective vector y; = (0.03,1), corresponds to rules
of type: 00010 : 1. The second one, with vector y» = (0.5,0.5), corresponds to
the overgeneral rules: ##### : 1 and ##### : 0. Once the population has
converged to these points, it is very difficult to increase the number of specific
rules, because of the presence of too many #’s in the population schemata. This
is also the reason for such a small set size.

5 Application to a Real-World Classification Problem

In this section, we apply MOLeCS to the Wisconsin breast cancer database, ob-
tained from the UCI repository [4]. The database contains 699 instances, with 9
numerical attributes ranging from 1 to 10, and two classes (benign or malignant).
There are 16 instances with missing attribute values. The class distributions are
unbalanced, having 458 (65.5%) benign and 241 (34.5%) malignant instances.
As the describing attributes are numerical and not binary, we must consider
again our rule representation. First, we can discretize each numerical feature
into a string of bits. This allows us to maintain our binary representation in
the rules. The second possibility is to represent a rule as a set of real-valued
intervals, as proposed by Wilson in [23]. We have implemented and tested both
representations, without significant differences for the Wisconsin database.
Each experiment is averaged for five different seed numbers. Accuracy is esti-
mated using ten-fold cross-validation (for details see [20]). The results reported
in table 2 show the covering, the crude accuracy and the corrected accuracy,

Table 2. Results using the Wisconsin database, obtained with a ten-fold cross-
validation experiment. We compare the four multiobjective strategies and the single-
objective algorithm, using DC as crowding method. The table reports: Cov (ratio of
covered examples), CA (crude accuracy) and CCA (corrected crude accuracy).

| |COV| CA |CCA|
PR 1 10.65| 0.65
PAR 0.98(0.97/0.95
AGR 0.98(0.97|0.95
WS (.75,.25)0.98[0.94] 0.92
SO 0.94|0.95| 0.90

measured on test sets. MOLeCS is run with DC and the four multiobjective
strategies. We also ran the single-objective optimization algorithm, obtaining a
corrected accuracy of 0.90. PR achieved a result of 0.65, while PAR and AGR
reached the maximum value, with 0.95 of accuracy. This confirms the results ob-
tained with the multiplexer and parity problems. First, it seems suitable to apply
multiobjective methods in order to optimize each rule accuracy and generality.
Enforcing only the accuracy leads the system to develop a high number of specific
rules. This makes the learning more difficult, because more rules are needed to
describe the problem. SO resulted in less covering and even less crude accuracy
than PAR and AGR. If we give the same pressure (or preference) to accuracy
than to generality (as PR does) we degrade the final rule set accuracy, as hap-
pened with 5-par problem. Therefore, the best learning performance is achieved
when we optimize generality and accuracy, but with a preference towards accu-
racy as it is implemented by the methods PAR and AGR. The obtained accuracy
is of 0.95 £ 0.016 with a 95% confidence interval, which is comparable to other
learning classifier systems. XCS [24] also reached an accuracy of 0.95 in a similar
experiment using the same database.

6 Conclusions and Future Work

This paper has studied the performance of MOLeCS using different MOEA tech-
niques. The results are compared to a single-objective EA optimizing only the
accuracy goal, in order to prove the suitability of the multiobjective approach.
The experiments with single-objective optimization demonstrate that the system
evolves too many specific rules. This produces an enhancement of the solution
set, making the learning more difficult and achieving poor covering. If we opti-
mize the accuracy and generality of each rule, we improve the learning perfor-
mance. Nevertheless, giving the same importance to these attributes (as Pareto
ranking does) makes the system evolve overgeneral rules in the search process,
preventing other maximally general rules from being explored and maintained.
The overall accuracy of the final rule set is thus degraded. In this sense, includ-
ing the decision preferences in the search (e.g., with PAR or AGR) leads up

to a better achievement of the learning goals. The results with the Wisconsin
database have reached an accuracy of 0.95, performing as well as XCS.

The use of niching methods in MOLeCS is necessary to ensure the mainte-
nance of a set of rules that covers the examples. The paper has studied different
crowding algorithms under a non-generational scheme. In terms of covering and
stability the best results are obtained with deterministic crowding.

As a future work, it is necessary to perform further investigation on the
applicability of MOLeCS to real world databases. We can test the MOLeCS
performance on more complex problems, having more describing attributes, per-
forming multiple categorization rather than binary, etc.

When we deal with medical databases with two unbalanced classes, it is
interesting to distinguish between the correct predictions made by the system
when the true decision is “benign” and the correct predictions when the true
decision is “malignant”. In this case, the accuracy measure does not give enough
information. Other measures as sensitivity, specificity and area under the ROC
curve must be included in our further analysis.

Another important future research with MOLeCS is to study our approach
with problems with highly unbalanced classes. Giving a pressure towards gen-
eralization might displace specific rules (that cover few examples from a cer-
tain class) by other general rules (covering examples from other more numerous
classes). This can be prevented in the replacement stage or by measuring the
generality of each rule relatively to its niche.

Acknowledgements

The results of this work were obtained with the equipment co-funded by Direccid
de Recerca de la Generalitat de Catalunya (D.O.G.C 30/12/1997). The authors
acknowledge the support provided by Epson Iberica, under 1999 Rosina Ribalta
Award, and the support of Enginyeria i Arquitectura La Salle.

References

1. J.LE. Baker. Reducing bias and inefficieny in the selection algorithm. In
J.J.Grefenstette, editor, Genetic Algorithms and their Applications: Proceedings
of the Second International Conference on Genetic Algorithms, pages 14-21, 1987.

2. Ester Bernadé Mansilla and Josep Maria Garrell i Guiu. MOLeCS: A MultiObjec-
tive Classifier System. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), page 390, 2000.

3. Ester Bernad6 Mansilla and Josep Maria Garrell i Guiu. MultiObjective Learning
in a Genetic Classifier System (MOLeCS). In Butllet; de I’ACIA, 22. 3r Congrés
Catala d’Intel.ligéncia Artificial, 2000.

4. C.L. Blake and C.J. Merz. UCI Repository of machine learning databases,
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. University of California,
Irvine, Dept. of Information and Computer Sciences, 1998.

5. Carlos A. Coello. A Comprehensive Survey of Evolutionary-Based Multiobjective
Optimization Techniques. Knowledge and Information Systems. An International
Journal, 1(3):269-308, August 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
(Doctoral Dissertation) . PhD thesis, University of Michigan, 1975.

Carlos M. Fonseca and Peter Fleming. An Overview of Evolutionary Algorithms
in Multiobjective Optimization. Evolutionary Computation, 3(1):1-16, 1995.
P.W. Frey and D.J. Slate. Letter recognition using Holland-style adaptive classif
iers. Machine Learning, 6:161-182, 1991.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Inc., 1989.

D.E. Goldberg and P. Segrest. Finite Markov chain analysis of Genetic Algorithms.
In J.J. Grefenstette, editor, Proceedings of the Second International Conference on
Genetic Algorithms, pages 1-8. Lawrence Erlbaum, 1987.

John H. Holland. Escaping Brittleness: The Possibilities of General Purpose Learn-
ing Algorithms Applied to Parallel Rule-Based Systems. Machine Learning: An
Artificial Intelligence Approach, Vol. II, pages 593-623, 1986.

John H. Holmes. Quantitative Methods for Evaluating Learning Classifier Sys-
tem Performance in Forced Two-Choice Decision Tasks. In Second International
Workshop on Learning Classifier Systems (IWLCS-99), 1999.

J. Horn, D.E. Goldberg, and K. Deb. Implicit Niching in a Learning Classifier
System: Nature’s Way. Ewvolutionary Computation, 2(1), pages 37-66, 1994.

Tim Kovacs. XCS Classifier System Reliably Evolves Accurate, Complete and
Minimal Representations for Boolean Functions. In Roy, Chawdhryand, and Pant,
editors, Soft Computing in Engineering Design and Manufacturing, pages 59-68.
Springer-Verlag, 1997.

Mahfoud, Samir W. Crowding and preselection revisited. In R.Maenner and
B.Manderick, editors, Parallel Problem Solving from Nature, 2, pages 27-36. Else-
vier:Amsterdam, 1992.

Mahfoud, Samir W. Niching Methods for Genetic Algorithms. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, 1995.

Manuel Valenzuela-Rendén and Eduardo Uresti-Charre. A Non-Generational Ge-
netic Algorithm for Multiobjective Optimization. Proceedings of the Seventh In-
ternational Conference on Genetic Algorithms, pages 658-665, 1997.

David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Dept. of Electrical and Computer
Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, 1999.
David A. Van Veldhuizen and Gary B. Lamont. Multiobjective Evolutionary Algo-
rithms: Analyzing the State-of-the-Art. Evolutionary Computation, 8(2):125-174,
Summer 2000.

Sholom M. Weiss and Casimir A. Kulikowski. Computer Systems That Learn. Clas-
sification and Prediction Methods from Statistics, Neural Nets, Machine Learning
and Ezxpert Systems. Morgan Kaufmann, 1991.

Stewart W. Wilson. Classifier Fitness Based on Accuracy. Ewolutionary Compu-
tation, 3(2):149-175, 1995.

Stewart W. Wilson. Generalization in the XCS Classifier System. In J.Koza et al.,
editor, Genetic Programming: Proceedings of the Third Annual Conference. San
Francisco, CA: Morgan Kaufmann, 1998.

Stewart W. Wilson. Get Real! XCS with Continuous-Valued Inputs. In L. Booker,
S. Forrest, Mitchell M., and Riolo R, editors, Festschrift in Honor of John H.
Holland. Center for the Study of Complex Systems, University of Michigan, 1999.
Stewart W. Wilson. Mining Oblique Data with XCS. In Third International
Workshop on Learning Classifier Systems (IWLCS-2000), 2000.

