
Multiobjective Parsimony Enforcement for Superior
Generalisation Performance

Yaniv Bernstein, Xiaodong Li, Vic Ciesielski, and Andy Song
School of Computer Science and Information Technology

RMIT University, Melbourne VIC 3001, Australia
Email: {yberstein,xiaodong,vc,asong}@cs.rmit.edu.au

Abstract— Program Bloat - the phenomenon of ever-increasing
program size during a GP run - is a recognised and widespread
problem. Traditional techniques to combat program bloat are
program size limitations or parsimony pressure (penalty func-
tions). These techniques suffer from a number of problems, in
particular their reliance on parameters whose optimal values it is
difficult to a priori determine. In this paper we introduce POPE-
GP, a system that makes use of the NSGA-II multiobjective evolu-
tionary algorithm as an alternative, parameter-free technique for
eliminating program bloat. We test it on a classification problem
and find that while vastly reducing program size, it does improve
generalisation performance.

I. INTRODUCTION

It is often the case in GP runs that the average size of
individuals in the population increases substantially over the
course of the run. This phenomenon is known as program
bloat. Bloated populations lead to greater load on both CPU
and memory over the course of a run, decreased search
effectiveness and difficulty in interpreting results. Furthermore,
in applications where programs are desired to generalise from
a limited training set (and there are many; symbolic regression,
machine learning and classification are just a few) it has been
observed that smaller solutions tend to generalise better [15],
[9].

In this paper we study the performance of POPE-GP, a new
algorithm that uses the NSGA-II multiobjective algorithm as
the basis for parsimony enforcement. The use of multiobjective
techniques for parsimony enforcement has been studied by
Bleuler et al. [2] and De Jong et al.[4] and proved extremely
successful in producing highly parsimonious solutions that
exhibit good performance on the parity problem. Our focus
in this paper is somewhat different: we would like to further
test the hypothesis that small solutions generalise better than
large solutions. To this end, we compare the performance of
POPE-GP on a real-world classification problem with that
of a GP with more traditional parsimony control and a GP
with no control at all, paying particular attention to the
performance of solutions on the unseen testing set as a measure
of generalisation performance.

Our results not only reconfirm that the multiobjective
approach is an excellent way of enforcing parsimony in a
population without adversely impacting on fitness, but do also
demonstrate an increase in the generalisation ability of the
programs generated by POPE-GP.

II. PROGRAM BLOAT IN GPS

There are a number of theories in existence that attempt to
explain the causes of bloat; these include protection against
crossover [13], removal bias [14] and diffusion[10]. While the
exact mechanisms and behaviours differ between the theories,
they all echo one fundamental truth: that it is easier to add
code to a program than it is to remove it. That is, it is
quite difficult to remove code from an effectively functioning
program without heavily impacting on that functionality and
thus reducing its fitness. On the other hand, adding code to
such a program is much less likely to be harmful. As such,
there is an inherent bias towards the expansion of code and
against its removal.

Code bloat is associated with a number of harmful out-
comes:

- Increased Resource Usage: Larger programs consume
more memory and take longer to evaluate.

- Decreased Search Effectiveness: Program bloat inter-
feres with the efficacy of the crossover and mutation
operators.

- Obfuscation: The operation of a bloated program is
usually so opaque that it is nearly impossible for humans
to understand its basic functionality.

- Overfitting: This can be classified as both a possible
cause and possible effect of bloat. Overfitting occurs
when optimisation pressure causes the solution to adhere
too closely to the training set, causing degradation in the
generalised performance of the solution. An overfitted
solution tends to be large because of the complexity
of adhering precisely to the often noisy data presented
to the learning algorithm. Thus, it is possible that
overfitting contributes to program bloat, and conversely
that tackling program bloat discourages overfitting and
improves a solution’s generalisation performance. Tack-
ett [15], Kinnear [9] and Zhang and Mühlenbein [16]
all report that smaller solutions tended to have superior
generalisation performance in their experiments.

III. EXISTING PARSIMONY ENFORCEMENT METHODS

A. Tree Limitation

One of the simplest ways to manage program bloat is to
impose a static maximum upon the depth or size (number
of nodes) of program trees within the population. If a new

individual is generated (for example by crossover) which
breaches these limitations, it is simply rejected. This technique
is certainly effective in stopping individuals from reaching
an unmanagable size, but is unsatisfactory for a number of
reasons.

One problem is that it is very difficult to reliably choose a
good value for the limit. If a depth limit is made too shallow,
there is a risk that good solutions will never be generated
because their depth exceeds the limit. Conversely, if the limit
is too deep, then program bloat will remain an appreciable
problem. As an appropriate depth can rarely be known a priori,
one is faced with a choice between stunting the generation of
good solutions and allowing a substantial degree of bloat.

Another issue is that the process of culling nonconforming
individuals actually creates a bias against certain types of
information transference within the population. The conse-
quences of this are difficult to determine and are problem
dependent but can be adverse in some cases [8].

B. Constant Parsimony Pressure

Constant Parsimony Pressure applies a penalty function to
an individual based upon its size. The intuition is that by
degrading the fitness of large (and thus possibly bloated) indi-
viduals, significant pressure is applied towards brevity within
the population. The user defines the value of a parameter α

which determines to what degree programs are penalised for
their size. A higher value of α results in greater pressure
towards parsimony — solutions are more heavily punished
for their bulk the higher α is. The selection of an appropriate
value for α is critical as it has a significant impact on the
search bias of the algorithm.

Note that constant parsimony pressure cannot distinguish
between a solution that is bloated and one that is fundamen-
tally large and cannot be represented more compactly. If the
value of α is too high, it is quite possible that fit, complex
solutions will be rejected in favour of less fit but very simple
solutions. Conversely, if α is too low, the parsimony pressure
will be weak and bloat can proceed largely unhindered. The
problem is that it is impossible to know the ideal value for α

a priori.

C. Adaptive Parsimony Pressure

Adaptive Parsimony Pressure [16] changes the amount of
pressure exerted towards parsimony based upon the circum-
stances of the population. The pressure parameter α is no
longer static but rather a function α(g) that adapts at each
generation. There is one required parameter — ε, a user-
specified error tolerance. While the error of an individual
remains worse than ε, the parsimony pressure remains low
and the main pressure is towards improving performance.
When the error is within the specified tolerance, the parsimony
pressure becomes far stronger and the main evolutionary
pressure is towards the individual reducing its size.

Zhang and Mühlenbein report good results for their tech-
nique [16]. Compared to a GP with no growth controls,
adaptive parsimony pressure took less time to train and

produced substantially smaller individuals with significantly
better generalisation performance. Blickle [3] reports mixed
results with his experiments on adaptive parsimony pressure,
finding it generated small trees but that they had relatively low
fitness. Bleuler et al.[2] find that adaptive parsimony pressure
is inferior to constant parsimony pressure on the even-parity
problem.

IV. MULTIOBJECTIVE OPTIMISATION FOR COMBATING

BLOAT

A. Overview of Multiobjective Optimisation

Many real world problems require optimisation over a
number of distinct and often contradictory objectives simul-
taneously [5]. For example, a structural support may need to
be light and strong, or we may wish for a computer to be
both fast and cheap. When there are multiple objectives, it
is in most cases no longer possible to have just one optimal
solution. For example, which is superior: a very cheap, slow
computer; or an expensive, fast computer?

Definition 1: The dominance relation >d between two so-
lutions i and j, j >d i holds over the set of objectives Θ if
∀θ ∈ Θ(fθ(j) ≥ fθ(i)) ∧ ∃θ ∈ Θ(fθ(j) > fθ(i))
where fθ is the fitness of a solution under objective θ and all
objectives are maximisation objectives.

Definition 2: A solution i is said to be nondominated in a
solution set P if
¬∃j ∈ P(j >d i).

Definition 3: A solution i is set to be a member of the
Pareto Front of a problem if it is nondominated in the set of
all possible solutions S.

The goal in multiobjective optimisation is to discover the
Pareto Front. Traditional single-objective optimisation tech-
niques are limited in their ability to solve this sort of problem,
because they focus on reaching a single globally optimal point.
By contrast, multiobjective optimisation algorithms such as
NSGA-II [6] and SPEA2 [17] are specifically designed to seek
out a set of nondominated solutions as close as possible to the
true Pareto Front. They use a variety of different techniques to
do so but all algorithms emphasise the gathering of a diverse
collection of nondominated individuals rather than a single
outstanding solution.

If we consider parsimony as an additional (pseudo) objective
during a GP run, and hence GP as a multiobjective problem,
the problem with parsimony pressure techniques becomes
clear. We are attempting to combine two different objectives
— fitness and size — into a single fitness value. This does not
capture the full flavour of what is desired: that individuals do
not gain in size without a corresponding increase in fitness.

In other words, we would like individuals to belong to the
fitness-size Pareto Front. Once it is recognised that this Pareto
front is in fact what we are seeking, multiobjective optimisa-
tion algorithms present themselves as an obvious choice for
parsimony enforcement.

Bleuler et al.[2] and De Jong et al. [4] have tried this
approach of using multiobjective algorithms for reducing bloat
before. In both cases a multiobjective algorithm was used
to attempt to control bloat and produce superior results on
the parity problem. The results were excellent; in particular,
tree sizes remained very small compared to all other methods
including parsimony pressure. Furthermore, the multiobjective
algorithms found better solutions with less computational
effort.

V. THE POPE-GP ALGORITHM

The Pseudo-Objective Parsimony Enforcement GP (POPE-
GP) uses the NSGA-II multiobjective optimisation algo-
rithm [6] as a base for its operation. The two objectives are
defined as being the actual objective of the GP run (the fitness)
and the size of the program. Once these objectives have been
defined, the NSGA-II algorithm attempts to find the Pareto
Front for these two objectives. The operation of the NSGA-II
algorithm is described in the following section.

A. The NSGA-II Multiobjective Algorithm

Before we describe the mechanincs of the NSGA-II algo-
rithm, we must define a number of terms.

Definition 4: The first nondominated front N1 of a pop-
ulation P is the set of individuals that are nondominated in
that population.

Using the above definition, we can then recursively define all
further nondominated fronts as follows:

Definition 5: The nthnthnth nondominated front Nn of a pop-
ulation P is the first nondominated front of the population
P ′

n = P −
⋃n−1

i=1
Ni.

In other words, the nth nondominated front of the population
is the first nondominated front of the remaining population
when the first n− 1 nondominated fronts are removed. Thus,
the second nondominated front consists of all individuals
in the population dominated only by individuals in the first
nondominated front, the third nondominated front consists of
all individuals dominated only by individuals in the first and
second fronts, and so on.

We also for convenience define a function N(i) which
returns q, the number of the nondominated front of which
an individual i is a member:

Definition 6: N(i) = q iff i ∈ Nq .

The final quantity we need to define is the crowding distance
C(i):

Definition 7: The crowding distance C(i) of a particular
individual i is equal to the sum of the distance between i’s
nearest neighbours to either side on its nondominated front for
all objectives. If i does not have a neighbour on one side (ie.
it is on the edge of the front) then its crowding distance is
deemed to be infinite.

Using the above definitions we are now able to define the
crowded-comparison operator ≺n, which lies at the heart of
the operation of the NSGA-II algorithm:

Definition 8: For two individuals i and j we say that i ≺n j

iff

• N(i) < N(j), or
• N(i) = N(j) and C(i) > C(j) .

At each generation n the parent population pn is sorted into
nondominated fronts1 and the crowding distance calculated
for each individual. A child population cn is then created
using tournament selection and the user’s choice of genetic
operators. The tournament selection functions by using the
crowded comparison operator ≺n rather than the usual fitness
function. This ensures that solutions on a higher nondominated
front are favoured, and within each front, individuals that
are less crowded. This creates the necessary pressure for the
population to move towards the Pareto Front and to disperse
along it.

After the child population is created, the two populations
are merged and sorted once again into nondominated order
and the crowding distance for each individual once again
calculated. The parent population for the next generation pn+1

is then created by taking the top half of the sorted, merged
population. See Figure 1 for a schematic of the process. Note
that individuals within a nondominated front are sorted by
decreasing crowding distance. Thus, if a front is split when
the new parent population is selected, it is the individuals
with higher crowding distance that will be selected. Note that
NSGA-II is fully elitist; the next generation is selected from
a combination of the parent and child populations. As such,
there is no possibility of losing a high quality solution.

VI. EMPIRICAL STUDY: CLASSIFICATION

We compared the generalisation performance of classifier
programs generated by the POPE-GP algorithm with those
generated by a standard GP with a depth limit of eight and
one with no limits at all. We used the Wisconsin Breast

1For a description of a fast nondominated sort procedure, see [6].

cn

n+1
p

N
1

N
2

N
3

N
4

N
5

comparison
operator to
create child
population

Use crowded

Sort into
nondominated
fronts

Cull merged
population to
create new
parent
population

p
n

Fig. 1. The NSGA-II process.

Cancer Database2, which has been widely used as a testbed for
classification [1], [11]. The dataset consists of 699 instances,
each containing nine numerical attributes plus a class attribute.
Each instance is in either the malignant or benign class. The
dataset contains 16 instances with missing property values. For
simplicity, these instances were culled, leaving 683 instances
in the dataset.

We divided the data randomly into training and testing sets,
so that 70% (479 instances) of the data made up the training set
and the remaining 30% (204 instances) constituted the testing
set.

We used the RMITGP3 GP programming library with
strongly-typed GP [12]. The root node was required to return
a double; if the value returned was below zero, this was taken
to mean that the program has classified the instance as benign.
Otherwise, it was considered to have classified it as malignant.

The set of functions and terminals used for the classification
task is shown in Table I. The set is very simple, with the only
terminals being random numbers and classification attributes,
and the functions consisting of arithmetic and relational prim-
itives and a conditional operator. Nonetheless, such a set has
been shown in the past to be sufficient for creating effective
classification programs [11], [7].

The fitness of an individual was taken to be the gross
classification error — ie. the number of instances in the
training set that are misclassified.

The plan was to have populations of 500 individuals.
However, after accidentally setting the population to 50 for
a batch of runs on POPE-GP, it was noticed that it per-
formed surprisingly well considering the modest number of
evaluations that the algorithm made. Thus as well as having
populations of 500 for POPE-GP, the depth-limited GP and the
GP with no parsimony enforcement, experiments were also run
for POPE-GP and the depth-limited GP using populations of
50. Algorithms were run for 150 generations on the training
set, after which the best individual (or the set of nondominated
individuals in the case of the POPE-GP) was tested for

2http://www.ics.uci.edu/∼mlearn/MLSummary.html
3http://yallara.cs.rmit.edu.au/∼dylanm/rmitgp.html

generalisation performance on the testing set. All algorithms
were run 50 times and results averaged.

VII. RESULTS AND DISCUSSION

Online performance graphs for POPE-GP, the depth-limited
GP and the GP with no parsimony control are presented in
Figure 2. Note that only the experiments using 500 individuals
are plotted: the experiments with 50 individuals were omitted
to improve readability.

As expected, POPE-GP has been extremely effective at tack-
ling bloat. Figures 2(c) and 2(d) show the size growth of the
fittest individual in the population and the population average
respectively. The graphs clearly show that without any bloat
control, program size grows consistently throughout the run.
Setting a depth limit caps the size of the programs eventually,
but not before they have grown quite large. Programs evolved
with the POPE-GP, however, remain miniscule by comparison.
By the 150th generation, the average size of programs evolved
with POPE-GP was less than 10% of that of programs created
with the depth-limited algorithm and less that 2% of the size of
the programs generated by the GP with no parsimony control.

Interestingly, note that although the depth (Figure 2(b)) and
size (Figure 2(d)) of the average individual in the uncontrolled
populations seemed to grow linearly throughout the GP run,
those of the fittest individual (Figure 2(a) & (c)) grow less
rapidly than the average and, in the case of size, seemingly
sublinearly. This is further evidence in support of the assertion
that bloat is harmful to an individual’s evolution. Also inter-
esting is that despite their extremely small number of nodes,
the depth of the best solutions for POPE-GP are often quite
deep (Figure 2(a)). This highlights another problem of depth
limitation — that programs are often barred from forming in
a shape that is conducive to their function. Limiting depth
encourages trees to be shallow and bushy, even if they would
do better to be deep and narrow. Admittedly, size limitation
does not suffer from this problem and as such should probably
be preferred to depth limitation, though it seems to be rarely
used.

The classification accuracies (Table II) on the testing data

Name Return Type Arity Argument Types Functionality

+ D 2 {D, D} Addition
− D 2 {D, D} Subtraction
× D 2 {D, D} Multiplication
÷ D 2 {D, D} Division
If D 3 {B, D, D} Conditional operator; returns arg2

if arg1 is true, otherwise arg3
≤ B 2 {D, D} True if arg1 ≤ arg2
≥ B 2 {D, D} True if arg1 ≥ arg2
= B 2 {D, D} True if arg1 = arg2

Between B 3 {D, D, D} True if arg2 ≤ arg1 ≤ arg3

(a)

Name Return Type Description
RandX D Randomly assigned constant in the range [0,100]
AttrX D Value of randomly assigned attribute

(b)

TABLE I

(A) FUNCTION SET (B) TERMINAL SET [D=Double, B=Boolean]

Algorithm AvDepth AvFitness AvSize BestDepth BestFitness BestSize
POPE-GP (500) 6.71 0.9586 18.77 9.40 0.9865 31.50
POPE-GP (50) 5.40 0.9467 13.12 8.00 0.9811 23.20
Depth-Limited (500) 7.99 0.9388 300.79 8.00 0.9845 282.72
Depth-Limited (50) 7.97 0.9175 270.27 7.86 0.9753 261.06
No Parsimony Pressure (500) 33.99 0.9658 1266.01 21.30 0.9858 691.56

(a)

POPE 500 POPE 50 DL 500 DL 50 No Pressure
Mean Accuracy (%) 95.971 95.932 95.463 94.537 95.151
Standard Deviation 1.065 0.954 1.466 2.442 1.268

(b)

TABLE II

(A) END-OF-RUN AVERAGE VALUES FOR THE ALGORITHMS TESTED. (B) MEAN CLASSIFICATION ACCURACY ON THE TESTING SET.

Algorithm (1) (2) (3) (4) (5)
(1) POPE-GP (500) 0 -0.193 -1.980 -3.807 -3.500
(2) POPE-GP (50) 0.193 0 -1.890 -3.763 -3.480
(3) Depth-Limited (500) 1.980 1.890 0 -2.300 -1.139
(4) Depth-Limited (50) 3.807 3.763 2.300 0 1.580
(5) No Parsimony Pressure (50) 3.500 3.480 1.139 -1.580 0

TABLE III

THE z VALUES FOR THE HYPOTHESIS THAT TWO POPULATIONS HAVE THE SAME CLASSIFICATION ACCURACY. VALUES IN BOLD INDICATE A

STATISTICALLY SIGNIFICANT DIFFERENCE BETWEEN POPULATION MEANS FOR CLASSIFICATION ACCURACY (95% CONFIDENCE INTERVAL). VALUES IN

ITALICS INDICATE A SOMEWHAT STATISTICALLY SIGNIFICANT DIFFERENCE BETWEEN THE POPULATION MEANS FOR CLASSIFICATION ACCURACY (90%

CONFIDENCE INTERVAL). LARGE NEGATIVE VALUES MEAN THE ROW ALGORITHM HAS BETTER CLASSIFICATION ACCURACY THAN THE COLUMN

ALGORITHM, WHILE LARGE POSITIVE NUMBERS INDICATE THE CONVERSE.

lend support to the hypothesis that enforcing parsimony does
lead to improved generalisation performance. Although the
actual difference in mean classification accuracy is not that
large, statistical tests confirm that they are significant in most
cases (see Table III). In particular the two POPE-GP algo-
rithms (50 and 500 individuals) clearly outperformed all other
algorithms in terms of generalisation performance. This is a
vindication of the hypothesis that parsimonious solutions tend

to generalise better and of the approach of using multiobjective
techniques for parsimony enforcement.

The most exciting result was the excellent generalisation
performance of POPE-GP with 50 individuals. In fact, the
classification accuracy of programs generated by this algo-
rithm on the test data was statistically indistinguishable from
the POPE-GP with 500 individuals, and clearly superior to the
programs generated by other algorithms. This is an extremely

impressive result considering that the algorithm makes only
10% of the evaluations made by the POPE-GP with 500
individuals. Running a standard depth-limited GP with the
reduced population produced poor results.

The excellent performance of the POPE-GP with 50 indi-
viduals warrants further investigation and analysis, but we do
have some clues to why it performed as it did. Firstly, the
average size of the best performing individual in this algorithm
was substantially smaller — by almost 30% — than the best
individuals generated by POPE-GP with 500 individuals. Also,
their classification error on the testing data was significantly
lower than those produced by the 500 individual algorithm.
In other words, the programs were more general and ‘fit’ the
training data less tightly, using only the strongest predictors
in the underlying data for classification purposes. The exact
reason why this occurred with the smaller population is
unclear. The most obvious hypothesis — that overfitting can
be reduced simply by cutting the training time — is somewhat
contradicted by the poor performance of the depth-limited GP
with 50 individuals.

VIII. FURTHER WORK AND CONCLUSIONS

In this paper we introduced the POPE-GP algorithm, a
multiobjective parsimony enforcement system based on the
NSGA-II algorithm. Using a classic classification problem, we
showed that the algorithm is extremely proficient at suppress-
ing the occurrence of code bloat and that solutions generated
by POPE-GP generalised better to unseen data when compared
to a depth-limited GP and a GP with no parsimony control.

One very interesting result is that a POPE-GP algorithm
performed nearly as well when the population size was re-
duced by 90% – that is, using only one tenth the number
of evaluations. A similar reduction in population on a depth-
limited population resulted in a significant erosion of perfor-
mance. Furthermore, the solutions generated by the POPE-
GP with the reduced population were even smaller than those
generated by the same algorithm with the large population.
The exact reasons behind this phenomenon remain unclear
and would warrant further investigation given the vary large
potential savings in computation time.

While the experiments described in this paper provide good
evidence in support of our hypothesis that smaller solutions
generalise better, further work is required on a range of
problems in which overfitting is known to be an issue before
a definitive conclusion can be reached.

REFERENCES

[1] Bennett, K. P. and Mangasarian, O. L.: Robust linear programming
discrimination of two linearly inseparable sets. Optimization Methods
and Software, (1):23–34, (1992)

[2] Bleuler, S., Brack, M., Thiele, L. and Zitzler, E.: Multiobjective genetic
programming: Reducing bloat using SPEA2. In Proceedings of the 2001
Congress on Evolutionary Computation CEC2001. IEEE Press (2001)
536–543

[3] Blickle, T.: Evolving compact solutions in genetic programming: A
case study. In Parallel Problem Solving From Nature IV. Proceedings
of the International Conference on Evolutionary Computation, vol. 1141.
Springer-Verlag (1996)564–573

[4] De Jong, E. D., Watson, R. A. and Pollack, J. B.: Reducing bloat and
promoting diversity using multi-objective methods. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO-2001.
Morgan Kaufmann Publishers(2001) 11–18

[5] Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons (2001)

[6] Deb, K., Pratap, A., Agarwal, S. and Meyarivan,T.: A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197,(2002)

[7] Eggermont, J., Eiben, A. E., and van Hemert, J. I.: A comparison of
genetic programming variants for data classification. In Advances in
Intelligent Data Analysis, Third International Symposium, IDA-99, vol:
1642. Springer-Verlag (1999) 281–290

[8] Gathercole, C. and Ross, P.: An adverse interaction between crossover
and restricted tree depth in genetic programming. In Genetic Program-
ming 1996: Proceedings of the First Annual Conference. MIT Press
(1996) 291–296

[9] Kinnear, Jr., K. E.: Generality and difficulty in genetic programming:
Evolving a sort. In Proceedings of the 5th International Conference on
Genetic Algorithms, ICGA-93. Morgan Kaufmann(1993) 287–294

[10] Langdon, W. B. and Poli, R.: Fitness causes bloat. In Second On-
line World Conference on Soft Computing in Engineering Design and
Manufacturing. Springer-Verlag London(1997)13–22

[11] Loveard, T. and Ciesielski, V.: Representing classification problems in
genetic programming. In Proceedings of the Congress on Evolutionary
Computation, volume 2. IEEE Press (2001)1070–1077

[12] Montana, D. J.: Strongly typed genetic programming. Evolutionary
Computation, 3(2):199–230, (1995)

[13] Nordin, P. and Banzhaf, W.: Complexity compression and evolution. In
Genetic Algorithms: Proceedings of the Sixth International Conference
(ICGA95). Morgan Kaufmann(1995) 310–317

[14] Soule, T. and Foster, J. A.: Effects of code growth and parsimony pres-
sure on populations in genetic programming. Evolutionary Computation,
6(4):293–309, (1998)

[15] Tackett, W. A.: Genetic programming for feature discovery and image
discrimination. In Proceedings of the 5th International Conference on
Genetic Algorithms, ICGA-93. Morgan Kaufmann(1993)303–309

[16] Zhang, B.-T. and M ühlenbein,H.: Balancing accuracy and parsimony in
genetic programming. Evolutionary Computation, 3(1):17–38, (1995)

[17] Zitzler, E., Laumanns, M. and Thiele, L.: SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. Technical Report 103, Glo-
riastrasse 35, CH-8092 Zurich, Switzerland(2001)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

D
ep

th

Generation

POPE-GP
Depth Limited to 8

No Parsimony Control

(a) Depth of fittest individual

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160

D
ep

th

Generation

POPE-GP
Depth Limited to 8

No Parsimony Control

(b) Average depth

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160

S
iz

e

Generation

POPE-GP
Depth Limited to 8

No Parsimony Control

(c) Size of fittest individual

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140 160

S
iz

e

Generation

POPE-GP
Depth Limited to 8

No Parsimony Control

(d) Average size

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 20 40 60 80 100 120 140 160

F
itn

es
s

Generation

POPE-GP
Depth Limited to 8

No Parsimony Control

(e) Fitness of fittest individual

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 20 40 60 80 100 120 140 160

F
itn

es
s

Generation

POPE-GP
Depth Limited to 8

No Parsimony Control

(f) Average Fitness
Fig. 2. Online performance profiles (averaged over 50 runs; population size 500) of depth (a & b), size (c & d) and fitness (e & f). The left column follows
the progress of the fittest individual in the population, while the right column shows the movement of the population average.

