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AbstratThe thesis is foussed on designing a robust nonlinear autopilot design for a highlynonlinear missile system in the presene of parametri unertainties. First, FeedbakLinearization is applied to the nominal missile model whih produes an equivalentlinear system. Applying linear ontrol tehniques, an outer loop is designed to drivethe ontrolled variables to reah the required demand, hene the missile an followa desired trajetory. Unfortunately the ontrol law produed by the feedbak lin-earization is not robust in the presene of unertainties and hene in a real ightsenario will not be valid, and will exhibit nonlinear behavior for small hanges insystem parameters. Fuzzy logi trajetory ontrol is then used in the outer loopto improve the robustness of the feedbak linearization tehnique. An evolutionarygeneti algorithm is then used to optimise the fuzzy ontrol parameters. Multiplesolutions (alternative fuzzy ontrollers) are obtained by using a Pareto based ap-proah with non-dominated sorting. This has been ombined with the referenepoint approah to inorporate preferene information into the geneti algorithm todiret the searh towards feasible areas whih satisfy spei�ed ranges on eah obje-tive. The design meets objetives de�ned on the losed loop performane: steadystate error, rise time settling time and maximum perentage overshoot. From themultiple solutions the designer an hoose the one whih satis�es spei�ed require-ments. Fuzzy sheduled ontrollers are also used to ontrol side-slip veloity for alarge range of multiple demands. The design has been exerised for multi-modelairframe dynamis at vertex points de�ned by 16 variables.
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Chapter 1Introdution
1.1 Problem de�nitionThe development of new tehnology in aerospae appliation suggest some novelshapes of ying objets whih are beoming faster and faster with exible and unex-peted hanges of their motion. In a typial guidane senario, as shown in �g. 1.1,the guidane system is required to detet and defeat suh dangerous targets.

Figure 1.1: Guidane senarioThe guidane system produes ommands in the form of lateral aeleration that themissile autopilot must follow aurately and fast. The performane of the guidanesystem relies on this performane to maintain its e�etiveness. The autopilot mustontrol the missile airframe response to this required speed and auray despite1



CHAPTER 1. INTRODUCTION 2large unertainty and variability in the aerodynami harateristis that are mea-sured by wind tunnel tests on saled models. As a onsequene, their aerodynamidata are not aurate. There will be signi�ant di�erenes between the measureddata and any airframe that the autopilot is required to ontrol. Not only that, buteah airframe will have its own unertainty due to manufaturing toleranes. Henethere will be a large amount of unertainty assoiated with any model of the air-frame. There is also great variability in the performane of the airframe as speedand altitude vary. As the Mah number of the airframe an vary by a fator of 3 or4 and the altitude an vary from sea level to 10Km (see �g. 1.2), a large hange indynami pressure is present in the ight envelope. This has dramati e�ets on thedynamis as the e�etiveness of the wings and the ontrol surfaes are determinedby the dynami pressure 12�V 2 (1.1)There are other fators that hange the dynamis signi�antly, the greatest being theinidene at whih the airframe is ying. Large hanges in dynami performane areevident as inidene hanges, and the demand for large sale manoeuvres means thatthe missile an exhibit up to 30Æ of inidene for large aeleration demands. Theusual way to maintain speed and auray is to produe a sheduled ontroller withaltitude and Mah number and try to limit the inidene hanges. This produes aset of linear ontrollers designs using a set of linear models. The hallenge for thedesigner is to produe a single ontroller for all parts of the ight envelope. Thisentails dealing with a nonlinear model of the airframe and in produing a nonlinearontroller. As it must also take aount of the unertainty in the aerodynami data,it must also be robust to these unertainties in the nonlinear model.

Figure 1.2: Nonlinear manoeuvre



CHAPTER 1. INTRODUCTION 31.2 Literature review on existing ontrol tehniquesIn the analysis of non-linear ontrol systems there is no general method for designingnon-linear ontrollers. Several existing onventional as well as intelligent ontroltehniques an be potential andidates for solving the problem stated in this thesis.Few of them are listed below:1.2.1 Conventional methodsGain-shedulingA tehnique for transforming original system models into equivalent models of a sim-pler form is the so alled Jaobian linearization or linearization about an equilibriumpoint. In this ase it an be said that the linearization may not be a good approx-imation to the system for arbitrary on�gurations. Sine the system is linearizedabout a single point, trajetory traking an only be guaranteed in a suÆientlysmall ball of states about that point. There are several methods for irumventingthis problem; one of the most ommon is gain sheduling as analysed by Shammaand Athans [1℄. It was originally developed for the trajetory ontrol of an airraft.The idea of gain sheduling is to selet a number of operating points whih overthe range of the system operation. Then at eah of these points, the designer makesa linear time invariant approximation to the plant dynamis and designs a linearontroller for eah linearized plant. Between operating points, the parameters of theompensators are then interpolated, or sheduled, thus resulting in a global ompen-sator. To use gain sheduling, traking ontrollers are designed for many di�erentequilibrium points and gains are hosen based on the equilibrium points to whihthe system is nearest. Gain-sheduling is simple, and, pratially suessful for anumber of appliations. The main problem is that it has only limited theoretialguarantees of stability in non-linear operation, but it uses some loose pratial guide-lines suh as \the sheduling variables should hange slowly" and \the shedulingvariables should apture the plant's non-linearities". Another problem is the om-putational load in a gain-sheduling design, due to the neessity of omputing manylinear ontrollers.Feedbak LinearizationAn alternative tehnique is Feedbak Linearization, known as non-linear dynamiinversion. Feedbak linearization (FL) deals with tehniques for transforming orig-inal system models into equivalent models of a simpler form. FL an be used as anon-linear design methodology. The main idea is to algebraially transform a non-linear system into a linear form using state feedbak like in Isidori et al [2℄, Hunt andSue [3℄, and Su [4℄, and then to use the well known linear design tehniques to om-plete the ontrol design. The purpose of dynami inversion is to develop a feedbakontrol law that linearizes the plant response to ommands, then a non-linear on-



CHAPTER 1. INTRODUCTION 4trol law is designed whih globally redues the dynamis of the seleted ontrolledvariables to integrators. A losed loop system is then designed to make the on-trolled variables exhibit spei�ed ommand response and robustness requirementsto the overall system. The approah an be used for both stability and trakingontrol problems and has been applied to a number of pratial non-linear ontrolproblems. These inlude the ontrol of heliopter, high performane airraft andindustrial robots by Marino and Spong [5℄, Wang and Vidyasagar [6℄. There arefew examples in the literature of the pratial appliation of feedbak linearization,eletro servo-hydrauli atuator by Hahn et al [7℄. Appliations to aerospae sys-tems are rare in the literature Bezik et al [8℄, Tahk et al [9℄ and Wee [10℄. In theirresearh work, the side-slip angle and the angle of attak are taken as outputs todesign the ontrol law. Then the aelerations are ontrolled using linear relationsbetween body rates and aelerations at steady state.Feedbak Linearization tehnique requires full state measurement and desired trak-ing performane is only valid for exat knowledge of model parameters, however anbe useful as model-simplifying devie for robust non-linear ontrol suh as slidingor fuzzy logi ontrol whih are apable to provide robustness of the losed loopsystem.Variable struture ontrol tehniquesVariable struture ontrol systems (VSCS) evolved from the work in Russia ofEmel'yanov and Barbashin in the early 1960s. The ideas appeared outside Russiaafter the mid 1970s when a book by Itkis (1976) and a survey paper by Utkin [11℄were published in English. Later on they were followed by many other researhersWhite and Silson [12℄, Zinober [13℄, Slotine and Li [14℄, Edwards and Spurgeon[15℄.Conepts of VSCS have been utilised in the design of robust regulators, model-referene systems, adaptive shemes, traking systems, state observers and faultdetetion shemes. The ideas have suessfully been applied to problems suh asautomati ight ontrol, ontrol of eletri motors, heliopter stability augmenta-tion systems, spae systems and robots. The essential feature of a variable strutureontroller is that is uses non-linear feedbak ontrol with disontinuities on one ormore manifolds (sliding hyper-planes) in the state spae or error spae. This methodis attrative in the design of ontrols for non-linear unertain dynami systems withunertainties and non-linearities of unknown struture as long as they are boundedand ourring within a subspae of the state spae.Sliding Mode ControlThe aim of the Sliding Controller (SMC) is to design a non-linear feedbak on-troller for a lass of non-linear systems given the extent of parametri unertainty,disturbanes and the frequeny range of unmodelled dynamis. The tehnique has



CHAPTER 1. INTRODUCTION 5been applied to a variety of plants with highly non-linear dynamis similar to amissile system: airraft systems by Singh [16℄, ships by MGookin et al [17℄, un-derwater vehiles by Trebi-Ollennu and White [18℄ and spae systems by Singh andIyer [19℄ and has proved the ability to ahieve good traking performane in thepresene of an unertain environment. The losed loop dynami behaviour obtainedfrom using a variable struture ontrol law omprises two distint types of motion.The initial phase, ourring whilst the states are being driven towards the surfae(referred to as reahing phase), whih is in general a�eted by any mathed distur-banes present. When the states reah the surfae and the sliding motion (referredto as sliding phase) takes plae, then the system beomes insensitive to all mathedunertainty as shown by Singh and Iyer [19℄. The question of ontrol for a lass ofnonlinear systems whih an be deoupled by state-variable feedbak has been on-sidered by Singh [16, 19℄ for an airraft and spaeraft system. The ontrol law forasymptotially deoupled ontrol of roll angle, angle of attak and side-slip in rapid,non-linear manoeuvres has been derived and large simultaneous lateral and longitu-dinal manoeuvres were performed in spite of unertainty in the stability derivatives.The synthesis of longitudinal autopilots for missiles ying at high angle of attakregimes has been presented by Thukral and Innoenti [20℄. The autopilot has beentested on a small setion of the ight envelope (pith hannel) onsisting of a fast180Æ heading reversal in the vertial plane, whih required robustness with respetto unertainties in the systems dynamis indued by large variations in dynamipressure and aerodynami oeÆients. Weil and Wise [21℄ have demonstrated theuse of variable strutured system ontrol to design the longitudinal autopilot for amissile under ombined aerodynami surfae (�n) and reation jet ontrol. Highgain feedbak using singular perturbation analysis is used to design the reation jetswithing surfaes and �n ontrol law. Sliding ontrol tehnique has been appliedto design a pith-axis ontrol system for high performane airraft by Hedrik andGopalswamy in [22℄. The ontrol objetives were to trak pilot g ommands, whilesatisfying ying quality spei�ations. In the pith axis problem, the dominantnon-linearities are the aerodynami oeÆient variation with angle of attak andsaturation of the atuator's position and rate response. In addition to that Fos-sen and Sagatun [23℄ have desribed the use of multi-variable sliding mode ontrolin dynami positioning of underwater vehile (ROV). Trebi-Ollennu [24℄ has alsoshown that this method has great potential for ontrolling the ROV attitude andposition with exellent robustness properties against parametri unertainties andunmodelled dynamis.Few advantages of this tehnique an be mentioned here: Only single design isrequired over the entire operating range of the vehile so there is no need for aseries of linearized ontrollers. Stability is maintained in Lyapunov sense. SMChas exellent robustness properties against parametri unertainties when mathingonditions are satis�ed. In pratie the swithing, hattering ontrol law shouldbe replaed by a smooth approximation whih an be very inonvenient. Anotherdrawbak an be pointed as the need of omplete state information whih may notalways be available. SMC is a suessful tehnique for ontrolling missiles, however



CHAPTER 1. INTRODUCTION 6most researhers have only onsidered ontrolling angle of attak or angular veloi-ties.Bak-stepping approahAnother tehnique de�ned as a di�erent version of variable struture ontrol is thebak-stepping approah. This tehnique has been approahed by Kanellakopoulos,Kristi and Kokotovi in [25℄ working at Berkeley California University USA, latelyfollowed by other researhers like Fossen and Svein [26℄, Rios-Bolivar et al [27℄, Songand Kim [28℄. The output traking problem of a lass of observable minimum-phase unertain non-linear systems has been onsidered by Rios-Bolivar et al [29℄,and a solution based on a suitable ombination of input-output linearization andthe adaptive bak-stepping ontrol design proedure has been proposed. This ap-proah an be applied to a large lass of non-linear systems, inluding those that arenot transformable into the parametri-pure and parametri-strit feedbak forms,typially onsidered in the appliations of the bak-stepping proedure. The on-trolled smooth transition of the angular veloity of a non-linear DC-motor has beenpresented as an appliation example. A non-linear vetorial bakstepping ontrollaw for ommerial ships has been onsidered by Fossen and Svein [26℄. Vetorialbak-stepping is done in three steps orresponding to the state vetors of the ship dy-namis, kinematis and atuator dynamis. Emphasis is plaed on ompensation ofthe atuator dynamis sine the bandwidth of the propellers, thrusters and ruddersis often lose to the bandwidth of the ship dynamis. Global exponential traking ofthe (x and y) positions and the yaw angle of a surfae ship has been proven by ap-plying Lyapunov stability analysis. Also a globally, uniformly asymptotially stablenon-linear ontrol law for dynami positioning of ships has been derived by Aslaugand Fossen [30℄. They have avoided linearization and gain-sheduling tehniques.However a non-linear observer was used to produe noise-free estimates of veloityand position from noisy position measurements. Global uniformly asymptoti stabil-ity was proven by using the Lyapunov stability theory. Also an adaptive non-linearontrol design was applied by Song and Kim [28℄ to the pith aeleration ontrollerfor a missile model. Missile motion is modelled to be non-linear with unknown pa-rameters and unertainties. Based on the model, an adaptive bak-stepping methodhas been adopted whih guaranteed uniform boundedness despite model unertain-ties. This design has been exerised on a very simpli�ed missile model.Bak-stepping approah is a very promising tehnique for an autopilot design ofmissiles whih are highly non-linear in aerodynamis with unknown parameters.This approah is very robust to parametri unertainties. By properly hosen Lya-punov funtion a global asymptoti stability an be proved. Conversely to SlidingMode Control no hattering e�et is involved. However, there is a need of an ob-server for the estimation proedure whih is de�nitely not very appreiated by realengineers espeially when a fast response is required from the missile autopilot de-sign. Also this tehnique is an adaptive proedure and is a question of reliability tobe implemented on a missile board.



CHAPTER 1. INTRODUCTION 71.2.2 Arti�ial intelligeneSine 1989 the Japanese have built the so alled LIFE assoiation for researh anddevelopment of proessing intelletual information. The president at that time,Katsushige Mita stated in few words the importane of the diretion in suh �elds:\Operations of present omputers depend on simple yes-no logi namely binarylogi, whih is di�erent from the information proessing inherent in human thinking.Therefore, evaluation based on ommon sense and exible judgement is onsidereddiÆult to ahieve by omputers, hene intensive researh is now aimed at the real-ization of arti�ial intelligene". Katsushige Mita (President of LIFE assoiation).Ten years later the advaned tehnology in Japan has proved worthwhile.An intelligent system should be able to ope with a variety of unexpeted hangesand environments whih requires learning and adaptation ability. Suh a system anbe referred to as an intelligent ontrol system where tehnology plays a major role inmodern ight ontrol design and implementation. One goal of the intelligent ontrolapproah is to make advaned ontrol systems easier to design. Another goal is tomake them less vulnerable to unertainties in system parameters and to unknownenvironment. Two very popular approahes for performing non-linear ontrol basedon fuzzy logi and neural networks are reviewed in detail. In addition, the opportu-nities to ombine the useful features of eah and to improve their performane usingevolutionary algorithms are also onsidered. Fundamental onepts of these threetehniques have been found by Linkens and Nyongesa [31℄.Fuzzy LogiControl systems should have the apability to gain inreasing knowledge of the sys-tem through operational experiene, without the interferene of human operators.The knowledge-based ontrol tehniques use reasoning mehanisms to determine theontrol ation from the knowledge stored in the system and from the available mea-surements. These systems an improve the robustness of urrent ontrol systemsby inorporating knowledge that annot be aommodated in analyti models uponwhih onventional ontrol algorithms are based. A ommon type of knowledge-based ontrol is the rule-based ontrol, for whih the ontrol ations are desribedin terms of if-then rules. The priniple of designing a fuzzy logi ontroller is tointegrate an empirial knowledge and operator experiene into the ontrollers byusing fuzzy sets and fuzzy rules. The theory was developed by Zadeh [32℄ and theninvented for ontrol purpose by Lee [33℄. Muh of the expert's knowledge ontainslinguisti terms suh as small, negative, positive, et., whih an be represented byfuzzy sets. Using fuzzy sets and fuzzy operations it is possible to design a fuzzyreasoning system whih an at as a ontroller. The ontrol strategy is stored inthe form of if-then rules in a rule base struture. The rules represent an approxi-mate stati mapping from inputs (e.g. errors) to outputs (ontrol ations) and aredetermined by using expert knowledge of the proess. The �rst industrial applia-



CHAPTER 1. INTRODUCTION 8tion of fuzzy logi ontrol was in a ement kiln ontrol designed by Holmblad andOstergaard [34℄. The rules representing the ontroller ations were derived from theement kiln operator's handbook. Sine then, fuzzy logi ontrol has been appliedto various systems in the hemial proess industry, onsumer eletronis, automatitrain operation, and many other �elds listed in Driankov et al [35℄. For example theRCAM problem, as formulated in [36℄, investigated the use of knowledge-based on-trol tehniques for a realisti ight ontrol problem. The hybrid ontroller struturewas proposed by Shram [37℄ in whih the inner loop onsisted of lassial attitudeontrollers and the outer loop was developed by using pilot heuristis of ying anairraft. The fuzzy logi has provided a transparent interfae between the low-levelattitude ontrol of airraft and high-level reasoning of human pilots. A ompro-mise was found in whih performane and robustness properties were good with thepenalty of exessive vertial and lateral aeleration. In addition Shram et al [38℄introdued multiple fuzzy ontrollers in an adaptive ontrol sheme to a failure tol-erant ontrol. Smooth transition between the ontrol modes, of possibly di�erentstruture, has been automatially ahieved in the ase of a gradual degradation ofontrol system omponents. This approah has been demonstrated on a non-linear,six degrees of freedom model of a transport airraft under realisti assumptionsabout atuator dynamis and the results have shown that good performane hasbeen ahieved in ase of severe atuator failures. An appliation of FLC to a su-personi missile has been investigated by Shroeder and Liu [39℄, but assuming thepith plane autopilot is a linear-time invariant system. A fuzzy logi based MIMOroll rate ontroller has been designed by Chiu et al [40℄ for Rokwell International'sadvaned tehnology wing airraft model. The FLC has produed ommands to sixsurfae deetions to ontrol roll rate and four torsion moments. FLC has also beenapplied to angle, elevation and azimuth rates at Nasa Jonson Spae Centre.FLC has been useful when applied to ontrol unertain non-linear systems. Fuzzyreasoning builds the understanding of impreision into the proess whih ould beeither parametri unertainty, unmodelled dynamis or impreise measurement val-ues, hene an provide the ability to ontrol a system in unertainty or unknownenvironments whih is one of the most important harateristis of an intelligentontrol system. Fuzzy logi ontrol is a knowledge-based system that derives on-trol ations based on input-output relationship, therefore, estimation of the systemparameters is not required. FLC an model omplex non-linear funtions and de-rive smooth ontrol ation for unertain system behaviour. However, if the initiallyhosen ontrol parameters suh as membership funtions and rule base strutureare not satisfatory in terms of losed loop performane, then it is neessary to use\trial and error" design philosophy, whih may not always be onvenient. It maybe an expensive proess omputationally speaking. In suh a ase, an appropriatetehnique is required to optimise the fuzzy logi ontrol parameters. Although fuzzystrategies su�er from some limitations, they an produe robust ontrol design inthe presene of parametri unertainties and we suggest fuzzy logi based ontrol asan appropriate tehnique to be used further in this study.



CHAPTER 1. INTRODUCTION 9Neural NetworksNeural Networks (NNs) have shown great promise in solving non-linear ontrolproblems beause of their universal approximation apability, as detailed by Hunt etal [41℄. This powerful property has inspired the development of many neural-networkbased ontrollers without signi�ant prior knowledge of the system dynamis. Ar-ti�ial NNs are based on the attempt to mimi the brains operation in a partiularway with a move away from hard, exat mathematial alulations towards general-ising fuzzy omputation, as given by Green�eld [42℄. The brain's powerful thinking,remembering and problem solving apabilities have inspired many sientists to at-tempt omputer modelling of its operation. There are several ategories of neuralontrollers in the published literature suh as: supervised ontrol, neural adaptiveontrol by Sanner and Slotine [43℄, bak-propagation through time by Collins andDror [44℄, adaptive riti arhiteture also known as learning ontrol. An interestingapproah is learning with riti algorithm given by Widrow et al [45℄. The learningontroller is desribed in terms of two-omponent ombination. These omponentsare the ontroller and the trainer. One perform tasks of a pattern reognition andontrol parameter seletion, and the other to work as a teaher, whih observessystem performane and adjusts ategory boundaries in the ontroller. Neural net-works have been used by MKelvey [46℄ to model the unknown feedbak ontrol lawof an optimal ight ontrol problem. The network uses "blak box" struture andit is trained with the bak-propagation learning method. In addition an adaptiveriti based Neural network arhiteture has been applied to an autopilot by Bal-akrishnan and Biega [47℄. Their approah has adapted two networks: a supervisor(riti) that assesses the outputs of the ontroller network and an ation neuralnetwork ontroller for modelling the ontrol law. Napolitano and Kinheloe [48℄have proposed the implementation of on-line learning neural ontrollers in the au-topilot ontrol laws of a modern high-performane military airraft. One advantageof their design is avoiding the preomputation, storing, and interpolation betweenthousands of feedbak gains of a typial ight ontrol system. Another advantageis the ability to ompensate for non-linearities and model unertainties. The tradi-tional gain-sheduling-based-ontrol laws for typial autopilot funtions are replaedby on-line learning neural arhitetures, trained with the extended bak-propagationalgorithm. This algorithm has shown signi�ant improvements over the onventionalbak-propagation method in learning, speed and auray. On-line loal learning a-pabilities of the neural ontrollers have been demonstrated. Finally most relevant toour researh is the work by MDowell et al [49℄ for hybrid neural-adaptive bank-to-turn lateral autopilot, desribed for a short-range ommand-to-line-of-sight (CLOS)surfae-to-air missile. In order to ahieve onsistent traking performane over theight envelope, a multi-input/multi-output (MIMO) Gaussian radial basis funtionnetwork has been employed. The hybrid neural autopilot was evaluated in threedimensional (six-degree of freedom) simulation studies against realisti pith ael-eration and roll rate pro�les generated from a typial CLOS guidane senario.



CHAPTER 1. INTRODUCTION 10Few important advantages in using neural networks for ontrolling non-linear sys-tems an be mentioned here: Firstly, the dynamis of the ontrolled system doesnot need to be ompletely known for the design of the ontrollers or for the mod-elling of the system. Seondly, the potential of on-line learning is a very powerfulfeature for ontrolling any proess in real time. In addition NNs have the ability foradaptation and interpolation as well as the ability of parallel omputation and anuniversal approximation apability, whih altoghether make them an attrative anduseful tehnique for solving a variety of non-linear ontrol problems. Finally neuralnetworks have very useful properties suh as the assoiative storage and retrievalof knowledge. They an be trained to approximate any funtion suÆiently well.Conversely to suh attrative harateristis, the appliations of neural networks aselements of real-time ontrol systems ould be very limited for the following reasons:The losed loop system behaviour does not have formal mathematial haraterisa-tion; NNs have unstrutured nature of blak-box learning, hene annot be erti�ed.Also large numbers of iterations over the desired mapping are required before thenetwork adequately reprodues the required responses. In onlusion from an aa-demi point of view NNs are a very promising tehnique whih an improve theperformane and the robustness of the missile system. However from an engineeringpoint of view this tehnique is not an appropriate ontrol method to be implementedon a missile board as they annot be erti�ed.Neuro-Fuzzy ControlFuzzy logi ontrollers have several important bene�ts in that they do not requirea omplete analytial model of a dynami system. They provide knowledge-basedheuristi ontrollers for omplex systems, and they an be analytially validated.However they are not well suited to learning. This means that fuzzy logi systemsannot meet the goals of adaptation to hanges in system dynamis or to unmod-elled dynami harateristis, and they annot gain inreased performane throughlearning. On the other hand arti�ial neural networks have been suessfully usedto model and approximate various non-linear relationships and systems. Neuralnetworks an be trained to learn the mapping between the input and the outputdomains based on observations without requiring knowledge of the struture of theunderlying systems. They an exploit the inherent parallelism assoiated with fuzzyalgorithms beause of the lak of dependenies on ontrol rules. One the network istrained it an proess the rules in parallel. They have shown to possess the ability toadapt to dynami environmental hanges through ontinuous training. The applia-tion of knowledge-based ontrol tehniques for ight ontrol by Steinberg [50, 51℄ hasindiated that tehniques like neural networks and fuzzy systems an provide appro-priate tools for non-linear identi�ation by Linse and Stengel [52℄, ontrol of airraftby Napolitano and Kinheloe [48℄, heliopters by Sugeno et al [53℄ and spaeraftby Berenji et al [54℄, or ight ontrol reon�guration by Napolitano et al [55℄. Inthese appliations, neural networks generally serve as non-linear, sometimes adap-tive, models while fuzzy systems are often used as supervisory, expert systems. Few



CHAPTER 1. INTRODUCTION 11relevant researh ativities are enumerated as follows: An interesting ombination ofarti�ial neural networks and fuzzy logi ontrollers have been addressed by Haririand Malik [56℄ to power system stabilizer, where the method retains all the ad-vantages of adaptability, rapidity and robustness. By using neural network as astruture for the fuzzy logi ontroller, the design time of onventional FLC an besigni�antly redued, membership funtions and fuzzy rules of the ontroller an begenerated automatially to meet the prespei�ed performane, i.e. tuning of the FLControl parameters has been solved. Compared to a onventional neural network,the training time was dereased, sine a priori knowledge in the form of fuzzy if-thenrules was employed. Shin and Vishnupad [57℄ have applied neuro-fuzzy tehniquesto a omplex manufaturing proesses. The underlying non-linear proess has beenmodelled by NNs and the proess ontrol has been performed by FLC. The fuzzyrules have been automatially generated from the trained NN and fuzzy ontrol hasbeen performed by Mamdani impliation. The simulation results have provided arobust and aurate way of ontrolling omplex proesses without knowledge aboutthe model. Even when the proess has hanged dynamially, the NNs have learntthe funtional relationships between input and output domains through ontinuoustraining and the fuzzy ontroller has derived the ontrol ations. A di�erent type ofNNs have been used by Geng and MCullough in [58℄ alled erebellar model arith-meti omputer NNs (CMAC) with a faster learning rate than onventional NNsand a limited amount of omputation required at any point in the learning proess.The researhers have used the strengths of CMAC and Fuzzy ontrol shemes andapplied for the use in the design of advaned missile ontrol systems. The fuzzyCMAC has the apability of inorporating human knowledge into the system andproessing information based on fuzzy inferene rules. The ight ontrol system hasbeen evaluated using a series of non-linear simulations driven by the mathematialmodels of HAVE DASH II Bank to turn missile, to examine the stability, high angleof attak and ight path angle traking.In the onventional fuzzy design, the user must tune the membership funtionsof fuzzy sets de�ned in the input and output universe of disourse by trial anderror. This drawbak has been eliminated with neuro-fuzzy networks. Due to thesupervised learning methods it is possible to optimise the anteedent and onsequentparts of a linguisti rule based fuzzy system. The neuro-fuzzy systems are universalapproximators of any non-linear funtions, as proved by Bukley and Hayashi [59℄.There is no need of trial and error proedure to tune the ontrol parameters of thefuzzy logi ontroller as self learning inherently exist. These systems an be erti�ed,an have high learning speed and be able to proess the rules in parallel. By ombin-ing fuzzy logi and neural network the ontroller beomes more robust to impreiseinformation and external disturbanes and an improvement of the performane anbe guaranteed. However a major drawbak is the design omplexity. They may bevery expensive and the question of being implemented on a missile board is still anopen one for engineers.



CHAPTER 1. INTRODUCTION 12Fuzzy-Geneti AlgorithmsAs pointed out earlier the membership funtions of a fuzzy logi ontroller an bede�ned by trial and error or by an experts knowledge. The use of a neural networkdepends highly on the availability of suÆient data representing the input-outputmapping, but in a situation where suh data annot be obtained an alternativeapproah would be neessary. One suh approah is to test hypothetial trial solu-tions on the system and generate better solutions on the basis of the performanesusing evolutionary tehniques. Geneti algorithms, whih are modelled on naturalevolutionary strategies, is methodology that has been introdued as a learning andoptimisation tehnique under suh onditions. They use operations found in naturalgenetis to guide them through the paths in the searh spae, an provide means tosearh poorly understood and irregular spaes and has been suessfully applied tovariety of funtion optimisations, self-adaptive and learning systems. By using GAsa randomised global searh in a solution spae is possible. In this spae a populationof andidate solutions, enoded as hromosomes is evaluated by a �tness funtionin terms of its performane. The best andidates 'evolve' and pass some of theirharateristis to their 'o�springs'. A group of researhers, KrishnaKumar et al [60℄have investigated a hybrid tehnique for synthesising fuzzy logi ontrollers as astability augmentation system. This tehnique ombines the ontrol apabilities offuzzy logi with the learning apabilities of geneti algorithms, to yield a fuzzy logiontroller optimised to satisfy desired handling quality requirements. An optimalontrol model is used to provide the losed-loop handling quality metris. Genetialgorithms are used to optimise the attributes of the fuzzy logi ontroller. Theseattributes inlude the ontrol parameters suh as membership funtions and the rulebase struture. The hybrid tehnique was implemented and tested o�-line using awide envelope FA/18 longitudinal model. The results proved the following: �rst,robustness of the hybrid tehnique in �nding suitable FLC for di�erent operatingpoints with minimal user interation; seond, robustness of the optimised FLC tooperate at di�erent operating onditions with no gain sheduling; third, the abilityof the GA in �nding a suitable FLC with as few as 10 rules in the rule base. An-other suessful appliation of optimising ontrol parameters but of a Sliding Modeontroller has been investigated by MGookin et al [17℄. It involves the performaneof a ontrol system for ourse hanging manoeuvres of an oil tanker non-linear sys-tem. SMC theory has been used to de�ne the struture of the ontroller where theGAs have been used to optimise key ontrol parameters in order to obtain satisfa-tory performane. Trebi-Ollennu and White [18℄ have applied multi-objetive fuzzygeneti algorithm optimisation approah to non-linear ontrol system design. Thetehnique has shown to provide an e�etive, eÆient and intuitive framework forseleting parameters of a modern non-linear robust ontroller applied to remotely-operated underwater vehiles.GAs have been reognised to be a powerful tool for learning in many ontrol ap-pliations and espeially with fuzzy logi where they have applied to the proessof learning ontrol rules, also seleting of rules and tuning of their membership



CHAPTER 1. INTRODUCTION 13funtions. An important notie to be made here is that a good solution dependson setting the objetive funtion orretly. A major drawbak of the tehnique isthat GAs are omputationally ineÆient as many trials are neessary until �ndingthe right solution. New high tehnology is able to produe still faster solutions.The implementation of these algorithms is made possible by the reent advanes intehnology along with the progress in parallel miroproessors equipment whih anprovide the availability of eÆient and fast learning algorithms. As a onlusionwe an highly reommend that this tehnique an guarantee reliability and an beuseful for optimising missile trajetory ontrol parameters.1.2.3 Hybrid tehniquesNeuro-Sliding ControlIn a hybrid design both tehniques will ontribute in the following way: neuralnetworks an model the omplex dynamis of the non-linear funtion, while SMCan overome some model residual terms and inrease the robustness of the losedloop system. A neural network approah has been proposed by Cao et al [61℄ to de-termine the sliding mode equation and the ontrol inputs. The approah involves theappliation of the single layer pereptron model and the Lyapunov stability theory.The advantage is that it an overome the diÆulty of determining the sliding modeequations. Another researh group Qin et al [62℄ takled the problem of robust-ness for a MIMO aÆne non-linear ontrol system in whih unertainties are onlybounded. A state feedbak ontroller has been onstruted where the non-linearlosed loop system has been �nitely attrated by a given neighbourhood of equilib-rium state. The ontroller onsists of two parts: the �rst one is a stati nominalontroller obtained by the variable struture ontrol; the seond one is a dynamiompensator obtained by the learning approah of an arti�ial neural network. Therole of nominal ontroller is to make the non-linear nominal system arrive quiklyin the neighbourhood of the sliding surfae. The role of the dynami ompensatoris to attenuate the inuene of unertainties on the system stability. Another ro-bust ontroller design of non-linear dynami systems has been proposed by Chiouet al [63℄ by ombining SMC and Produtive Networks. An attitude ontrol prob-lem of a spaeraft has been used to demonstrate the e�etiveness of the proposedmethod. Essentially, the SMC utilizes a high-speed swithing ontrol ation to drivethe non-linear plant's state trajetories towards a spei� hyper-plane in the statespae. It will also maintain the state trajetories sliding on the spei� hyper-planefor all time. Most relevant to our problem, Fu et al [64℄ have ahieved an adaptiverobust neural-network-based ontrol approah for bank-to-turn missile autopilot de-sign. The Lyapunov theory has been used to omplete the losed loop stabilityproof. This sheme is a ombination of neural networks and sliding mode ontroltehniques. The former has modelled some unknown non-linear funtions, whereasthe latter has been used to overome some modelling residual terms. To summarise,the tehnique does not require a priori training phase, the sliding parameters anbe updated on-line gradually and ontinuously. Chattering and high gain an be



CHAPTER 1. INTRODUCTION 14avoided, good auray and robustness an be ahieved. There is a question-markabout Neural Networks being implemented on a board, but from an aademi pointa view the ombination of these tehniques is quite a powerful tool for designing anon-linear robust ontrol for a missile system.Fuzzy-Sliding ControlAs for the sliding mode ontrol, the bounds of unertainties must be estimatedin order to guarantee the stability of the losed-loop system and also its engineeringappliation requires a hatter-free sliding mode ontrol. Fuzzy ontrol, as one ofthe most e�etive methods using expert knowledge, annot be used for inferenebut also approximate any real ontinuous funtion over a ompat set to arbitraryauray. There is similarity when omparing the SMC with boundary layer to anFLC whose rules have been derived from the phase plane as explained in Palm [65℄.Sine it is possible to de�ne the dynamis of the error along a swithing line byhoosing the dynamial equation de�ning the sliding mode, it is straight forward toonstrut the ontrol rules along the swithing line and this an be done by sim-ulating the error dynamis independent of the plant. One the ontrol rules areestablished along the swithing line, the rules an be de�ned in the two semi-planeson either side of the swithing one. The onept of fuzzy sliding mode ontrollerwas �rst suggested by Palm [65℄. An adaptive fuzzy sliding mode ontrol methodhas been applied to the ontrol of the vertial motion of a mine hunting ROV byTrebi-Ollennu et al [66℄. The e�ets of parameter variation of the ROV has beenonsidered, and performane and robustness to unertainty has been assessed. Thee�etiveness of the tehnique has been demonstrated by its ability to deouple pithand heave of the ROV subjeted to parameter variations. An adaptive fuzzy systemhas been used by Sun et al [67℄ as an adaptive approximator for the non-linear robotdynamis. They have proved that the fuzzy system is using the swithing funtionand its derivative of the sliding mode as inputs, hene it an approximate the plantnon-linear dynamis in the neighbourhood of the swithing hyper-plane. Thus thefuzzy ontroller design has been simpli�ed, and at the same time the fuzzy ontrolrules have been obtained easily by the reahing ondition due to the sliding modeontrol. The fuzzy adaptive ontrol sheme based on sliding mode an maintainthe invariant property of the sliding mode ontrol and alleviate hattering withoutthe sari�e of robustness. The best features of self-organizing fuzzy ontrol andsliding mode ontrol have been ombined by Lu and Chen [68℄ to ahieve rapid andaurate traking ontrol. The hatter enountered by most sliding-mode ontrolshemes was alleviated without sari�ing invariant properties. For veri�ation ofthe sheme they have performed experiments on a magneti leviation system whereregulation and traking was performed for validation. The fuzzy ontroller has beendesigned to learn and ompensate for non-linearities and unertainties, thus allowinga redution of the sliding-mode ontroller swithing gains. The �nal ontrol systemdesign is very robust to modelling impreision and external disturbanes. Due tothe limitations of the tehniques, the tuning of the fuzzy logi parameters is required



CHAPTER 1. INTRODUCTION 15and there is a need of a suitable learning medium in order to inrease the robustnessand adaptability.1.2.4 SummaryThe hybrid tehniques, based on onventional and arti�ial intelligent nature, arequite powerful and useful for solving non-linear ontrol design problems. We proposethat a ombination of feedbak linearizationmethod and a fuzzy trajetory ontrollerwould be an interesting useful and new approah to solve the problem stated earlierin the thesis. The former would anel the plant non-linearities and the latter wouldexerise the robustness of the losed loop system when a multiple model desriptionof the airframe aerodynamis is used. An optimisation algorithm would then berequired to determine the fuzzy ontrol parameters. We suggest geneti algorithmsbased on evolutionary nature to be examined as they are useful when applied tomulti-modal noisy searh spaes. Finally in order to meet losed loop performaneriteria suh as: steady state error, overshoot, settling and rise time, the optimisationproblem an be addressed from multi-objetive point of view.1.3 Aims of the thesis and its strutureThis thesis has been driven by the following two aims:1. To design an autopilot system for lateral aeleration and veloity ontrol ofa highly non-linear missile. The ontrol system should be robust in the presene ofparametri unertainties and should be valid for a large range of multiple demandsup to 15g pull of lateral aeleration.2. To obtain multiple solutions - the alternative trajetory ontrollers whih willallow the designer the freedom to hoose the one whih satisfy spei�ed require-ments. This would require the use of multi-objetive optimisation to determine thetrajetory ontrol parameters.Thesis strutureThe struture of the thesis has been outlined in four stages as shown in �gure (1.3):Stage 1 is detailed in Chapter 2, whih desribes the omplexity of the highlynon-linear missile system. It is a real researh model developed by Matra BA Co,whih is desribed by look up tables that de�ne the non-linear harateristis ofthe aerodynamis. It desribes a full 5 degree of freedom model in parametri for-mat with severe ross-oupling and non-linear behaviour. A polynomial model hasbeen produed to math the parametri model as lose as possible in a least squaressense. This polynomial model is in the form of polynomial relationships that arethen used for ontrol synthesis. Autopilot design requirements are spei�ed. A set



CHAPTER 1. INTRODUCTION 16of onvex models is produed that map the vertex points in a high order parameterspae (of the order of 16 variables). The multiple model desription of the airframeaerodynamis is tested for sensitivity on the aerodynami oeÆients. In order toexamine manoeuvrability the model is desribed in Cartesian and Polar oordinates.Stage 2 is detailed in Chapter 3, whih uses Feedbak Linearization to transformthe non-linear system dynamis into a linear form by using state feedbak and asimple linear ontrol tehnique an be used in the outer loop. An ApproximateFeedbak Linearization is used for lateral motion ontrol. The main di�erene fromother researh work is that instead of using angles or body rates as outputs for thelinearization proess, lateral veloities and body aelerations are used. The designretains the order and the relative degree of the system in the linearization proess,hene produes a linearized system with no internal or zero dynamis. Both SISO(the redued 4th order system, without interation between lateral motion and roll)and MIMO (full 5th order) systems are onsidered. Desired traking performaneis ahieved assuming an exat knowledge of the nominal model parameters suh as:aerodynami oeÆients and missile on�guration parameters (i.e., referene area,Mah number, mass, moment of inertia).Stage 3 is detailed in Chapter 4, whih deals with a design of robust trajetoryontrol in presene of parametri unertainties. Unfortunately Feedbak Lineariza-tion annot guarantee desired performane in a real ight senario when there areeither parameter variations or external disturbanes. Conversely fuzzy logi theoryis useful when dealing with vague and impreise information, hene it is used hereto build a fuzzy logi trajetory ontroller to improve the robustness of the losedloop system. Then an evolutionary optimisation approah suh as geneti algorithmis used to determine the membership funtion distribution and the rule base stru-ture of the fuzzy logi ontroller. The robust design is tested on the multiple modeldesription of the airframe aerodynamis with signi�ant parametri unertainties.Also fuzzy logi sheduled ontrollers for a missile autopilot design have been exam-ined. The fuzzy logi input output saling fators have been determined by usingpolynomial �t for a large range of multiple aeleration demands and a magnitudeof 1g up to 15g has been examined.Stage 4 is detailed in Chapter 5. A multi-objetive evolutionary optimisation ofthe trajetory ontrol parameters is used. The design meets objetives related tolosed loop performane suh as: steady state error, overshoot, settling and risetime. The last three objetives are also treated as fuzzy onstraints (i.e. penalties),so the designer an analyse the behaviour of the optimiasation proess depending onthe way objetives have been handled. Multiple solutions are obtained simultane-ously by using non-dominated sorting for forming the Pareto front, ombined with areferene point approah to inorporate preferene information into the geneti algo-rithm to diret the searh towards feasible areas whih satisfy spei� values of theobjetives. This allow the designer the freedom to hoose solutions and investigatethe properties of the system.
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CHAPTER 1. INTRODUCTION 181.4 ContributionsMain ontributions� A Fuzzy-Feedbak Linearization non-linear autopilot is designed for highly non-linear manoeuvrable missile to over a large range of parametri unertainties ofthe multi-model desription of the airframe dynamis, Chapter 4. A set of onvexmodels is produed that map the vertex points in a high order parameter spae (ofthe order of 16 variables). A detailed sensitivity analysis of the missile behaviourfor eah aerodynami oeÆient is examined, Chapter 2.� Multi-riteria geneti algorithm optimisation is used to determine the member-ship funtions and rule base struture of the fuzzy logi trajetory ontroller. Thisprodues a design that meets objetives related to losed loop performane suhas: steady state error, overshoot, rise and settling time. Both side-slip veloity andlateral aeleration ontrol are onsidered. An unique way to inorporate prefer-ene information for eah objetive into the geneti algorithm is proposed to diretthe searh towards feasible area for �nding solutions whih satisfy spei�ed require-ments. An optimisti referene point approah is applied in a ombination with aPareto based non-dominating sorting tehnique, Chapter 5. The Pareto based non-dominating sorting algorithm is used from external soure.� Multi-objetive optimisation of the fuzzy logi sheduled ontrollers is appliedto the missile autopilot design. The fuzzy logi input output saling fators are de-termined by using polynomial �t for a large range of multiple aeleration demands.A magnitude of 1g up to 15g is examined, Chapter 4.� Lateral aeleration is ontrolled through side-slip veloity demand for the au-topilot system onsidering the nominal model, Chapter 3.Joint ontributions� Side-slip veloity autopilot design is ahieved using Approximate Feedbak Lin-earization for nominal model ase. Both SISO and MIMO systems are examined.Lateral aeleration is ontrolled through side-slip veloity demand, Chapter 3.� Applying Feedbak Linearization to ontrol diretly lateral aeleration produesrelative degree zero, whih means all the states are unobservable and the systemwould be unontrollable. Hene the augmented aeleration is de�ned as an out-put for the linearization proess to produe relative degree equal with the orderof the system to avoid internal dynamis. Lateral aeleration ontrol is ahievedthrough augmented aeleration using Approximate Feedbak Linearization for thenon-linear ontrol design of the SISO system (i.e. yaw plane), Chapter 3.� Both, roll and lateral aeleration are ontrolled by using Polar ontrol for theMIMO system, Chapter 3.



Chapter 2Non-linear system. An aerospaeappliationThe researh onsidered in the thesis is based on a fast, 1000 m=se, highly non-linear manoeuvrable missile, developed by Matra BA Co. It is a real researh modelwhih is desribed by look up tables that de�ne non-linear harateristis of theaerodynamis. It desribes a full 5 degree of freedom model in parametri formatwith severe ross-oupling and non-linear behaviour. From the polynomials for 0Æand 45Æ roll angle a linear interpolation has been done for the aerodynami oeÆ-ients, hene rendered as a model in polynomial form.2.1 The Missile Motion DynamisIn this Setion 2.1 the missile motion dynamis are desribed in general. The equa-tions of motion, desribing the angular and translational dynamis, are derived fromNewton's Seond Law of Motion expressed in the following form:PFores = dP(TranslationalMomentum)=dtPMoments = dP(AngularMomentum)=dt (2.1)where the translational and angular dynamis are desribed in details in the Hortonreport [69℄. The aerodynami fores and moments ating on the airframe are non-linear funtions of longitudinal and lateral veloities, ontrol surfae deetion, bodyrates, et, and they an be evaluated from empirial tehniques, omputational owdynamis or wind tunnel test. In general, aerodynami fores in body axes onformto the relationship (2.2), and similarly aerodynami moments in body axes onformto (2.3). Fore = 12�V 2o SC (2.2)Moment = 12�V 2o SCd (2.3)where C is the aerodynami fore or moment oeÆient, Vo - total veloity of theairframe, d- referene diameter, � the air density and S -referene area. A detailed19



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 20aerodynami representation breaks the fores and moments down into a numberof independent inuenes and de�nes derivatives, whih have been adopted in theaerospae ommunity and are used here. The suÆx Nv indiates the inuene givingrise to the derivative thus (2.4), CNv is a yaw moment derivative dependent on yawveloity v. CNv = �Cn�v (2.4)As the missile manoeuvres it will generate lateral veloities v; w. The angles thatthese veloity vetors form are termed inidene angles, and these are illustrated in�g. 2.1.
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Figure 2.1: De�nition of inidene anglesWhere Vo; �; �; �; � are detailed in the following table:Meaning FormulaTotal veloity Vo = pU2 + v2 + w2Pith inidene �= tan�1 wUYaw inidene � = tan�1 vUTotal inidene � = os�1 UVoAerodynami roll �= tan�1 vwLateral veloities v; wWith no ontrol surfae deetion the e�et of lateral veloity is to generate a lat-eral fore whih is distributed along the body/wing/tail assembly. However, thisdistributed fore an be onsidered as a single fore ating at a single resultant po-sition whih is termed the entre of pressure. The distane between the entre ofpressure and the entre of gravity is termed the stati margin. The lateral fore,



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 21ating through the stati margin xsm forms a lateral moment. Variations of xsm areassoiated with the airframe stability. If the entre of pressure is behind the en-tre of gravity then the stati margin is negative, the reverse arrangement produesa positive stati margin. With a lateral fore whih inreases it will be seen thatthe negative stati margin produes a moment whih tends to redue the inideneand the airframe, is thus, statially stable. The positive stati margin, however,produes a moment whih tends to inrease the inidene and the airframe is, thus,statially unstable. Sine the entre of pressure varies with aerodynami onditionsand the entre of gravity varies with the fuel burnt then the airframe might be stableor unstable at di�erent times in its ight. One role of the autopilot is to produe astable, ontrollable missile in situations where the airframe is statially unstable.The angular and translational dynamis of the model are ross-oupled and de-sribed by the full set of equations 6DOF:_p = LIx + 1Ix (Iy � Iz)qr_q = MIy + 1Iy (Iz � Ix)pr_r = NIz + 1Iz (Ix � Iy)pq_u = Xm � wq + vr_v = Ym � ur + wp_w = Zm � pv + uq (2.5)where the fores (X,Y,Z) and the moments (L,M,N) are de�ned as:L = lpp+ l�� + l�� + l��M = mqq +mww +m�� +m��N = nrr + nvv + n�� + n��X = xuu+ xpp+ x��Y = yvv + yrr + y��Z = zww + zqq + z�� (2.6)where �; �; � are the inputs to the system. � is the rudder angle, � is the elevatorangle and � is the aileron angle.The de�nition of the axis systems (see �g. 2.2) in whih the linear and angularmotions are derived, is neessary, if the equations of motion and response hara-teristis of a homing missile are to be obtained.
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Figure 2.2: Airframe axis and nomenlature
The body axis set is, by de�nition, loated at the entre of gravity of the mis-sile and �xed to the body, so rotates and translates with it. The `x' axis is takenforward, the `y' axis out of the right hand wing and the `z' axis downward forminga right hand set.2.2 Horton Model DynamisThe linearized airframe harateristis have been onsidered by Horton [69℄ and areused as a benhmark model for this study. The nonlinear model whih is most likelyto be the real senario ase has been developed and desribed in this setion. Thelateral motion is derived from the model de�ned in the report by Horton, while theroll model is derived from graphial relationships relating the moments generatedby aileron, rudder and elevator ation of the ruiform �n on�guration. These re-lationships are used to generate a parametri model that is used for simulation andanalysis. From this model a polynomial model is produed to math the parametrimodel as losely as possible in a least-squares sense. This polynomial model is in theform of polynomial relationships that are then used for ontrol synthesis and whihis also de�ned in this setion.Some assumptions for the Horton model have been made that lead to some sim-pli�ations suh as:� A rigid body of the missile is assumed for all ight onditions.� A onstant forward veloity U = 1000 m=se with an approximate Mah ' 3value is onsidered, so _u = 0. Only lateral motions are of interest hene a redued



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 235 degree of freedom model is examined through this study.� The skid-to-turn airframe of this missile has got symmetry about both y andz axes whih leads to some simpli�ation. Hene all produts of inertia are zero andqr; pr; pq terms are disarded, also the moments of lateral inertias in the y and zaxes are equal (Iy = Iz).� The motion of the missile is roll-ontrolled and wp; vp are not inluded here.Aording to the above mentioned assumptions the equations for the model arede�ned with the orresponding simpli�ations in (2.7),(2.8) and (2.9). As both hor-izontal and vertial lateral motions are symmetri in format, both will be dealt withtogether, taking into aount the appropriate sign hanges in derivatives for eahlateral diretion.The vertial motion is de�ned by:_q = mqq +mww +m�� +m��= I�1y (14�VoSd2Cmqq + 12�VoSdCmww + 12�V 2o SdCm�� + 12�V 2o SdCm��)= 12I�1y �VoSd(12dCmqq + Cmww + VoCm�� + VoCm��)_w = m�1(zww + zqq + z�� + z��) + uq= m�1(12�VoSCzww + 12�V 2o SCz�� + 12�V 2o SCz��) + uq= 12m�1�VoS(Czww + VoCz�� + VoCz��) + uq (2.7)The horizontal motion is de�ned by:_r = nrr + nvv + n�� + n��= I�1z (14�VoSd2Cnrr + 12�VoSdCnvv + 12�V 2o SdCn�� + 12�V 2o SdCn��)= 12I�1z �VoSd(12dCnrr + Cnvv + VoCn�� + VoCn��)_v = m�1(yvv + yrr + y�� + y��)� ur= m�1(12�VoSCyvv + 12�V 2o SCy�� + 12�V 2o SCy��)� ur= 12m�1�VoS(Cyvv + VoCy�� + VoCy��)� ur (2.8)and the roll motion by:_p = lpp+ l�� + l�� + l��= I�1x (14�VoSd2Clpp+ 12�V 2o SdCl�� + 12�V 2o SdCl�� + 12�V 2o SdCl��)= 12I�1x �VoSd(dClpp+ VoCl�� + VoCl�� + VoCl��) (2.9)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 24where the axes (x; y; z), rates (r; q; p) and veloities (u; v; w) are de�ned in �g. 2.2and where �; �; � are the inputs to the system and are de�ned in the Appendix A.Equations (2.7), (2.8) and (2.9) desribe the dynamis of the body rates and ve-loities under the inuene of external fores (Cyv) and moments (Cnv) ating onthe frame. These fores and moments derived from a wind-tunnel measurementsare non-linear funtions of Mah number, longitudinal and lateral veloities, on-trol surfae deetion, aerodynami roll angle and body rates. The aerodynamioeÆients, (Cyv ; Cy� ; Xp and Cnr), are presented by polynomials shown in the nextsetion. The physial parameters of the Horton Missile are shown in the Appendix B:2.3 Aerodynami oeÆients for di�erent ightonditionsThe aerodynami oeÆients (Cyv ; Cy� ; Xp and Cnr) are presented by polynomialsfor 0Æ and 45Æ roll angles. These polynomials are �tted to the set of urves takenfrom look-up tables for di�erent ight onditions. The look-up tables are a set ofurves in the plane of total inidene, �, and Mah number, M.Centre of Gravity Xg and Centre of Pressure XpThe entre of gravity is given by the formula:xg = 1:3 + m500 (2.10)where m is the mass of the missile. The polynomial for the Centre of Pressure fordi�erent roll angles is given by:xp0 = 1:3 + 0:1M + 0:2j�jxp45 = 1:3 + 0:1M + 0:3j�j (2.11)Side-slip Normal Fore CoeÆient - Czw; CyvA set of normal fore urves due to side-slip veloity in the plane of inidene foraerodynami roll angles of 0Æ and 45Æ are given by the polynomial (2.12), where Mis the Mah number and � is the total inidene.Cyv = CzwCzw0 = �25 + 1:0M � 60j�jCzw45 = �26 + 1:5M � 30j�j (2.12)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 25Missile Rate Normal Fore CoeÆient - CyrThis oeÆient is normally small [70℄, as given by Blakelok, and does not e�et thedynami response of the missile signi�antly. It is assumed to be zero in this study.Hene: Cyr = 0 (2.13)Fin Normal Fore CoeÆient - Cy� ; Cz�The rudder and elevator ontrol fores are proportional to �n angle, and are ex-pressed as derivatives whih are funtions of inidene,�, Mah number, M , andaerodynami roll angle, �. A set of derivatives for roll angle of � = 0o and � = 45oare given by the polynomials in (2.14).Cy� = Cz�Cz�0 = �10� 1:6M + 2:0j�jCz�45 = �10� 1:4M + 1:5j�j (2.14)Side-slip and Control Moments Cnv ; CmwThe yawing and pithing moment oeÆients are derived from the normal foreoeÆients (Cyv ; Cy� ; Cy�). The stati margin (xsm), �n moment arm (xsf ) for lat-eral motion and roll moment arm (xsr) for roll motion are as follows:Cnv = smCyvCn� = sfCy�Cn� = srCy� (2.15)The stati margin, xsm, is de�ned as the di�erene between the entre of gravityposition, xg, and the entre of pressure position, Xp, measured from the nose ofthe missile. Similarly the �n moment arm, xfm, is de�ned as the di�erene betweenthe entre of gravity position, xg, and the entre of pressure of the �n, xf , againmeasured from the nose of the missile. Hene:sm = d�1xsmsf = d�1xsfsr = d�1xsr (2.16)where xsm = (xg �Xp)xsf = (xf � xg)xsr = 1:5d2 (2.17)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 26and xf = 2:6m and the missile referene diameter is given by d = 0:2m. The rollmoment arm, xsr, is assumed to be about 1.5 times the radius of the missile.Damping Moment CoeÆients - Cnr; Cmq ; ClpThe yawing and pithing damping moments are proportional to body rate and arealso expressed as a derivative. This moment ontribution is small ompared toother soures and is modelled as independent of aerodynami roll angle. It displaysvariation with Mah number,M , and inidene, �, and is de�ned by the polynomial:Cnr = CmqCmq = �500� 30M + 200j�j (2.18)The roll damping moment is unde�ned from BADL data. For this study it has beenarbitrarily set at: Clp = �500 (2.19)
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CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 272.4 Polynomial formThe equations de�ned in the parametri model in the previous setion an be rep-resented in polynomial form by the following set of equations using the dynamiparameters, inidene angle, �, Mah number, M , and aerodynami roll angle, �.Aerodynami Roll Angle InterpolationSeveral of the oeÆients are funtions of aerodynami roll angle. The paramet-ri relationships are given at roll angles of 0Æ and 45Æ. Horton uses a sinusoidalinterpolation tehnique whih an be modelled by the relationship:Cij = 0:5(C0ij�0 + C45ij �45) (2.22)where: �0 = (1 + os(4�))�45 = (1� os(4�)) (2.23)and the oeÆients C0ij and C45ij are the parametri equations at 0o and 45o re-spetively. This interpolation is used in the polynomial �t for aerodynami rolldependent oeÆients.Centre of Pressure and Centre of GravityThe entre of gravity is modelled by the polynomial equation:xg = xg0 (2.24)where: CoeÆient Valuexg0 1:3 + m500This is a opy of the parametri relationship and does not involve any polynomial�tting. The entre of pressure is a funtion of the aerodynami roll angle, �. Us-ing the aerodynami roll angle interpolation tehnique, it an be modelled by thepolynomial equation:Xp(M;�) = Xp0 +XpMM +Xp�(�)j�jXp�(�) = X0p��0 +X45p��45 (2.25)or: Xp(M;�) = Xp0 +XpMM +X0p��0j�j+X45p��45j�j (2.26)where:



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 28CoeÆient ValueXp0 1:3XpM 0:1X0p� 0:2X45p� 0:3The arpet plot for this funtion is shown in �g. 2.4a, plotted as a funtion of in-idene and roll angle for di�erent mah numbers, with 2.4b plotted as a funtionof Mah number and roll angle for di�erent inidene angles, and 2.4 plotted as afuntion of Mah number and inidene against di�erent roll angles.The stati margin and the �n moment arm an thus be modelled in polynomialform as:sm(M;�) = d�1(Xp0 +XpMM +X0p��0j�j+X45p��45j�j � xg0)sf = d�1(xf � xg0) (2.27)where: CoeÆient Valuexf 2:6d 0:2Side-slip Normal Fore CoeÆients - Czw; CyvThe polynomial equations de�ning the side-slip normal fore are given by:Czw = 0:5(C0zw�0 + C45zw�45)C0zw = C0zw0 + C0zwMM + C0zw� j�jC45zw = C45zw0 + C45zwMM + C45zw� j�j (2.28)where: CoeÆient ValueC0zw0 -25C0zwM 1C0zw� -60C45zw0 -26C45zwM 1.5C45zw� -30The arpet plot for this funtion is shown in �gures 2.5a, 2.5b, and 2.5 in the sameformat as the entre of pressure oeÆient.
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CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 31Fin Normal Fore CoeÆients - Cz� ; Cy�The �n normal fore oeÆient is modelled in a similar way to give:Cz� = Cz�0 + 0:5(C0z��0 + C45z��45)C0z� = C0z�MM + C0z�� j�jC45z� = C45z�MM + C45z�� j�j (2.29)where: CoeÆient ValueCz�0 10C0z�M -1.6C0z�� 2C45z�M -1.4C45z�� 1.5The arpet plot for this funtion is shown by White [71℄, in the same format as theentre of pressure and side-slip normal fore oeÆient.Damping Moment CoeÆients - Cmq ; Cnr; ClpThe lateral moments an be modelled diretly in polynomial form as:Cmq = Cmq0 + CmqMM + Cmq� j�j (2.30)where: CoeÆient ValueCmq0 -500CmqM -30Cmq� 200The arpet plot for this funtion is shown in �g. 2.6. The roll damping oeÆientis: Clp = Clp0 (2.31)where: CoeÆient ValueCl0 -500
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IncidenceFigure 2.6: Roll damping oeÆient Cmq2.5 Open-Loop Stability AnalysisThe open-loop stability analysis of the system is divided into two steps. In the �rstone we onsider the lateral ight ontrol design, i.e. we study the single-input single-output system. The spetrum of the poles and zeros for the open-loop single-inputsingle-output system (SISO) is shown in �gures 2.7, 2.8 for di�erent ight onditions.In this ase all the aerodynami oeÆients are desribed by aÆne polynomials ofinidene, �, and Mah number, M . In order to examine the e�et on the system ofthose two variables, a spetrum of poles and zeros for onstant Mah number (Mahnumber = 3) and varying � (up to 30Æ) is onsidered. Then a spetrum of poles andzeros for Mah number varying from 2 to 4 is examined, while a onstant value of� = 0:1Æ is maintained.Fig. 2.7 shows the open-loop stability for large variations of total inidene. Formost of the regime the missile is statially stable, as given by Horton [69℄. Forlow values of speed, less than Mah 2, the airframe beomes statially unstable see�g. 2.8. Also �g. 2.8 shows the operating envelope of large variations in Mah num-ber, whih is the indiation for forward speed of the missile. The inidene is used asa state variable so it is important to show the open loop stability for the operatingrange. The ontrol law of the autopilot design is derived for variations in inideneof 0:1Æ to 1Æ and �xed Mah number = 3, as is detailed in Chapter 3 and Chapter 4.
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CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 342.6 Cross-oupling e�etIt is neessary to determine how strong the oupling e�et is between the di�erenthannels (yaw, pith and roll). The simulation results for a step input demand onlyon �n angle � are shown in �g. 2.9. If the system is not oupled, an input demandon �n angle � should have no e�et on pith ( _w; _q) or yaw ( _v; _r) hannel, whih isnot the ase here. The other ase for a step input demand only on �n angle �, isexamined too. The simulation results for all inputs and state variables are shown in�g. 2.10 (e.g. the system is again exited through a single hannel - yaw). Again ifthe system is not oupled demand in �n angle � should have no e�et on the othertwo hannels. However we an well see the oupling e�et distributed along the othertwo hannels. The responses for symmetrial veloities side-slip, v, and vertial, w,again prove the symmetry of both hannels. A strong, severe ross-oupling betweenall three hannels has been demonstrated.
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CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 362.7 NonlinearityThe nonlinear behaviour of the system is inherent for a highly manoeuvrable missile.It is aused by the omplex dynamis of its motion. Attention has been paid to howa ertain �n angles � or � an a�et the side-slip veloity or lateral aeleration re-sponses and demonstrated in �g. 2.11. Let us now onsider the open loop dynamis
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Figure 2.11: 1g, 5g, 20g demandfor a SISO system in the yaw hannel. The non-linear di�erential equations for _vand _r are desribed earlier in (2.8). If a onstant input demand is required, thenthe missile will aelerate at 10 m=se2 with the orresponding side-slip veloity of2.5 m=se shown in �g. 2.11-top. Inreasing the input demand to the rudder by10 or 100 times does not produe a proportionate response in the aeleration andveloity as it would in a linear system. These simulations are also a demonstrationfor two types of nonlinearities: input to state (� to v) and state to ontrolled output(v to av). The latter relationship is given by the following dynami equation:
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� = _v + Ur� = V o(Cyvv + VoCy��)� Ur + Ur= V o[(Cyv0 + CyvMM + Cyv� j � j)v + Vo(Cy�0 + Cy�MM + Cy�� j � j)�℄= V o[( �Cyvv + �Cyv� j v j v + Vo �Cy�� + Vo �Cy�� j v j �℄ (2.32)and is also an indiation that it is possible to ahieve lateral aeleration ontrolindiretly through the side-slip veloity whih is further addressed in Chapter 3.Also the responses of the open loop system are settled within 1:2s and muh faster0:5s for higher demands, whereas the losed loop requirement for settling time ofthe response is around 0:12s.It is important to understand and e�etively ontrol the nonlinear behaviour ofthe system as the missile manoeuvres in a large dynami range and hanges speedontinually.2.8 Multi-modelling airframe dynamis2.8.1 Parametri unertaintiesThe modelling errors an be separated into two types: parametri and unstrutured.Parametri unertainty refers to modelling errors, under the assumption that theatual plant is of the same order as the model, where the numerial values of theoeÆients to the di�erential equation, whih are related to the physial parametersof the system, between the atual plant and the model are di�erent. In the aseof unstrutured unertainty, the modelling errors refer to the di�erene in the dy-namis between the �nite dimensional model and the unknown and possibly in�nitedimensional atual proess.The unertainties we are dealing with are parametri and strutured, but we annotmeasure them. We know where they may ome from but we are not ertain whihones are ausing the model parameters variations. For example, in a real ight se-nario, for every instane of this missile type, the aerodynami funtions taken inwind tunnel measurements may deviate from their nominal values. The variationsare parametri unertainties of the non-linear system. In the presene of paramet-ri unertainties the state-spae form of the non-linear system an be written in aompat format as: _x = f(x) +4f(x) + (g(x) +4g(x))u (2.33)y = h(x)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 38The redued order system for yaw plane without roll oupling has been onsidered:" _x1_x2 # = " fx1(x) +4fx1(x)fx2(x) +4fx2(x) #+ " gx1(x) +4gx1(x) 0gx2(x) +4gx2(x) 0 # + h u1 i (2.34)A set of onvex models is produed that map the vertex points in a high orderparameter spae (of the order of 16 variables) shown in detail in equations: (2.35)and (2.36). The multiple model desription of the airframe aerodynamis an befurther expressed in a parametri form as:_x1 = (a1 +4a1)x1 + (a2 +4a2)x21 + (a3 +4a3)x2 + ((a4 +4a4)x1 + a5 +4a5)u1_x2 = (b1 +4b1)x31 + (b2 +4b2)x21 + (b3 +4b3)x1 + (b4 +4b4)x1x2 + (b5 +4b5)x2+ ((b6 +4b6)x1 + b7 +4b7)u1For the equations of lateral veloities _v and _w, the parameters 4a1; : : : ;4a5 areshown in equation (2.35). For the equations of yaw _r and pith _q rates, the param-eters 4b1; : : : ;4b7 are shown in equation (2.36). Both ai and bi are funtions ofthe aerodynami oeÆients: ai; bi = f(Cyv ; Xp; Cy� ; Cnr) and an take any valuesrandomly generated within the vertex points. Hene more than 1000 models an beexerised and the ontrol system tested for robustness.a1 +4a1 = 12m�VoS( �Cyv0 +4 �Cyv0)a2 +4a2 = 12m�VoS( �Cyv� +4 �Cyv�)a3 +4a3 = Ufa4 +4a4 = 12m�V 2o S( �Cy�� +4 �Cy��)a5 +4a5 = 12m�V 2o S( �Cy�0 +4 �Cy�0) (2.35)b1 +4b1 = �( 12Iyz )�VoS( �Xp� +4 �Xp�)( �Cyv� +4 �Cyv�)b2 +4b2 = �( 12Iyz )�VoS(( �Xp0 +4 �Xp0)( �Cyv� +4 �Cyv�) + ( �Xp� +4 �Xp�)( �Cyv0 +4 �Cyv0))b3 +4b3 = �( 12Iyz )�VoS( �Xp0 +4 �Xp0)( �Cyv0 +4 �Cyv0)b4 +4b4 = ( d24Iyz )�VoS( �Cnr� +4 �Cnr�)b5 +4b5 = ( d24Iyz )�VoS( �Cnr0 +4 �Cnr0)b6 +4b6 = ( d2Iyz )�V 2o SSf ( �Cy�� +4 �Cy��)b7 +4b7 = ( d2Iyz )�V 2o SSf ( �Cy�0 +4 �Cy�0) (2.36)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 39The tables shown below represent the polynomials for the aerodynami oeÆientsin the supersoni range for di�erent roll angles 0Æ and 45Æ. They are a set of urvesin the plane of total inidene, � and Mah number, M . In these tables the Cyvpolynomials present the normal fore urves, the Xp present the entre of pressureurves, Cy� present the rudder and elevator ontrol fores urves, and �nally theCnr present the damping yawing and pithing moments urves whih are reasonablyproportional to body rates.Normal fore Cyv = �25 + 1:0M � 60�Control surfaes Cy� = �10� 1:6M + 2:0�Centre of pressure Xp = 1:3 + 0:1M + 0:2�Damping moment Cnr = �500� 30M + 200�Table 2.1: Roll angle = 0Æ
Normal fore Cyv = �26 + 1:5M � 30�Control surfaes Cy� = �10� 1:4M + 1:5�Centre of pressure Xp = 1:3 + 0:1M + 0:3�Damping moment Cnr = �500� 30M + 200�Table 2.2: Roll angle = 45Æwhere: Cyv = �Cyv0 + �Cyv��Cyv0 = Cyv0 + CyvM VoSoS�Cyv� = Cyv� 180Vo� (2.37)Cy� = �Cy�0 + �Cy���Cy�0 = Cy�0 + Cy�M VoSoS�Cy�� = Cy�� 180Vo� (2.38)Cnr = �Cnr0 + �Cnr��Cnr0 = Cnr0 + CnrM VoSoS�Cnr� = Cnr� 180Vo� (2.39)



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 40Xp = �Xp0 + �Xp��Xp0 = Xp0 +XpM VoSoS�Xp� = Xp� 180Vo� (2.40)A large exursion on perturbations of the aerodynami oeÆients (Cyv ; Cy� ; Xp; Cnr)has been introdued into the system within the range of 0Æ to 45Æ aerodynami rollangles.
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Figure 2.12: Aerodynami oeÆients ranges



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 412.8.2 Sensitivity AnalysisThe variations in aerodynami oeÆients (Cyv ; Cy� ; Xp; Cnr) have introdued para-metri unertainties into the non-linear system. They are shown in �g. 2.12 and thepolynomials are presented in tables 2.1 and 2.2. In order to explore the omplexityof the problem we have assessed the open and losed loop system performane fordi�erent autopilot demands (1g, 5g, 10g, 15g) and we have examined the amount ofperturbations allowed in eah oeÆient before the system's behaviour goes unsta-ble or exeeds 10% steady state error on side-slip veloity. For simpliity we havestudied the single plane ( lateral or vertial motion ) when the roll angle is 0Æ. A setof models of vertex points is shown on �g. 2.13 for 10 ombinations of the four aero-dynami oeÆients. Sine we have determined that hanges in the oeÆient, Cnr ,does not a�et missile stability, only eight ombinations of (min/max) ranges areonsidered, one random set and one with the nominal oeÆients. So a 1000 modelsan be generated randomly within the (min/max) ranges and tested for robustness.Also the side-slip veloity and aeleration responses of the open loop system areshown in �g. 2.13. Up to 40% deviation from the nominal value of side-slip veloityresponse and up to 55% deviation from the nominal value of lateral aeleration re-sponse has been found for a large range of unit step demands on rudder or elevator(e.g. 1g, 5g, 10g, 15g).It has been found that some oeÆients an allow larger perentage variation fromthe nominal ase than others. Within the system we are able to tolerate �50%unertainty in eah of Cyv ; Cy� ; Cnr before the system dynamis goes unstable. Also,the aerodynami oeÆient Cyv an vary by up to �25% before the side-slip velo-ity exeeds 10% steady state error within the feedbak linearized loop. For similarperformane, Cy� an vary by up to �15%, and the most sensitive oeÆient, Xp,an vary by �1:5%. These are all found by extensive simulations. The entre ofpressure oeÆient Xp and the ontrol surfae oeÆient Cy� have most signi�ante�et on the losed loop performane (the system is very sensitive to small hanges),while the damping moment ontribution in Cnr is small and the system is almostinsensitive to it and an be assumed independent of the aerodynami roll angle.The sign of the stati margin xsm = xg � Xp an tell us whether the system isstable or not. The entre of gravity point is at 1.55m measured from the nose. Fora minimum side-slip veloity demand of 2.7 m=se, the missile is heading at verylittle inidene, � = 0:1Æ. For that value of �, the entre of pressure oeÆient isXp = 1:62mmeasured from the nose and the stati margin xsm = �0:07 is negative,hene the airframe is statially stable. A hange of �130% in the �Xp� term of theXp oeÆient (Xp = �Xp0 + �Xp�) is ritial for the stability of the missile. Thishange will move the entre of pressure point to 1.53m whih will produe a posi-tive stati margin of xsm = 0:02. Hene when the �Xp� term of Xp is varying, thesign of the stati margin hanges from negative to positive and the missile beomesunstable.
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CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 432.9 Cartesian to Polar oordinates2.9.1 Missile model dynamis in Cartesian oordinatesThe equations of motion in respet to the total inidene �,� = pv2 + w2Vo 180� (2.41)are the following:_v = fv(w; v; r) + gv(w; v; r)�_r = fr(w; v; r) + gr�(w; v)� + gr�(w; v)�_w = fw(v; w; q) + gw(v; w; q)�_q = fq(v; w; q) + gq�(v; w; q)� + gq�(v; w)�_p = fp(p) + gp�(v; w; )� + gp�(v; w)� + gp�(v; w)� (2.42)The funtions fv; fw; fr; fq; fp and gv; gw; gr; gq; gp are given by equations (C.1) inAppendix C. These equations will be used to derive the parametri format forthe Cartesian multi-input/multi-output system (MIMO) for ontrol synthesis in thenext hapter.2.9.2 Missile model dynamis in Polar oordinatesThe great majority of missiles, inluding the model onsidered by Horton, have aruiform ross-setion with two pairs of wings and two pairs of ontrol surfaes.The guidane system issues two ommands, one up-down and the other left-rightand these two ommands are fed to the elevators and rudders respetively. Howeverif there is only one set of ontrol surfaes and wings, the ommands have to beissued not in Cartesian, but in Polar form. Some missile types an only have oneset of wings and if the missile has to manoeuvre to the right and up in polar formthe ommands are given by the ight diretion, z, and the angle of orientation, �.In other words the missile has to roll through the angle, �, and manoeuvre in thisroll orientation.The missile system is transformed in Polar oordinates, with the ight diretiongiven by z = pv2 + w2 and the angle of orientation given by � = artan vw ._r = 12I�1z �VoSd(12dCnrr + Cnzz + VoCn�� + VoCn��)_q = 12I�1y �VoSd(12dCmqq + Cmzz + VoCm�� + VoCm��)
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Figure 2.14: Transformation from Cartesian to Polar Coordinates_p = 12I�1x �VoSd(dClpp+ VoCl�� + VoCl�� + VoCl��)_z = 12m�1�VoS(Cyzzz + VoCyz�� + VoCyz��) + u(os(�)q � sin(�)r)_� = 12m�1�VoS(VoC��� + VoC���) + uz�1(os(�)q � sin(�)r) (2.43)This will be used to derive the parametri format for ontrol synthesis in the nexthapter.2.10 Closed loop autopilot requirementsThe next step would be to design an autopilot system to regulate the motion of themissile suh that the ommanded manoeuvres generated by the guidane system arefollowed, hene desired trajetory an be ahieved. It is usually preferable to haveautopilots with high bandwidths that allow fast and preise ommand responses.� It is important to ensure that the autopilot losed-loop dynamis are muh fasterand better damped than the inherent airframe response. The usual design aim is toahieve autopilot bandwidths that are two to three times faster than the open-loopairframe dynamis. In this ase the losed loop time response should be around 0:2s.� Closed loop performane: The response of an autopilot must be as fast as possiblewith the minimum of overshoot so that any ommand is attained quikly and is ofthe required magnitude. For low g demands only, a slight overshoot of short dura-tion is usually aeptable, sine it an ompensate for loss of aeleration during theinitial transient. For high g demands, overshoot is usually unaeptable sine theairframe strutural load limit may be exeeded, or an unontrollable ight regionmay be entered. The response harater of the autopilot is quanti�ed in terms ofrise time, settling time and the maximum perentage overshoot, hene the followingdesired metris are required:



CHAPTER 2. NON-LINEAR SYSTEM. AN AEROSPACE APPLICATION 45� Steady state error auray: 2%� Rise time: (0:05s to 0:07s);� Settling time: (1:2s to 1:8s)� Maximum perentage overshoot: 10%� Robustness requirements: The dynami response of a missile may be simulated byusing a suitable mathematial model of the system. This model is usually arrivedat through proessing wind tunnel data pertaining to the airframe in question (suhdata are usually subjet to experimental and instrumentation errors), from empir-ial formulae, or from Computational Fluid Dynamis tehniques. The resultantdynami model may di�er therefore from the atual dynamis of the missile, dueto variations in the aerodynamis, the e�ets of linearization, unmodelled e�ets,hanges in the ight onditions, or simply build-to-build variations. Any autopilotdesign must maintain adequate stability and satisfatory performane in the pres-ene of suh unertainties.� The signals physially available for feedbak ontrol suh as lateral aelerations,rates and inidene are usually measured by aelerometers, gyrosopes and Pitottube respetively.2.11 ConlusionsThis hapter has detailed the omplexity of the highly non-linear missile system. Itis a real researh model developed by Matra BA Co., whih is desribed by look-uptables that de�ne the non-linear harateristi of the aerodynamis. It desribes afull 5 degree of freedom model in parametri format with severe ross-oupling andnon-linear behaviour. A polynomial model has been produed to math the para-metri model as losely as possible in a least squares sense. This polynomial modelis in the form of polynomial relationships that are then used for ontrol synthesis.A set of onvex models is produed that map the vertex points in a high orderparameter spae (of the order of 16 variables). The multiple model desription ofthe airframe aerodynamis is tested for sensitivity on the aerodynami oeÆients.Also, in order to examine manoeuvrability the model is desribed in Cartesian andPolar oordinates.In order for the missile system to follow a required trajetory, in other words torespond aurately and rapidly to a large range of aeleration demands, an appro-priate ontrol algorithm design (i.e. an autopilot system) is neessary. One way toahieve that is by linearizing the equation of motion about equilibrium onditionsas Horton [69℄ has done. Another way would be to keep the nonlinear system as it isand apply global linearization via state feedbak whih is onsidered in Chapter 3.



Chapter 3Feedbak Linearization
3.1 IntrodutionAs stated earlier in the literature review of Chapter 1, the main idea of FeedbakLinearization (FL) tehniques is to algebraially transform a non-linear system dy-namis into a linear form by using state feedbak, with Input/State Linearizationorresponding to omplete linearization or Input/Output Linearization to partial lin-earization by Isidori et al [2℄, by Su [4℄, by Hunt and Sue [3℄. This di�ers entirelyfrom onventional linearization (i.e. Jaobian linearization) in that FL is ahievedby exat state transformations and feedbak, rather than by linear approximationsof the dynamis. Feedbak Linearization an be used for both stabilization andtraking ontrol problems, single-input and multiple-input systems, and has beensuessfully applied to a number of pratial nonlinear ontrol problems.Chapter 3 provides a desription of Feedbak Linearization, inluding the theory,its appliation for ontrol design and its limitations. Then an approximate In-put/Output Linearization method for ontrolling a the nonlinear missile systemthat is input-output linearizable is examined. The design retains the order and therelative degree of the system in the linearization proess, hene produing a lin-earized system with no internal or zero dynamis.Both SISO and MIMO systems have been onsidered in Setion 3.3 and Setion 3.4.In the SISO ase two trajetory ontrol designs are studied. The main di�erenefrom other researh work is that instead of using angles or body rates as outputs forthe linearization proess, lateral veloities and body aelerations are used. Lateralveloity is diretly related to the lateral aeleration, as in steady state a onstantinidene angle is assoiated with a onstant lateral aeleration. The hosen outputfor the seond design has a linear relationship with the ontrolled one, hene betterlosed loop performane has been ahieved when higher demands are required. Twodi�erent ways of presenting the nonlinear ontrol design in Polar and in Cartesianoordinates have been onsidered in the MIMO design and their advantages and dis-advantages have been analyzed. An additional ontrolled output for the roll hannelhas also been examined. 46



CHAPTER 3. FEEDBACK LINEARIZATION 473.2 Feedbak Linearization theory3.2.1 Feedbak Linearization proessConsider input-output linearization of a single-input nonlinear system desribed bythe state spae representation: _x = f(x) + g(x)u (3.1)y = h(x)where y is the system output, with f(x) and g(x) being the smooth vetor �elds.Aording to Slotine and Li [14℄, a linear input-output relation is generated by di�er-entiating the output funtion y repeatedly until the input u appears. This is shownhere by following the notations of Di�erential Geometry addressed in Appendix D:_y = rh(f + gu) = Lfh(x) + Lgh(x)u (3.2)If Lgh(x) 6= 0 for some x = x0 in 
x then, by ontinuity, that relation is valid in a�nite neighbourhood 
 of x0. In 
, the input transformationu = 1Lgh(�Lfh+ �) (3.3)results in a linear relation between y and �, namely _y = �. If Lgh(x) = 0 for all xin 
x, _y is di�erentiated again to obtain:�y = Lf 2h(x) + LgLfh(x)u (3.4)If LgLfh(x) = 0 for all x in 
x, �y is di�erentiated again until for some integer r, thefollowing is true: LgLr�1f h(x) 6= 0 (3.5)for some x = x0 in 
x, where the above relation is valid in a �nite neighbourhood
 of x0. In 
, the ontrol lawu = 1LgLr�1f h(�Lrfh + �) = 1�(x)(��(x) + �) (3.6)is applied to yr = Lrfh(x) + LgLr�1f h(x)u (3.7)and the resulting relationship from referene signal � to output is:yr = � (3.8)By using equation (3.6), whih is a nonlinear state feedbak (where LgLr�1f h(x)and Lrfh(x) are funtions of x), a linear system is obtained from referene signal tooutput. This is not a linear approximation, it is often alled an exat input-outputlinearization. Further on, the simple pole-plaement ontroller an be extended toasymptoti traking as studied by Hahn et al [7℄ and desribed in the next setion.



CHAPTER 3. FEEDBACK LINEARIZATION 483.2.2 Traking ControlWhen a traking ontrol task is required, the referene signal (the new input of thelinearization) is derived suh as:� = �k0y � k1 _y � : : :� kn�1yn�1 (3.9)with the ki hosen suh that the polynomial pn+kn�1pn�1+ : : :+k0 has all its rootsstritly in the left half omplex plane (i.e. is Hurwitz), leading to the exponentiallystable dynamis desribed by:y(n) + kn�1y(n�1) + : : :+ k0y = 0 (3.10)whih implies that y(t) ! 0 as given by Slotine and Li [14℄. The referene signal(the new input �) has been designed suh as:� = y(n)d � k0e� k1 _e� : : :� kn�1en�1 (3.11)to satisfy the losed loop error dynamis within the outer loop, so the autopilotsystem is able to trak desired output yd(t). This is shown in �g. 3.1 for a seondorder system. The referene signal is:� = y(2)d � k0e� k1 _e (3.12)
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CHAPTER 3. FEEDBACK LINEARIZATION 49desired traking performane is ahieved. Feedbak linearization of MIMO systems isobtained similarly to the SISO ase by Slotine [14℄ and is desribed in Appendix D.2.Input/State LinearizationThe number of di�erentiations (r) required for the input u to appear is alled therelative degree of a nonlinear system. If the relative degree assoiated with theInput-Output Linearization is the same as the order of the system, the non-linearsystem is fully linearized whih is the ase of Input/State Linearization.For linear systems the relative degree is related to well-known properties. For aSISO linear system _x = Ax+Buy = Cx (3.15)or y(s) = G(s)u(s) (3.16)the relative degree an be alulated as the di�erene in degree between denomina-tor and numerator of the transfer funtion G(s).If the relative degree of a nonlinear system is equal to the order of the system,an exat feedbak linearization is ahieved. The standard approah in feedbak lin-earization given by Slotine and Li [14℄ is to use h to de�ne the required hange ofoordinates.For our system we de�ne a series of funtions �i related to h(x) by:�1 (x ) = h(x )... ...�i(x ) = Li�1f h(x) (3.17)Setting � = �(x ), the new equations are:_�i = �i+1; i = 1; : : : ; n� 1_�n = �(x) + �(x)u (3.18)By using the ontrol law u = �(x)�1(� ��(x)), the relation _�n = � is linear, with �as an input to the linearized system, hene an exat state linearization is ahieved.The desription in equation (3.18) is often regarded as a anonial form for nonlinearsystems.



CHAPTER 3. FEEDBACK LINEARIZATION 50Input/Output LinearizationBy means of input-output linearization, the dynamis of a nonlinear system is de-omposed into an external (input-output) part and an internal ("unobservable")part. Sine the external part onsist of a linear relation between y and � (or equiv-alently the ontrollability anonial form between y and u), it is easy to designthe input � so that the output y behaves as desired. The internal part is alledinternal dynamis beause it annot be seen from the external input-output rela-tionship. Then, the question is whether the internal dynamis will also behave well,i.e. whether the internal states will remain bounded.If the relative degree is smaller than the system order, then the non-linear system isonly partly linearized whih is the ase in Input-Output Linearization. This requiresto transform the system into new set of states alled Normal forms and whetherthe ontroller an be applied depends on the stability of the internal dynamis (themodes whih are unobservable by the linearization proess). Sine the ontrol designmust aount for the whole dynamis and therefore an not tolerate the instabilityof internal dynamis, the internal behaviour has to be addressed arefully.3.2.3 Normal formsWhen the relative degree r is de�ned and r < n where n is the order of the system,the nonlinear system an be transformed into new oordinates alled Normal form.To determine the normal form we an follow the same proess as in Input/Statelinearization see equation (3.18), but the di�erene will be that we have an unob-servable part of the system. The hange into new oordinates means that:�1 = y; �2 = _y ; : : : ; �r = yr�1 (3.19)and the system desription beomes:_�1 = �2_�2 = �3..._�r = �(x) + �(x)u_�r+1 =  1(�; u)..._�n =  n�r(�; u)y = �1 (3.20)for some funtions �; � and  . The linearizing feedbak is:u = � � �(x)�(x) (3.21)



CHAPTER 3. FEEDBACK LINEARIZATION 51whih gives the following losed loop system:_�1 = �2_�2 = �3..._�r = �_�r+1 =  1(�; u)..._�n =  n�r(�; u)y = �1 (3.22)We an see that the whole system has not been linearized. The �1;:::;r part of thedynamis of system (3.22) are in the form of integrator hains of length r. Thereis possibly still some nonlinear dynamis a�eting the state variables �r+1; : : : ; �n.This dynamis is not visible in the output and is alled the internal dynamis ofthe system (3.22). This dynamis depends on the output states � and it is un-observable (it annot be seen from the external input-output relationship). Whenwe design the ontroller, the external �i (i = 1; : : : ; r) part is used beause thereis a relation between y and u hene is easy to design an input so that the outputbehaves as desired. However when the ontroller is applied to both the external�i (i = 1; : : : ; r) and the internal �i (i = r + 1; : : : ; n) part of the system, theperformane of the losed loop system will degrade sine we haven't taken into a-ount the part �i (i = r + 1; : : : ; n) when designing the ontroller. It is importantto study the stability of the internal dynamis. If it is unstable the system willbeome unstable too. However if it is stable, the system will remain stable, but theontroller an't guarantee losed loop performane, as some part of the system wasignored when designing the ontroller.It is diÆult to diretly determine the stability of the internal dynamis beauseit is nonlinear and oupled to the external losed-loop dynamis. The study of theinternal dynamis stability an be simpli�ed by studying the zero dynamis instead.The zero dynamis is de�ned to be the internal dynamis of the system when thesystem output is kept at zero by the input. Two useful remarks an be made aboutthe zero-dynamis of nonlinear systems. First the zero-dynamis is an intrinsi fea-ture of a nonlinear system, whih does not depend on the hoie of ontrol law ordesired trajetories. Seond, examining the stability of zero-dynamis is muh easierthan examining the stability of internal dynamis, beause the zero-dynamis onlyinvolves the internal states while the internal dynamis is oupled to the externaldynamis and desired trajetories.The internal dynamis assoiated with the input-output linearization orresponds tothe last (n � r) equations _� = w(�;  ) of the normal form. Generally, this dynamisdepends on the output states �. An intrinsi property of the nonlinear system anbe de�ned by onsidering the system's internal dynamis when the ontrol input is



CHAPTER 3. FEEDBACK LINEARIZATION 52suh that the output y is maintained at zero. Studying this so-alled zero dynamis,some onlusions about the stability of the internal dynamis an be made.3.2.4 Examples of Input/Output LinearizationIn the following examples we have shown:1. An input/output linearization whih rendered the system with no zero dynamis;2. An input/output linearization with stable zero dynamis;3. An input/output linearization with unstable zero dynamis.1. No Zero dynamisConsider the non-linear system _x1 = x21x2_x2 = 3x2 + u (3.23)For the given non-linear system by hoosing an output for the linearization proesswe an show that the system will result in no zero dynamis if the relative degreeof the equivalent linear system is equal to the order of the system.De�ne the output to be: y = x1 (3.24)By di�erentiating twie in order to ahieve an input-output relationship we get:�y = 2x1x2 _x1 + x12 _x2 = 2x13x22 + 3x12x2 + u (3.25)The required stati feedbak for linearized losed loop input/output behaviour isgiven by: u = 1� (� � �) = 11(� � 2x13x22 � 3x12x2) (3.26)whih will anel the nonlinearity. The original system is of seond order and therelative degree is equal to 2, so there are no zero dynamis involved and the stabilityof the linearized system an be guaranteed.2. Stable Zero dynamisLet onsider another system: _x1 = x32_x2 = uy = x1 + x2 (3.27)



CHAPTER 3. FEEDBACK LINEARIZATION 53Introduing new states, givesz1 = x1 + x2; z2 = x2 (3.28)This will get the system in the following form:_z1 = z32 + u_z2 = uy = z1 (3.29)The feedbak is u = � � z32 (3.30)where � is the referene signal. This results in:_z1 = �_z2 = �z32 + �y = z1 (3.31)We see that: _y = � (3.32)and the dynamis whih is not visible in the output signal is:_z2 = �z32 + � (3.33)It is easy to see that this system is globally stable for any onstant �.3. Unstable Zero dynamisConsider instead the system: _x1 = �x22 + u_x2 = uy = x1 (3.34)In this ase is unneessary to make a oordinate hange sine we already have x1 = yand the system has relative degree 1. The feedbak is:u = x22 + � (3.35)



CHAPTER 3. FEEDBACK LINEARIZATION 54giving the following form of the system:_x1 = �_x2 = x22 + �y = x1 (3.36)There are problems already for � = 0. A small initial value of x2 gives a solutionthat rapidly approahes in�nity. This means that the ontrol signal will also tendto in�nity.In order to produe linearized systems that have no internal dynamis, tehniqueswhih preserve the dynami order of the system suh as approximate feedbak lin-earization are needed. A few ways of ahieving this are given in the summary.3.2.5 SummaryFeedbak linearization an be used for both stability and traking ontrol problems,for both single-input (SISO) and multiple-input systems (MIMO), and has beensuessfully applied to a number of pratial nonlinear ontrol problems, both as asystem analysis tool and as a ontroller design tool, just to name a few: Hahn etal [7℄, Suykens and Vandewalle [72℄, Henson and Seborg [73℄, Bezik et al [8℄. Withdynami inversion, a nonlinear ontrol law is designed whih globally redues thedynamis of the seleted ontrolled variables to integrators. A losed loop system isthen designed to make the ontrolled variables exhibit spei�ed ommand response.However the theory has got some limitations.Firstly, it an not be used for all nonlinear systems. The appliability of Input/Statelinearization is quanti�ed by a set of stringent onditions, while Input/Output Feed-bak Linearization annot be applied when the relative degree is not de�ned.Seondly the full state has to be measured. The seond problem is due to thediÆulty of �nding onvergent observers for nonlinear systems and when an ob-server an be found, the lak of a general separation priniple whih guarantees thatthe straightforward ombination of a stable state feedbak ontroller and a stableobserver will guarantee the stability of the losed-loop system.Thirdly, one of the obstales in the appliation of Input/Output Linearization isdue to non-minimum phase systems whih produe unstable zero dynamis. Be-ause Input/Output Linearization relies on a nonlinear version of pole-zero anel-lations, if the zero dynamis are unstable some of the unobservable states beomeunbounded. A not well de�ned relative degree leads to internal dynamis with unob-servable states through the linearization. In other words, one of the main problemswith applying Feedbak linearization tehniques is that the proess produes a sys-tem with the same relative degree as the original system, but usually with an order



CHAPTER 3. FEEDBACK LINEARIZATION 55that is less. Indeed, the linearized system order is the same as the relative degreeunless pre-ompensators are used to arti�ially hange the order and the relativedegree. This proess results in zero or internal dynamis, whih are modes thatare e�etively rendered unobservable by the linearization proess. If the system isnon-minimum phase, then the zero dynamis are unstable. The analogy with linearsystems is that a zero-pole system is linearized into an all-pole system by seletingthe pole-zero exess as the order of the approximating system. In order to produelinearized systems that have no internal dynamis, tehniques whih preserve thedynami order of the system are needed.Several approahes are possible to the avoidane of internal or zero dynamis. Oneapproah is to neglet terms in input derivatives until the required system orderis reahed as given by Hauser et al [74℄. Another is to pre-ompensate the systemto inrease the system relative degree arti�ially, and thus having some limited au-thority over the stability of the internal dynamis as detailed by Slotine and Li [14℄.Designing systems with unstable zero dynamis an also be ahieved provided theinput to the system remains bounded under feedbak by Lu et al [75℄. A fourth wayis to hoose an output whih has the required relative degree, and whih is relatedto the required ontrol output in some manner. The approah used in this thesisis a ombination of the �rst two: to selet an output that relates to the variablethat is to be ontrolled, but whih gives a greater relative degree, and to negletsmall terms that allow the �nal relative degree to be ahieved. This is applied tothe nonlinear missile system and detailed in Setion 3.3 and Setion 3.4 for SISOand MIMO ase respetively.Finally no robustness is guaranteed in the presene of parametri unertainty orunmodelled dynamis. This is due to the fat that the exat model of the nonlinearsystem is not available in performing feedbak linearization. This disadvantage hasbeen suessfully ompensated by using robust ontrol tehnique, addressed lateron in the thesis in Chapter 4.



CHAPTER 3. FEEDBACK LINEARIZATION 563.3 Trajetory ontrol design for SISO systemFor the SISO missile system we have studied the single plane ase. The aim is totrak the missile lateral aeleration demand in both pith and yaw planes whih aretreated as being unoupled. The missile model in this setion is thus desribed bythe redued 2DOF system assuming there is no interation between lateral motionand roll.Two di�erent designs have been onsidered. In the �rst, Design 1, traking andnon-linear ontrollers are designed by de�ning lateral veloity as an output as it pro-dues a higher relative degree than diretly ontrolling lateral aeleration, whihhas a relative degree of zero. Lateral veloity is diretly related to the lateral ael-eration, as in steady state a onstant inidene angle is assoiated with a onstantlateral aeleration. In the seond, Design 2, the augmented lateral aelerationhas been used as an output for the linearization proedure, instead of the atualone. This is again to be able to ahieve the same relative degree as the order of thesystem, to eliminate zero dynamis.3.3.1 Design 1: Traking lateral aeleration via lateral ve-loityBoth horizontal and vertial lateral motions are symmetri in format and the proessof linearization to ontrol lateral veloities is the same, hene Feedbak Linearizationfor one of the hannels is shown here. The ontrol of the missile will be aomplishedby ontrolling side-slip veloity. The horizontal motion has already been de�ned foryaw hannel ( _v and _r) in equation (2.8) of Chapter 2. There is no roll interation(no � term) and the equation for side-slip veloity is now:_v = V o(Cyvv + VoCy��)� ur= V o[(Cyv0 + CyvMM + Cyv� j � j)v +Vo(Cy�0 + Cy�MM + Cy�� j � j)�℄� ur= V o[( �Cyv0v + �Cyv� j v j v +Vo �Cy�0� + Vo �Cy�� j v j �℄� ur (3.37)where the Mah number M , and the total veloity Vo are slowly varying with:j � j = j v jVo 180�M = VoSoS



CHAPTER 3. FEEDBACK LINEARIZATION 57V o = 12m�VoS (3.38)where �Cyv0 ; �Cyv� ; �Cy�0 ; �Cy�� are de�ned in equations (2.37) and (2.38) of Chapter 2.The state spae for the horizontal motion an be written in the following parametriformat: _x1 = a1x1 + a2x21 + a3x2 + (a4x1 + a5)u1_x2 = b1x31 + b2x21 + b3x1 + b4x1x2 + b5x2 + (b6x1 + b7)u1 (3.39)where: " _x1_x2 # = " _v_r # (3.40)and the parameters a1; : : : ; a5 and b1; : : : ; b7 are de�ned in Appendix C.The state spae of the nonlinear system is:_x = f(x) + g(x)uy = h = x1 (3.41)or in matrix form:" _x1_x2 # = " a1x1 + a2x21 + a3x2b1x31 + b2x21 + b3x1 + b4x1x2 + b5x2 #+ " a4x1 + a5b6x1 + b7 # u1 (3.42)The equation (3.41) is in standard form and Input/Output Linearization tehniquean be applied to it. By de�ning the side-slip veloity x1 as an output (y1 = x1) andby applying Feedbak Linearization, only one di�erentiation of the output _y1 = _x1is enough in order for the input u to appear (as _x1 = f(x1; x2) + g(x1)u) whih anestablish an Input/Output relation. In that ase the relative degree (i.e. the orderof the equivalent linear system) would be r1 = 1, whih is less than the order ofthe non-linear system (2nd). This results in an equivalent linear system with �rstorder internal dynamis. However, an approximate Feedbak Linearization knownas g-modi�ation by Hauser et al [74℄ an be used instead of exat Feedbak Lin-earization. In whih ase the relative degree is inreased by the required order toequal the order of the non-linear system whih will result in system with no internaldynamis and a traking ontroller is designed without having to onsider stabilityof unobservable modes. Using this approximation, terms are disarded in order toretain an approximate system with an equivalent order and relative degree.By using normal oordinate transformation let �1 = �1 = h(x) = x1. We dif-ferentiate �1: _�1 = a1x1 + a2x21 + a3x2| {z }�2=�2(x) +(a4x1 + a5)u1| {z } 1(x1;u1) (3.43)



CHAPTER 3. FEEDBACK LINEARIZATION 58We then neglet  1(x1; u1) as it is a very small term ompared to the rest of themissile dynamis. The relative magnitudes between  1 dynamis and �2 dynamisis a ratio of 1 : 10, whih has been validated via simulation. This suggests that 1 an be negleted. There is also a phisial explanation for the justi�ation fornegleting the  1 term.  1 is the �n fore and is phisially designed to be smallerthan the �2 dynamis. �2 is the body aerodynami fore ating at the entre ofpressure and is normaly an order of magnitude greater than the �n fore. The maine�et of  1 is to produe a small fore at a large distane whih produes a largeturning moment. The turning moment term then appears as �1 in the _r equationdue to the di�erentiation of the �2 dynamis. Hene, although the �n fore term isnegleted, the �n turning moment is retained.Hene _�1 = �2. We di�erentiate �2 to get:_�2 = (2a22 + a3b1)x13 + (3a1a2 + a3b2)x12 + (a21 + a3b3)x1| {z }�1+(a1a3 + a3b5)x2 + (2a2a3 + a3b4)x1x2| {z }�1+(2a3b6x1 + a3b7)| {z }�1 u1 (3.44)By negleting the term  1 shown in (3.43), the g vetor �eld has been modi�ed. Thee�et of negleting the term  1 in equation (3.43) is to eliminate a non-linear zeroin the system within the model desription, and whih is not taken into aount inthe non-linear ontrol design. It has been shown by White [71℄, this will not a�etthe performane of the ontrol design in a signi�ant manner as the zero an beapproximated by: z � � (a4 j x1 j +a5)(2a3b6 j x1 j +a3b7) (3.45)The zero is negative for all values of x1, hene will not a�et the stability of thelosed loop dynamis.The linearized system an be written in ompat form:�1 = h_�1 = �2_�2 = �1 + �1u1 (3.46)The output (h) has been di�erentiated twie, hene possesses a relative degree (r) of2. Sine the relative degree is equal with the order of the system, fully linearizationof the non-linear system has been ahieved with no zero dynamis. The equation(3.46) represents a diret relationship between the output (h) and the input (u1) [76℄



CHAPTER 3. FEEDBACK LINEARIZATION 59by Wang. The required stati state feedbak for deoupled losed loop Input-Outputbehaviour is given by Kravaris and Soroush [77℄ as:u1 = 1�1 (� � �1) (3.47)The linearized losed loop system is now given by:�y = v (3.48)where � is the new linearized system input, as given by Wang [76℄. For the seondorder yaw plane system, the traking ontroller in the outer loop an be investigatedby hoosing the resulted new ontrol v input to be:� = �yd � k1 _e� k2e (3.49)where e = y � yd. The losed-loop system is thus haraterised with the followingerror dynamis: �e+ k1 _e + k2e = 0 (3.50)where k1 and k2 are hosen suh that all roots of s2 + k1s + k2 = 0 are in the openleft{half plane Hurwitz, whih ensures limt!1 e(t) = 0, as shown by Wang [76℄.The traking ontrol problem of the non-linear system desribed by equation (3.39)has been solved using the ontrol law in equation (3.47) with the new input de�nedin (3.49). Indeed, sine equation (3.50) has the same order as the non-linear system,there is no part of the system dynamis whih is rendered \unobservable" in theapproximate Input/Output Linearization. Sine there are no zero dynamis in thelinearized system, the traking problem has been solved provided the approximationis valid and the negleted terms are small as proved by Hauser et al [74℄.
Nonlinear
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Actuator Plant a=f(x)Trajectory
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ad x y=a

Figure 3.2: Trajetory ontrol design for Design 1 in SISOThe trajetory ontrol design has been shown in �g. 3.2. A fast linear atuatorwith natural frequeny of 250 rad=se has been inluded in the non-linear system.The blok of the Plant is represented by equation (3.39). The nonlinear ontroller is



CHAPTER 3. FEEDBACK LINEARIZATION 60derived by equation (3.47). The desired aeleration ad is ahieved by using the non-linear equation ad = f(vd). The relation between lateral aeleration and side-slipveloity is: � = _v + Ur = a1v + a2v2 � Ur + Ur (3.51)hene by �nding the roots of �d = a1vd + a2v2d (3.52)we would know what side-slip veloity is required for partiular lateral aelerationdemand, hene desired traking performane an be ahieved.The error dynamis (e = v � vd and _e = _vd � _v) are onstruted using the �dsignal and the feedbak of the atual states - side-slip veloity v, yaw rate r andaeleration a, also shown in �g. 3.3._vd � _v = �d � Urd � � + Ur (3.53)
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Figure 3.3: Error dynamisThe trajetory ontrol is derived onerning the losed loop error dynamis expressedin equation (3.50). The error oeÆients are hosen to satisfy Hurwitz polynomialfor the seond order error equation in eah hannel, hene k1 = 2�wn and k2 = w2n,with wn = 70 rad=se and � = 0:7. This speed of response is signi�antly faster thanthe open loop response and so should exerise the dynamis of the non-linear missile.Results and few ommentsThe results for 1g (10 m=se2) and 10g (100 m=se2) lateral aeleration demandsare shown in �g. 3.4. They show side-slip veloity and the resulting lateral aelera-tion responses. The side-slip veloity demand has been saled using equation (3.52)to give required aeleration. Atuator �n angle and �n rate are also shown tomake sure that no unrealisti ontrol signals are generated. The �gures show almost



CHAPTER 3. FEEDBACK LINEARIZATION 61idential step responses with some variation in peaks and steady state values forthe body yaw rate, the atuator movement (�n angle) and the side-slip veloity.As expeted for a non-linear system, the relationship between lateral veloity andlateral aeleration is non-linear. The results also show that the atuator does notsigni�antly a�et the design. The non-linear approah is also shown to be rea-sonably aurate, as the predited and atual performane are very lose, as givenby Tsourdos et al [78℄. The non-minimum phase e�et on the lateral aelerationresponses an be seen as evidene that an inherent right half plane zero exists withinthe nonlinear system.
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CHAPTER 3. FEEDBACK LINEARIZATION 623.3.2 Design 2: Traking lateral aeleration via augmentedaelerationBy de�ning lateral aeleration as an output and applying the standard Input/OutputLinearization proedure, the relative degree (i.e. the order of the equivalent linearsystem) is r = 0, whih is again less than the order of the non-linear system (2nd).This results now in an equivalent linear system with seond order internal dynam-is. However, by using the augmented aeleration as the output for the non-linearontroller design and by applying approximate Feedbak Linearization known asg-modi�ation, as given by Hauser et al [74℄, the relative degree is inreased by therequired order to equal the order of the non-linear system. As the system has no in-ternal dynamis we an then design a traking ontroller without having to onsiderstability of the unobservable modes. The dynami equation for lateral aelerationhas been derived in equation (2.32) of Chapter 2 and is given here again by:� = _v + Ur= �(v) +  (v; �) (3.54)From equation (3.54), the output ontains the input ontrol �n deetion � by virtueof the term  (v; �). This makes the lateral aeleration have a relative degree ofzero. This term, however, an be shown to be the lateral fore developed by the�n. The �n's main ontribution to the dynamis of the missile is to develop aturning moment, by virtue of the term 12I�1yz �V 2o SdCn�� in equation (2.8) for r andthe equivalent term in equation (2.7) for q, detailed in Chapter 2. If this term isinluded in the output equation, then the augmented aeleration an be representedas: �� = ��  (v; �)= �(v) = V o[( �Cyv0v + �Cyv� j v j v℄ (3.55)or in parametri form as: �� = a1x1+a2x21. The augmented aeleration �� is used forlateral ontrol instead of the lateral aeleration �. The di�erene between the twooutputs � and �� is now just the lateral aeleration developed by the ontrol �n,and as suh will not introdue muh error in the ontrol of the lateral aeleration,as given by White [71℄.The matrix form of the non-linear system shown in equation (3.42) is the samehere, but the ontrolled output of the non-linear system (3.41) now is:y = h = a1x1 + a2x21 (3.56)In order to apply Input/Output Linearization and to retain the system order withno zero dynamis, an approximate Input/Output Linearization tehnique is applied.Let �1 = h(x) = a1x1 + a2x21. Then by di�erentiating � we get:



CHAPTER 3. FEEDBACK LINEARIZATION 63
_�1 = (a21x1 + 3a1a2x21 + a1a3x2 + 2a22x31 + 2a2a3x1x2| {z }�2=�1(x)+(a2a4x31 + (a1a4 + a2a5)x21 + a1a5x1)u1| {z } 1(x1;u1) (3.57)The  1(x1; u1) dynamis, in this ase, is lose to zero 0:039 on�rmed via simulation,hene we an neglet it. Conversely to Design 1, there is no physial interpretationfor negleting the term. To take the next step we set  1 to zero and _�1 = �2. Thenwe di�erentiate �2 to get the Input-Output relation:_�2 = (6a32 + 2a2a3b1)x41 + (12a1a22 + a1a3b1 + 2a2a3b2)x31 + (a31 + a1a3b3)x1| {z }�1+(a21 + 6a21a2 + a1a3b2 + 2a2a3b3)x21 + (8a22a3 + 2a2a3b4)x21x2| {z }�1+(8a1a2a3 + a1a3b4 + 2a2a3b5)x1x2 + (2a2a23)x22 + (a21a3 + a1a3b5)x2| {z }�1+(6a21a4x31 + 2a2(3a1a4 + 3a2a5 + a3b6)x21) + (a1(a1a5 + a3b7))| {z }�1 u1+((6a1a2a5 + a21a4 + a1a3b6 + 2a2a3b7)x1) + (2a2a3(a4x1 + a5)x2)| {z }�1 u1(3.58)and the resulted system is _�1 = �2_�2 = �1 + �1u1 (3.59)The output (y) possesses a relative degree (r) of 2, sine (y) has been di�erentiatedtwie for the input (u1) to appear. The relative degree of the system is now 2, andhas the same order as the original system. Therefore there are no internal dynamis.Sine the total relative degree is equal to the order of the system, fully linearizationof the non-linear system is ahieved. The e�et of negleting the term  1(x; u1)in equation (3.57) is to eliminate a non-linear zero in the system within the modeldesription, and whih is not taken into aount in the non-linear design. It hasbeen shown by White [71℄, this will not a�et the performane of the ontrol designin a signi�ant manner as the zero an be approximated by:z � � 1(x)�1(x) (3.60)When the augmented aeleration is de�ned as a ontrol output of the linearizationproedure we have applied an approximate Input/Output Linearization in order to



CHAPTER 3. FEEDBACK LINEARIZATION 64retain the order of the system. In that ase there is no zero dynamis involved inthe design. If we don't neglet any term, then the linearization will take plae bysolving the 2nd derivative of the output for the �rst derivative of the input _ . Apre-ompensator will anel the inherent zero in the Input-Output equation. Anapproximation to this ontroller that does not inlude the anellation pole an beused by negleting the _ 1 term. The zero will exist, whih is not taken into theanalysis and will be stable if the �n angle moment is signi�antly greater than thestati margin. This is usually the ase in most agile missiles as the stati marginis made as lose to zero as possible for most missiles. This will produe a stablesolution and traking performane will be satisfatory.The equation (3.59) represents a diret relationship between the output (h) andthe input (u). The required stati state feedbak is given by the ontrol law previ-ously explained in Design 1, see equations (3.47), hene a deoupled losed loopInput-Output behaviour is ahieved. For the linearized losed loop system (3.48),the new ontrol input has been hosen to be (3.49), so desired traking performanehas been ahieved. By seleting the gains suh that all roots of the losed loop errordynamis (3.50) lie in the left-half plane, asymptoti global stability is guaranteed.The losed loop error dynamis is (2nd) order, hene there is no part of the systemdynamis whih is rendered \unobservable" in the approximate Input/Output Lin-earization. Sine there are no zero dynamis in the linearized system, the trakingproblem has been solved, as disussed by Isidori [79℄, Slotine and Li [14℄.
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Figure 3.5: Trajetory ontrol design for Design 2 in SISOThe autopilot simulation is shown in �g. 3.5. The di�erene from Design 1 isthat the augmented aeleration is used as the linearization output. The ontrollerdesign has been produed by using the augmented aeleration, but in the simulationthe lateral aeleration has been used to hek the validity of the made approxima-tions. The error dynamis are onstruted by using the desired lateral aelerationad signal and the feedbak of the atual states - veloities, rates, aelerations andjerk. Also, a fast linear atuator with natural frequeny of 250 rad=se has beeninluded in the non-linear simulation. Fixed gain trajetory ontroller has been usedfor the seond order error equation (3.50) suh as k1 = 2�wn and k2 = w2n, withnatural frequeny wn = 60 rad=se and damping fator � = 0:65. This speed ofresponse is faster than the open loop response and so should exerise the dynamis



CHAPTER 3. FEEDBACK LINEARIZATION 65of the non-linear missile suÆiently for meaningful onlusions to be drawn. The re-sults for 1g (10 m=se2) and 5g (50 m=se2) lateral aeleration demands are shownin �g. 3.6. These �gures show almost idential step responses for both demandswith some variation in peaks and steady state values for the body rate, the atua-tor movement and the lateral veloity. The di�erene between the lateral and theaugmented aeleration shows that there is a good math between the two and thatthe steady state values are very lose, as given by White et al [80℄. This illustratesthe small e�et that the �n fore has on the missile aeleration and justi�es theuse of the augmented body aeleration.
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Figure 3.6: Results for Design 2 in SISO for ad = 10 m=se2 and ad = 50 m=se2



CHAPTER 3. FEEDBACK LINEARIZATION 663.4 Trajetory ontrol design for MIMO systemThe Input-Output design tehnique an be extended to the MIMO ase. The aimhere is again to trak the missile lateral aeleration demand in pith and yaw planebut to also maintain onstant roll rate. The missile model in this setion is desribedby full 6DOF system with roll interation.Two kinds of manoeuvrability are onsidered here. The �rst one is based on skid-to-turn (STT) motion whih is presented in Cartesian oordinates and is valid formissiles with two pairs of ontrol �ns (rudders and elevators); and the seond one isbased on bank-to-turn (BTT) motion whih requires Polar ontrol and is valid foronly one pair of ontrol surfaes, very often used by long range, ruise missiles.3.4.1 Design 1: Cartesian oordinatesThe equations of motion, desribed in (2.42) in Chapter 2, are used to derive thestate-spae form of the non-linear system in a ompat parametri format, as:_x1 = a1x1 + a2x1qx12 + x32 + a3x2 + (a4qx12 + x32 + a5)u1_x2 = b1x1(x12 + x22) + b2x1qx12 + x32 + b3x1 + b4x2qx12 + x32 + b5x2+(b6qx12 + x32 + b7)u1 � (b9 + b8qx12 + x32 + b10(x12 + x32)u3_x3 = a1x3 + a2x3qx12 + x32 � a3x4 + (a4qx12 + x32 + a5)u2_x4 = �b1x3(x12 + x32)� b2x3qx12 + x32 � b3x3 + b4x4qx12 + x32 + b5x4�(b6qx12 + x33 + b7)u2 + (b9 + b8qx12 + x32 + b10(x12 + x32)u3_x5 = 1x5 + (3 + 4qx21 + x23)u1 + (3 + 4qx21 + x23)u2 + 2u3 (3.61)In a matrix form that would be:2666666664
_x1_x2_x3_x4_x5
3777777775 = 266666666664

a1x1 + a2x1px12 + x32 + a3x2b1x1(x12 + x22) + b2x1px12 + x32 + b3x1 + b4x2px12 + x32 + b5x2a1x3 + a2x3px12 + x32 � a3x4�b1x3(x12 + x32)� b2x3px12 + x32 � b3x3 + b4x4px12 + x32 + b5x41
377777777775

+266666666664
a4px12 + x32 + a5 0 0b6px12 + x32 + b7 0 �b9 � b8px12 + x32�b10(x12 + x32)0 a4px12 + x32 + a5 00 �b6px12 + x32 � b7 +b9 + b8px12 + x32+b10(x12 + x32(3 + 4px21 + x23 (3 + 4px21 + x23 2

3777777777752664 u1u2u3 3775 (3.62)



CHAPTER 3. FEEDBACK LINEARIZATION 67where: x = h x1 x2 x3 x4 x5 iT = h v r w q p iTu = h u1 u2 u3 iT = h � � � iTand the parameters a1; : : : ; a5, b1; : : : ; b10 and 1; : : : ; 4 are de�ned in Appendix C.Equations (3.61) represent severe ross-oupling with inherent nonlinear terms withinthe missile dynamis. Firstly, Input/Output Linearization is used to deouple thesystem, and seondly, a trajetory ontroller is designed within the outer loop fortraking performane.The non-linear system written in a standard form is:_x = f(x) + g(x)uy = h= 264 h1h2h3 375 = 264 x1x3x5 375 (3.63)and the Input/Output Linearization tehnique an be applied to it. Like the SISOase study, in order to retain the system order with no zero dynamis, an approxi-mate Input/Output Linearization is applied to the missile model. It is based on theseond approximation method involving the modi�ation of the funtion g, as pre-sented by Hauser et al [74℄. Using this approximation tehnique, terms are disardedin order to retain an approximate system with an equivalent order and relative de-gree. In other words the g vetor �eld is modi�ed.Yaw planeLet �1 = �1 = h1(x) = x1. Then:_�1 = a1x1 + a2x1px12 + x32 + a3x2| {z }�2=�2(x) +(a4px12 + x32 + a5)u1| {z } 1(x1;u1)_�2 = a21x1 + 2a1a2x1px12 + x32 + a3x2) + (a2px12 + x32)(a2x1px12 + x32 + a3x2)| {z }�1+ a1a2x1x23px12 + x32 + a22x1x23 � a2a3x1x3x4px12 + x32 + a3b1x31| {z }�1+ a3(b2x12 + b3x1 + b4x2px12 + x32 + b5x2| {z }�1� (a3b9 + b8px12 + x32 + a3b10(x12 + x32))| {z }�2 u3 + (a3b6px12 + x32 + a3b7)| {z }�1 u1(3.64)



CHAPTER 3. FEEDBACK LINEARIZATION 68or with  1(x1; u1) set to zero_�1 = �2_�2 = �1 + �1u1 + �2u3 = v1(x; u) (3.65)Equation (3.65) is ahieved by negleting the term  1(x1; u1) shown in (3.64).Pith planeLet �3 = �3 = h2(x) = x3. Then:_�3 = a1x3 + a2x3px12 + x32 � a3x2| {z }�4=�4(x) +(a4px12 + x32 + a5)u1| {z } 2(x2;u2)_�4 = a21x3 + 2a1a2x3px12 + x32 � a3x4) + a2px12 + x32)(a2x3px12 + x32 � a3x4)| {z }�2+ a1a2x21x3px12 + x32 + a22x21x3 � a2a3x1x2x3px12 + x32 + a3b1x33| {z }�2+ a3(b2x32 + b3x3 � b4x4px12 + x32 � b5x4| {z }�2� (a3b9 + b8px12 + x32 + a3b10(x12 + x32))| {z }�4 u3 + (a3b6px12 + x32 + a3b7)| {z }�3 u2(3.66)or with  2(x2; u2) set to zero_�3 = �4_�4 = �2 + �3u2 + �4u3 = v2(x; u) (3.67)For the roll plane, the roll angle (�) has been taken as an output for the lineariza-tion proess instead of the roll rate. Both roll rate and roll angle ontrol are used inpratie. This study will onentrate on roll angle ontrol as this is the most usefulin pratie, when asymmetri sensors are �tted and BTT ontrol is used.Roll planeLet �5 = �5 = h3(x) = x6, where x6 = � the roll angle. Then:_�5 = x5|{z}�6=�6_�6 = 1x5| {z }�3 + 2|{z}�7 u3 + (3 + 4qx21 + x23)| {z }�6 u2 + (3 + 4qx21 + x23)| {z }�5 u1 (3.68)or _�5 = �6_�6 = �3 + �5u1 + �6u2 + �7u3 = v3(x; u) (3.69)



CHAPTER 3. FEEDBACK LINEARIZATION 69The output y1 = h1(x) possesses relative degree r1 of 2, the output y2 = h2(x) alsopossesses relative degree r2 of 2, and the output y3 = h3(x) possesses relative degreer3 of 2. Hene the total relative degree of the system is equal with the summationof the r1, r2, r3 and is now 6, whih means the system has the same order as theoriginal one, therefore there are no internal dynamis. And sine the total rela-tive degree is equal with the order of the system, fully linearization of the non-linearsystem has been ahieved.The e�et of negleting the terms  i from equations (3.64),(3.66) is to eliminatea non-linear zero in the system within the model desription, and whih is not takeninto aount in the non-linear ontrol design. Provided the side-slip fore is not toogreat, as explained by White [71℄, this will not a�et the performane in a signi�antmanner. The zero an be approximated by:z � � (a4qx21 + x23 + a5)(a3b6qx21 + x23 + a3b7) (3.70)The explanations for the negleted terms ( i), desribed earlier for the SISO systemin Design 1, are valid here.Equations (3.65), (3.67) and (3.69) represent a diret relationship between the out-puts (hi) and the inputs (ui). The required stati state feedbak for deoupled losedloop Input-Output behaviour of a MIMO system is given by the ontrol law as:u = E�1 8><>:v � 264 �1�2�3 3759>=>; (3.71)where E�1 is the harateristi, as named by Kravaris and Soroush [77℄ or deouplingmatrix as named by Slotine and Li [14℄ of the system, and is given by:E = 264 �1 0 �20 �3 �4�5 �6 �7 375 (3.72)whih has been heked, is nonsingular.



CHAPTER 3. FEEDBACK LINEARIZATION 70In a similar way to Setion 3.3 for Design 1, the equations:(3.73), (3.74) and (3.75)are detailed here again to show the traking losed loop design. Here the linearizedlosed loop system for eah hannel is given by:�yi = vi (3.73)where (v) is the new linearized system input and is given by:v = �yd � k1 _e� k2e (3.74)and where e = y�yd. The losed-loop system for eah hannel is thus haraterisedby the following seond order error dynamis:�e+ k1 _e + k2e = 0 (3.75)where k1 and k2 are hosen suh that all roots of s2+k1s+k2 = 0 are Hurwitz in theopen left-half plane, whih ensures limt!1 e(t) = 0, as detailed by Wang [76℄, henethe traking ontrol problem for the non-linear MIMO system has been solved. Thestability of the linearized system has been guaranteed sine no zero dynamis hasbeen involved.The trajetory ontrol design has got the same struture as shown in �g.3.2 forDesign 1 for the SISO system, but with an additional output (p) for the roll han-nel. Again a fast linear atuator with natural frequeny of 250 rad=se has beeninluded in the non-linear system. The desired lateral aeleration ad for eah han-nel is ahieved by using the non-linear equation ad = f(v). Therefore the trajetoryontroller performs by using the desired aeleration as a funtion of the lateralveloity demand. The error dynamis are onstruted using the ad signal and thefeedbak of the atual states - veloity, rate and aeleration. The error oeÆientsin (3.75) for the trajetory ontroller are hosen to satisfy Hurwitz polynomial.The results for 1g (10 m=se2) and 5g (50 m=se2) lateral aeleration demandsare shown in �g. 3.7. Fully deoupling has been ahieved in yaw, pith and rollhannels, as detailed by Tsourdos et al [81℄. Both �gures show desired traking per-formane as the predited and the atual performane are very lose, with almostno steady state error. The non-linear relationship between side-slip (or vertial)veloity and lateral aeleration for both (yaw and pith) hannels an also be seen.
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CHAPTER 3. FEEDBACK LINEARIZATION 723.4.2 Design 2: Polar oordinatesThe aim of this setion is to trak the missile lateral aeleration demand in boththe pith and yaw plane as well as the roll rate in the roll plane, using the missileaileron, rudder and elevator, hene yielding a system with 3 inputs and 3 ontrolledoutputs. The traking and the non-linear ontrollers are designed by de�ning lateralveloities (v) and (w) as outputs as they produe higher relative degree than diretlyontrolling lateral aeleration, whih has a relative degree of zero. Lateral veloityis diretly related to the lateral aeleration, as in steady state a onstant inideneangle is assoiated with a onstant lateral aeleration. The basi system is �fthorder, with an integrator in front of the roll hannel yielding a sixth order system.The missile system is transformed in Polar oordinates, with the ight diretiongiven by z = pv2 + w2 and the angle of orientation given by � = artan vw . Thesetransformations are used to simplify in a signi�ant manner the heavy omputa-tional load required by the nonlinear ontrol law derivation, (see equations (3.64)and (3.66).The equations of motion desribed in (2.43) in Chapter 2 are used to derive thestate-spae form of the non-linear system in a ompat parametri format, as:_z = a1z + a2z2 + a3rsin(�)� a3qsin(�)+(a4z + a5)(sin(�)� + os(�)�)_r = b1z3sin(�) + b2z2sin(�) + b3zsin(�) + b4zr + b5r+(b6z + b7)� � (b9 + b8z + b10z2)�_q = �b1z3os(�)� b2z2os(�)� b3zos(�) + b4zq + b5q�(b6z + b7)� + (b9 + b8z + b10z2)�_p = 1p + 2� + (3 + 4z)(� + �)_� = �a3z�1(qsin(�) + ros(�))+z�1(a4z + a5)(sin(�)� � os(�)�) (3.76)The nonlinear system written in a standard form is:_x = f(x) + g(x)uy = h = 264 vwp 375 = 264 zsin(�)zos(�)p 375 (3.77)and Input/Output Linearization tehnique an be applied to it. In order to retainthe system order with no zero dynamis, an approximate Input/Output Lineariza-tion tehnique is applied to the missile model. It is based on an approximationmethod involving the modi�ation of the funtion g, as presented by Hauser etal [74℄. Using the approximation tehnique, terms are disarded in order to retainan approximate system with an equivalent order and relative degree. In other words



CHAPTER 3. FEEDBACK LINEARIZATION 73the g vetor �eld is modi�ed. This is ahieved by negleting the terms  1(x; �) and 2(x; �) shown in the following equations.For the yaw plane let �1 = �1 = h1(x). Then:_�1 = �2 +  1(x; �)_�2 = �1 + �1� + �2� = v1(x; �; �) (3.78)where: �1(x) = (a1os(�) + 2a2zos(�))(a1z + a2z2 + a3rsin(�)� a3qsin(�))+(a1zos(�) + a2z2os(�))(�a3z�1(qsin(�) + ros(�)))+a3(b1z3sin(�) + b2z2sin(�) + b3zsin(�) + b4zr + b5r)�1(x) = a3(b6z + b7)� (b9 + b8z + b10z2)�2(x) = a3(b9 + b8z + b10z2) (3.79)Hene the output h1(x) possesses a relative degree r1 of 2.For the pith plane let �3 = �3 = h2(x). Then:_�3 = �4 +  2(x; �)_�4 = �2 + �3u2 + �4u3 = v2(x; �; �) (3.80)where: �2(x) = (a1sin(�) + 2a2zsin(�))(a1z + a2z2 + a3rsin(�)� a3qsin(�))�(a1zsin(�) + a2z2sin(�))(�a3z�1(qsin(�) + ros(�)))�a3(�b1z3os(�)� b2z2os(�)� b3zos(�) + b4zq + b5q)�3(x) = a3(b6z + b7)� (b9 + b8z + b10z2)�4(x) = a3(b9 + b8z + b10z2) (3.81)The output h2(x) also possesses a relative degree r2 of 2.Finally, for the roll plane, for the linearization proess (i.e. the design of the non-linear ontroller), we take as output the roll rate p, but plae an integrator in frontof the roll hannel to equalize the hannel orders.Let �5 = �5 = h3(x), where h3(x) is the roll angle. Then:_�5 = �6_�6 = �3 + �5� + �6� + �7� = v3(x; �; �; �) (3.82)where: �3(x) = 1�5(x) = 3 + 4z�6(x) = 3 + 4z�7(x) = 2 (3.83)



CHAPTER 3. FEEDBACK LINEARIZATION 74Hene the output h3(x) possesses a relative degree r3 of 2. The total relative degreeof the system is equal with the sum of the r1, r2, and r3 is now 6, and has the sameorder as the original system and hene there are no internal dynamis. Sine thetotal relative degree is equal with the order of the system, fully linearization of thenon-linear system has been ahieved.The e�et of negleting the terms ( 1) and ( 2) in the previous equations is toeliminate a non-linear zero in the system within the model desription, and whihis not taken into aount in the non-linear ontrol design. This will not a�et theperformane of the ontrol design in a signi�ant manner as the zero an be approx-imated by: z � � (a4z + a5)(2a3b6z + a3b7) (3.84)Equations (3.78), (3.80) and (3.82) represent a diret relationship between the out-puts (hi) and the inputs (ui). The required stati state feedbak for deoupled losedloop Input-Output behaviour is given by Slotine and Li [14℄ as:u = E�1 8><>:v � 264 �1�2�3 3759>=>; (3.85)where E�1 is the harateristi or the deoupling matrix of the system, and here isdetermined by: E = 264 �1 0 �20 �3 �4�5 �6 �7 375 (3.86)whih is nonsingular. The determinant of the deoupling matrix is:p(z) = det(E) = p0 + p1z + p2z2 + p3z3 + p4z4 + p5z5All the roots are omplex. There is no value of interest for z whih ould make p(z)(i.e. the determinant of the deoupling matrix) equal to zero.
The linearized losed loop system for eah hannel is given by:�yi = vi (3.87)where (v) is the new linearized system input and for traking problem an be hosento be: v = �yd � k1 _e� k2e (3.88)



CHAPTER 3. FEEDBACK LINEARIZATION 75where e = y � yd. The losed-loop system is thus haraterised by:�e+ k1 _e + k2e = 0 (3.89)where k1 and k2 are hosen suh that all roots of s2 + k1s + k2 = 0 are in the openleft-half plane, whih ensures limt!1 e(t) = 0.Like in the �rst Design 1 for the SISO system, a fast linear atuator with naturalfrequeny of 250 rad=se has been inluded in the non-linear system. The desiredaeleration ad has been ahieved by using the non-linear equation az = f(v; w),but in a Polar sense. The desired aeleration is a funtion of magnitude (z) of thelateral veloities: az = a1z + a2z2 = a1(pv2 + w2) + a2(v2 + w2) and it is used inthe feedbak to onstrut the error dynamis.The error oeÆients in (3.89) are hosen to satisfy a Hurwitz polynomial. Forthe aeleration hannel, k1 = 2�wn and k2 = w2n are hosen with wn = 60 rad=seand � = 0:7, for the roll hannel with wn = 80 rad=se and the same dampingfator, �. This speed of response is signi�antly faster than the open loop responseand so should exerise the dynamis of the non-linear missile. The traking ontrolproblem for the non-linear system has been solved using the ontrol law in equation(3.85). Sine the equation (3.89) has the same order as eah hannel of the non-linearsystem, there is no part of the system dynamis whih is rendered \unobservable"in the approximate Input/Output Linearization. Sine there are no zero dynamisin the linearized system, the stability of the linearized system has been guaranteedand the traking problem has been solved. Desired traking performane for lateralaelerations and roll angle of the missile has been ahieved by using a non-linearontrol law that has been derived by seleting lateral veloities and roll rate as thelinearization outputs. This has been detailed by Tsourdos et al [82℄.Finally, simulation results are shown in �g. 3.8 that exerise the �nal design andshow that the linearization and the ontroller design are satisfatory. When thereis no lateral aeleration demand, shown in �g. 3.8, a onstant roll rate demand,resulted in zero veloity magnitude whih is a good indiation for fully deoupledsystem. Also a onstant roll rate demand (the � input on the roll hannel) had noe�et on the yaw and pith hannels.
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CHAPTER 3. FEEDBACK LINEARIZATION 773.5 ConlusionsThere are three ways to inrease the relative degree of a non-linear system. Theseare either to propose a new output that is an approximation of the desired one, toneglet suÆiently small terms during the di�erentiation proess or �nally to designa pre-ompensator for the system.All four designs (SISO and MIMO), presented in Chapter 3, have used a ombi-nation of the �rst two. By negleting small terms assoiated with the �n deetionwhih modi�es the g vetor and by de�ning outputs for the linearization proedurewhih are related with the ontrolled outputs, an approximate Feedbak Lineariza-tion tehnique has been suessfully applied. The design has resulted in a linearequivalent system with no internal or zero dynamis (\no unobservable" states dur-ing the linearization), and with a design of a trajetory ontrol whih gives smalltraking errors for both lateral veloities and aelerations. The simulation resultshave shown desired traking performane for a large range of 1g up to 10g lateralaeleration demands (for SISO and MIMO systems) and roll ontrol (for the MIMOsystem).When the augmented aeleration was hosen as an output for the linearizationproess, in Design 2 for the SISO system, the nonlinear ontrol law involved moreomplex mathematis and more nonlinear terms than the nonlinear ontrol law inDesign 1. On the other hand the relationship (augmented aeleration - lateralaeleration) is linear, so di�erenes in losed loop performane for higher demandsare small, and only in the steady state error. Also, the augmented lateral aelera-tion is used in Design 2 for the SISO system, provided that the diret aelerationprodued by the �n is small ompared to the augmented aeleration. It also shownthat a negleted zero during the linearization proess was minimum phase.Two ways of manoeuvring the missile motion have been proposed by Design 1and Design 2 for the MIMO system. Although the Horton model has been de-signed for Cartesian ontrol, Polar ontrol is also possible to be designed beauseit an signi�antly redue the omputational load of the nonlinear ontrol design,whih an be important (less risky and less expensive - omputationally speaking).Finally, full deoupling for the highly non-linear missile system has been ahieved.All four Designs (SISO and MIMO) have involved inreasing the speed of responsesof the system suÆiently and the responses for both small and large demands haveshown to be invariant. Other tehniques have been researhed by White [71℄ thatinvolve a quasi-linear approah, or involve pre-ompensation to look at tehniquesthat an be applied to the lateral aeleration diretly. This involves dealing witha non-minimum phase system that yields unstable zero dynamis with diret lin-earization methods.



Chapter 4Robust Fuzzy Autopilot DesignIt has been shown in the previous hapter that by applying Feedbak Linearizationthe desired traking performane an be obtained by assuming an exat knowledgeof aerodynami oeÆients and missile on�guration parameters (i.e., referene area,Mah number, mass, moment of inertia) in the entire ight envelope. In pratiehowever, this assumption is not valid. Also, if there are either parameter variationsfrom the nominal ase or external disturbanes, the Feedbak Linearization annotguarantee desired performane, neither is robustness provided.Conversely, fuzzy logi appears promising when dealing with vague and impreiseinformation suh as unertain measurement values, parameter variations and noise.For these reasons, a robust non-linear trajetory ontroller based on fuzzy logihas been applied in the outer loop in order to provide robustness for the feedbaklinearizable system. An evolutionary algorithm optimisation approah is then ap-plied o�-line to determine the membership funtion distribution and the rule basestruture of the fuzzy ontroller. The design uses a geneti algorithm optimisationapproah using a multiple model desription of the airframe aerodynamis and meetsobjetives related to losed loop performane suh as: steady state error, overshoot,rise and settling time.The aim of Chapter 4 is to trak the missile side-slip veloity demand in the preseneof unertainties in the aerodynami oeÆients. The required demands are onsid-ered for both pith and yaw planes, using the missile rudder and elevator as ontrolsurfaes hene only lateral motion is onsidered, yielding two unoupled systemswith one input and one ontrolled output eah. Multiple demand traking is alsoaddressed here.4.1 Hybrid Fuzzy Nonlinear Control"Everything is a matter of degree and you do not realize it till you have tried tomake it preise". Bertrand Russell 78



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 794.1.1 Fuzzy Logi philosophy\Fuzziness means multi-valene. It means in�nite shades of grey between blak andwhite. Fuzzy things resemble fuzzy non-things \A resembles not A" and have vagueboundaries with their opposites, their non-things. The more a thing resembles itsopposite the fuzzier it is", by Kosko [83℄.
Fig. 4.1.1 stands for the world of oppo-sites. The maths language reates bound-aries between blak and white. Reasonsmoothes them out as it works with grey.Borders are inexat and things oexist withnon-things. Fuzzy logi is reasoning withfuzzy sets. Fuzzy logi deals with ambigu-ous events or situations. However, am-biguity does not mean there is no sort ofertainty in the events or situations. Forexample probability did not alter or evenhallenge the blak-white piture of theworld. It just showed how to gamble init.[83℄ Figure 4.1.1 The Yin-Yang symbolFuzzy Logi is a mathematial disipline developed by Zadeh [32℄ based on fuzzyset theory whih allows for degrees of truth and falseness. Fuzzy ontrol is based onfuzzy logi and provides a means of onverting a linguisti ontrol strategy basedon expert knowledge into an automati ontrol strategy, as detailed by Lee [33℄.Fuzzy logi maps a set of inputs alled anteedents to a set of ontrol ommandoutputs alled onsequents, whih atuate devies to translate the system to thedesired state. Beause of the multi-valued nature of fuzzy logi, the values of thesystem states an be ategorially desribed by linguisti variables whih maintainthe intuitive knowledge for the system. For example, rates may be desribed as pos-itive fast or negative slow and ontrol ations lassi�ed as negative large or positivemedium. The major advantage of fuzzy logi over onventional ontrol algorithmsis that systems an be ontrolled, based on the designer's experiene (input andoutput observations), not on the theoretial methods, whih implies that there is noneed to rely on preise models. Fuzzy inferening provides the means of systemat-ially synthesizing various fuzzy rules to produe deision ations so that omplexnon-linear systems an be ontrolled. In addition, the ability to ontrol a system in



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 80an unertain environment is an important feature, whih is the main reason to beused here for solving our problem. Fuzzy logi has been used in ontrol for manyyears. Engineers have suessfully applied fuzzy systems in many ommerial areas.Fuzzy systems \intelligently" automate subways, fous ameras, tune olour televi-sion, ontrol automobile transmissions, defrost refrigerators, ontrol air onditioners,automate washing mahines and vauum sweepers, guide robot arm manipulators,ontrol traÆ lights, elevators and ement mixers. Most of these appliations origi-nated in Japan, and have been sold and applied throughout the world. Some detailsare given by Kosko [83℄, Bonivento et al [84℄, Palm and Driankov [85℄, Mneill andFreiberger [86℄.Linear ontrol tehniques are mainly useful for linear systems. Sine we are dealingwith a nonlinear plant, onventional tehniques will not be appropriate to use here.Many proesses ontrolled by human operators in industry annot be automatedusing onventional, linear ontrol tehniques, sine the performane of these on-trollers is often inferior to that of the operators.Conversely, knowledge-based ontrol tehniques try to formalise the domain-spei�knowledge, and use reasoning mehanisms for determining the ontrol ation fromthe knowledge stored in the system and from the available measurements, as givenby Palm and Driankov [85℄. These ontrol systems try to enhane the performane,reliability and robustness of the urrent ontrol system. Fuzzy Logi Controllers(FLCs) are rule-based ontrol systems where fuzzy sets are used for speifying qual-itative values of the ontroller inputs and outputs. The experts knowledge ontainslinguisti terms suh as negative (Neg), zero (Z), positive (Poz) of the error variableand an be represented by fuzzy sets (see �g. 4.1).
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6.9-6.9Figure 4.1: Membership funtions de�ned for the error variableThe membership funtions shown in �g. 4.1 provide a smooth interfae from thelinguisti knowledge to the numerial proess variable.



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 81Using fuzzy sets and fuzzy operations it is possible to design a fuzzy reasoningsystem whih an at as a ontroller, as illustrated in �g.4.2. The ontrol strategyis stored in the form of if-then rules in the rule base. The rules represent an ap-proximate stati mapping from inputs (e.g. errors) to outputs (ontrol ations) (seeFuzzy Logi Toolbox [87℄) and for example an be formulated as follows:If error is negative medium then ontrol ation is positive small.The �rst part of the rule, alled the anteedent, spei�es the onditions under whihthe rule holds, while the seond part, alled the onsequent, desribes the orre-sponding ontrol ation. Both the anteedent and the onsequent ontain linguistiterms (large,small,near zero et.) that reet the experts knowledge of the proess.The anteedent ondition is de�ned as a ombination of several individual ondi-tions, using a onnetive, suh as the logial AND, OR operations. The reader mayrefer to [87℄ for further understanding.
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controlFigure 4.2: Blok-shemati representation of a fuzzy logi ontrollerThe fuzzi�ation module determines the membership degree of the inputs to theanteedent fuzzy sets. The reasoning mehanism ombines this information withthe rule base and determines the fuzzy output of the rule base system. In orderto obtain a risp signal, the fuzzy output is defuzzi�ed using several tehniques toprodue a single ontinuous variable.Fuzzy sets and Membership funtionsA fuzzy set is de�ned as a set with degree of membership assoiated with eahmember. It is a set of ordered pairs whih assoiate eah value of the variable to itsgrade of membership in the set. The grades of membership are represented by themembership funtion �A. Consider a universal, risp set U , alled the universe ofdisourse and a fuzzy set A. The membership funtion �A maps the elements x 2 Uinto real numbers in [0; 1℄: �A(x) : U �! [0; 1℄



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 82whih gives a measure of the grade of membership of x whih belongs to U in thefuzzy set A. The position and shape (triangular or bell shaped) of �A depend on thepartiular appliation. For a PD ontroller there is no di�erene between di�erentshapes, as given by Hamm [88℄. Fig. 4.1 shows an error of 1:75 whih belongs 50% tothe set of Z and 50% to the set of Poz. The � degrees of the fuzzy sets Z and Poz areboth 0:5, whih is an orthogonal ondition and it has been onsidered in our work.It has been shown by Lot� [89℄ that membership funtions have a dominant e�eton the reasoning proess rather than the number of rules or the inferene mehanism.Fuzzy set operationsFuzzy set operations are performed by logial onnetives suh as:AND �A(x) = min(�A(x); �B(x)) = �A ^ �B,OR �A(x) = max(�A(x); �B(x)) = �A _ �B,NOT �A(x) = 1� �A(x).In our work, the minimum operator is used for onjuntion and the maximum oper-ator for disjuntion. The Mamdani method is used for our fuzzy inferene system,i.e. the min operator rule is adopted for the logi AND operator. For example, thevalue W l of the anteedents (Al1 and Al2) of the lth rule (Al1; Al2; Bl) is alulated as:W l = min(�A1; �A2) = �A1(See) ^ �A2(Sde _e)whih is the degree of ful�llment of the lth rule, where �A1(See), �A2(Sde _e) are themembership grades of the saled variables in fuzzy sets A1, A2 and Se, Sde are thesaling fators for the input variables with ^, the min operator. The most ommonmethod for determining the output value for eah ontrol in the vetor u is by al-ulating the entroid of where its membership funtion values are ating along theoutput ontrol's universe of disourse. There are many possible ways to defuzzify anoutput. The entre of area an be used for defuzzi�ation and the output is given by:yo = PW luliPW lwhere ul is the enter of the lth rule's onsequent fuzzy set Bl, i.e. �lB(uli) = 1. Therisp perturbation ontrol is given by u = Suyo, where Su is the saling fator forthe ontrol output u. Eah rule is weighted by the degree to whih the anteedentof the rule is ful�lled. The �nal ontrol deision is obtained as the weighted averageof all the ontributed onlusions.Adjustment of membership funtions and rules for a fuzzy ontroller is examined indetail by Hamm and Splettstoser [88℄. A detailed proedure for seleting the typeand the number of �A for eah domain has been onsidered. They have found that



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 83up to �ve �A is easier to design and optimise. If there are more than two inputs orif eah input has many terms, then the number of rules an inrease dramatially.A very useful idea of applying PD fuzzy ontrol for vehile traking has been investi-gated by Chiu et al [40℄. The derivative ontrol rules are given muh smaller inuenethan the proportional ontrol rules to avoid over-damping, in the same way that thederivative gain is typially smaller than the proportional gain in onventional linearontrol. The derivative ontrol ations are prediated upon the ondition that therate error is near zero. The resultant behaviour is that the ontroller would notimpose damping until the vehile approahes the ommanded roll rate. Their on-trol strategy has pushed the vehile toward the ommanded roll rate at maximumaeleration, and applied damping to stabilize the vehile only during lose traking.Fuzzy logi has been suessfully applied in ombination with other tehniques. AnInput/Output Linearization with an adaptive fuzzy outer loop has been applied tothe depth ontrol of a nonlinear underwater vehile by Trebi-Ollennu and White [90℄.The adaptive fuzzy systems are Sugeno type and have been used to approximate theunertainties aused by forward speed variations in order to improve the robustnessproperties. This ontrol sheme has enhaned the losed loop performane by re-duing the output traking errors and by adding \intelligene" to the onventionalInput/Output ontrollers.A hybrid approah, integrating Feedbak Linearization and FLC (FL/FLC), hasbeen proposed by Lin and Gau [91℄ for improving the transient performane androbustness of a highly nonlinear and open loop unstable magneti bearing system.The disturbane rejetion apability of FL/FLC was muh better than only theFL approah. Rotor speed trajetory and gap deviation regulation have been on-sidered. The nine output variables of the system were transformed to nine lineardeoupled subsystems with no internal dynamis. For eah of these systems, 7 �Ainput-output variables were used to produe a 49 rule base struture of the FLC.However, the FLC parameters were tuned by using extensive omputer simulations(e.g. the trial and error method) whih an be very omputationally expensive.A very good ontrol design approah has been investigated by Kwan et al [92℄ for apith autopilot for a simple missile model. They have used on-line tuning of a fuzzyCMAC neural network to improve the robustness of Feedbak Linearization. Thefuzzy logi has been used to produe a systemati way of adjusting the neural net-work weights on-line. No o�-line training phase was needed whih is an interestingahievement. However, an inreased omplexity of the ontrol system is assoiatedwith suh a design.An interesting approah has been proposed by Leland [93℄ for using Feedbak Lin-earization to design ontrollers for systems with fuzzy unertainties. Instead ofonsidering bounded unertainty, they have used a fuzzy unertain model. TheFeedbak Linearization has provided asymptoti stability for the ontroller.



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 844.1.2 Fuzzy trajetory ontroller forthe feedbak linearized systemA Feedbak linearized system with �xed gain trajetory ontroller has been designedin Chapter 3. The nominal model of aerodynami oeÆients has been onsidered.In order to design an appropriate fuzzy logi ontroller whih an deal with thenon-linear parametri unertainties of the missile model, we have to reprodue thedynami behaviour of the Input/Output linearizable ontroller by replaing the �xedgain trajetory ontroller with a FLC type. At the start, the model has been keptwith the exat knowledge of the aerodynami oeÆients and the missile on�gu-ration parameters, so initial fuzzy rules have been derived. One input-one output(i.e. error-ontrol ation) FLC with only �ve rules has been derived. The ontribu-tion of the fuzzy logi trajetory ontroller has signi�antly improved the transientresponse. Almost no steady state error and smaller overshoot have been ahieved,onversely to the design with the �xed gain trajetory ontroller. Eah variable ofthe FLC has �ve membership funtions symmetrially plaed within the Universe ofDisourse. A two input-one output FLC has also been designed taking into aountthe derivative ation of the error. This resulted in steady state error. The trialand error mehanism has been used with many iterations before an appropriate rulebase struture has been ahieved whih is time demanding and not very pratial.Hene it has been replaed by evolutionary optimisation using a geneti algorithmfor better adaptation.
SEARCH

ALGORITHM

+   f(x) +   g(x)u∆ ∆

ACTUATOR f(x)+g(x)u
ν−α

β
PERFORMANCE

ANALYSIS
V CHANEL

FLC

vd v

v v
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CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 85polynomials within a large range of 0Æ to 45Æ roll angle. Fast 250 rads=se seondorder linear atuator representing rudder is inluded within the missile dynamis.The non-linear ontrol law u = ���� , is derived by the feedbak linearization teh-nique, as detailed in equation 3.47, Setion 3.3.1 of Chapter 3. The seleted outputfor the linearization proess is the side-slip veloity. A fuzzy logi trajetory on-troller is used in the outer loop for the side-slip veloity, V CHANEL. The trajetoryontroller is designed, based on fuzzy inferene engines, as two inputs - one outputsystem with four membership funtions for eah variable. An optimisation algorithmis used to generate the fuzzy ontrol parameters (i.e. membership funtions and rulebase struture), while the non-linear ontroller u = ���� remains �xed. The obtainedfuzzy ontroller is tested on �ve trials (i.e. randomly generated models). Then aperformane analysis is done o�-line for eah autopilot simulation. Four losed loopperformane riteria are onsidered (i.e. steady state error, settling time, rise timeand overshoot). The maximum objetive value of the �ve trials is returned to theoptimisation algorithm for evaluation of the tested fuzzy ontroller. The optimi-sation proess repeats for large number of iterations until satisfatory losed loopperformane of the autopilot system is obtained.4.2 Optimisation of the Fuzzy Logi ControllerOne of the major drawbaks of fuzzy logi ontrollers is that the membership fun-tions are hosen arbitrarily whih implies a need of using a \trial and error" designphilosophy to improve the losed-loop system's behaviour, whih may not alwaysbe possible. An evolutionary optimisation tehnique is suggested and desribed inthe next setion as a possible way to tune the FLC parameters. A surrogate ad-ditive funtion whih transfers the vetorised multi-objetive problem into a salaroptimisation problem is used here.4.2.1 Evolutionary AlgorithmThe membership funtions and rule base struture of a fuzzy ontroller an be de-�ned by trial and error. However, there is a need for a suitable learning mediumin order to inrease the robustness of the FLC. The hoie of learning method isditated by the nature of the task domain and the available information. Onepossible way would be the use of Neural Networks (NNs), as detailed by Linkensand Nyongesa [31℄. They depend highly on the availability of suÆient data rep-resenting the input-output mapping, but in a situation where suh data annot beobtained an alternative approah is neessary. One suh approah is to test hypo-thetial trial solutions of the system and generate better solutions on the basis ofthe performanes using evolutionary tehniques. Geneti algorithms (GAs), whihare modelled on natural evolutionary strategies, based on Darwinian priniple ofsurvival of the �ttest in biologial reprodution, as desribed by Goldberg [94℄, areone possible methodology that an be used as a learning and optimisation teh-nique under suh onditions. They are apable of �nding global solutions when



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 86employed in noisy searh spaes, whereas NNs an only provide �ne tuned adjust-ments using loal searh. The operators GA use, to diret them through the searhspae, have features for self repair, self guidane and reprodution whih are foundin natural genetis of biologial systems. Whenever robust performane is requirednature does it better. GAs are theoretially and empirially proven to provide ro-bust searh in omplex spaes. They have been suessfully applied to a varietyof problems suh as funtion optimisation, ontrol, identi�ation, self adaptive andlearning systems. The reasons for a large number of appliations are beause GAsare omputationally simple and powerful in their searh engines. Also they are notlimited by restritive assumptions onerning ontinuity, existene of derivatives orunimodality. Other optimisation tehniques are shown by Rao [95℄, suh as Cal-ulous based (A), Enumerative (B) and Random (C). Some are loal in sope (A)and use point by point searh (A,B and C), hene onverging to a loal optima.Suh methods depend strongly upon the restritive requirements mentioned aboveand are suitable for a very limited problem domain. Conversely GAs onsider manypoints from the searh spae simultaneously (a population of strings limbing manypeaks in parallel) whih preserve the probability of onverging to global optima.Also they only need the objetive funtion values assoiated with eah individualsto asses the quality of the solution. Unlike many methods, GAs use probabilistitransition rules to guide their searh. They use random hoie as a tool to guidethe searh toward regions with likely improvement and have problem-independentharateristis of the searh sheme, whih enables blak-box treatment of the GAode. That is the GA supplies the parameters to the optimisation problem and inreturn, the software provides the �tness funtion whih is then utilized by the GAto evolve the next generation. Goldberg has given a very good example in [94℄ ofthe blak box optimisation problem with on-o� swithes illustrating the idea of aoding and a payo� measure.How GA's workThe basi yle for GAs is illustrated in�g. 4.2.1. It starts by randomly generat-ing a population of individuals (strings)whih are then evaluated by some �tnessfuntion. Then seletion takes over to re-produe new individuals by using GA op-erators to reate a new generation of pos-sible solutions. Eah string represents onepossible solution to the problem.
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Figure 4.2.1 Simple GA strutureGAs work iteration by iteration, generating and testing a population of strings.This population by population approah is similar to a natural population of biolog-



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 87ial organism, where eah generation suessively evolves into the next generationby being born and raised until it is ready to reprodue. Optimal strings are foundthrough population reprodution via seletion, rossover and mutation. Seletionis based on stohasti universal sampling and is the proess where an old string isarried through into a new population depending on its performane index (�tnessfuntion) value. So strings with above average �tness values get larger numbers ofopies in the next generation. This strategy, in whih good strings get more opiesin the next generation, emphasizes the survival of the �ttest onept of GA. Arossover phase then follows. Crossover exhanges information between the seletedstrings paired at random (i.e. between two searh points). The mutation operatoris an oasional random alteration of a string position for binary genes (based onprobability of mutation). For real genes, it mutates eah variable from the popula-tion with a given probability. The mutation operator helps to avoid loal minimum,whih is very important.In summary, the searh algorithm has inherent parallelism whih enables rapidsearh of the high-performane regions of omplex domains suh as a fuzzy logiontrol struture. GAs have been reognised to be a powerful tool for learning theontrol rules and tuning their membership funtions: Bonivento et al [84℄, Bia etal [96℄. An important point to be mentioned here is that a good solution depends onsetting the objetive funtion orretly. However a major drawbak of the tehniqueis that GAs are omputationally ineÆient as many trials are neessary until rea-sonable good solutions are found. But with the new high speed tehnology suh asUNIX stations, high performane omputers (e.g. Cran�eld University SGI CRAYORIGIN 2000 superomputer), GAs are able to produe fast solutions. As a on-lusion we an highly reommend that this tehnique an be useful for generatingfuzzy ontrol parameters of a non-linear missile.4.2.2 GA tuning the FLC parametersThe steps for tuning the FLC are as follows:First, the saling fators (SF) for inputs and outputs of the FLC are determinedbased on observation of the error, derivative of error and output responses of the�xed gain trajetory ontroller for the losed loop system with the nominal model.The domains of (�SF to +SF ) are the most important parameter of the �A tuning,as given by Hamm and Splettstoser [88℄. The e�et of the domain of a fuzzy variableis exatly the same as that of the gain fators of a non fuzzy ontroller. Changing theerror domain a�ets rise time and overshoot about three times as muh as hangingthe domain of the derivative of error [88℄. However the SFs are not inluded in theoptimisation proedure in our work, they are not part of the hromosome struture.Seond, the membership funtions have been shown to be more important to tune,rather than the rule base parameters, as detailed by Driankov et al [35℄. A modi�edterm in a term set a�ets one row, olumn or diagonal in the rule table, while a mod-



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 88i�ed rule only a�ets a table ell. In our work, the membership funtions for eahuniverse of disourse have been hosen standard and uniformly spreaded. Initially,they are uniformly positioned triangles overlapping at a 50% level over the nor-malised universe of disourse. Sine the ontroller is de�ned by a nonlinear ontrolsurfae in (e; Æe; u) spae, three term sets for eah variable (e; Æe; u) are designed.At the start, the �A distribution is symmetri, and after the optimisation the �Adistribution is asymmetri. In other words by hanging the distribution of theseterms within the ontrol variables domain, the design algorithm has been adjustingthe gains of the trajetory fuzzy outer loop.The existing iterative approahes for hoosing the membership funtions �A aremanual trial and error proess and lak learning apability and autonomy. Theautomati generation of fuzzy rules and membership funtions an be approahedby using evolutionary algorithms and ategorised into four types: learning �A with�xed fuzzy rules, as Bonivento et al [84℄; learning fuzzy rules with �xed �A; learningfuzzy rules and �A in stages, �rst evolving good fuzzy rule sets using �xed �A, thentuning �A using the derived fuzzy rule sets; learning fuzzy rules and �A simulta-neously as Hong et al [97℄, Liska and Melsheimer [98℄. Eah hromosome in [97℄onsist of an intermediary fuzzy rule set and its assoiated �A. This allows the GAoperators to integrate multiple fuzzy rule sets and their �A at the same time. This isthe way we have hosen to generate the FLC parameters of the trajetory ontroller.Further tuning near the optimum an also be ahieved by using a onjugate gradi-ent method [98℄. GAs have also been applied to FLC design by Ng and Li [99℄ forsearhing poorly understood irregular and omplex spaes. Forty nine bits have beenused to form the rule base struture where a single bit represents eah ontrol ation.The proposed framework of our workmaintains a population of fuzzy rule setswith their membership funtions and usesthe evolutionary algorithm to automati-ally derive the resulting fuzzy knowledgebase. A hybrid real valued-binary hro-mosome is used to de�ne eah individualfuzzy system. The real valued parame-ters are de�ned as being the [4a;4b;4℄values shown in �g.4.2.2, whih lie inrange (0; 1℄. Triangular shapes are usedfor the membership funtions. By vary-ing 4a;4b;4, the entre of eah �A arevarying whih hanges the shapes of themembership funtions. a∆ b∆ c∆

µ=1

e maxe= 0Figure 4.2.2 Membership funtionsFive membership funtions are used for eah input and output, for better losedloop performane. Next the rule base struture is de�ned. The binary omponent



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 89shown in �g. 4.4 enodes the set of rules used in the system. The membership fun-tions �k of the output Ok for eah rule is either on or o� (0/1) and orresponds tothe form:if Ai is negative small AND Bj is zero then Ok is negative small (4.2)where Ai denotes membership funtion i of input A (i.e. error), Bj denotes mem-bership funtion j of input B (i.e. derivative of error), and Ok denotes membershipfuntion k of the output O (i.e. ontrol ation). In that way the number of �i foreah output variable involved in eah rule is allowed to hange dynamially duringthe GA searh. This proess allows a full set of rules to be developed for the fuzzysystem, but maintains a �xed length hromosome. This leads to a hromosomewith 12 real valued genes for two inputs and one output and with 125 binary genesfor the rule base. For simpliity �g. 4.4 shows only four membership funtions ofreal-binary oding of the FLC. The length of the hromosome is N:r = r2:r = r3,where N is the number of rules and r is the number of membership funtions. Thesimulations were arried on Unix workstation with a proessor speed of 300 MHz.When using multi-objetive optimisation and real-binary oding for the rule basestruture, approximately 12 hours were needed for the GA to optimise the ontrolparameters if only one demand was required. If eah hromosome is evaluated onthree trials (i.e. on three di�erent demands), then 36 hours omputational timeis needed. By using real-binary oding of the hromosome struture, the inreaseof number of membership funtions leads to signi�ant inrease on the size of therule base struture whih is very ineÆient omputationally speaking. However,produes ontrol surfaes whih are more robust on parametri unertainties. Alsowhen 6 membership funtions are used, the length of the hromosome is r3 = 216bits long. The maximum number of generations used to stop the evolution proessis not enough to tune the rules and performane requirements are not met.In order to derease proessing time, the hromosome struture was modi�ed toreal-integer oding, as shown in �g. 4.5. This redues the length of the hromosomeby a fator r, where r is the number of membership funtions. In this ase eahrule an �re only one membership funtion at the time. Zero is used when a rule isnot �red. For evaluations of a hromosome on one trial only (i.e. one set of modeloeÆients and one required demand), the proessing time dereased from 12 downto 5 hours.The fuzzy system uses produt for the member funtion `AND'. The `OR' fun-tion is not required as the rules are all expressed as `AND' terms. The impliationmethod hooses the minimum value and rops the output member funtions. Theaggregation method hooses the maximum values of the set of member funtions. Aentroid approah is used to defuzzify the output.The evolutionary algorithm follows the usual format of ranking, seletion, rossover,mutation and evaluation but with the real and binary parts of the hromosomesbeing proessed separately. The number of o�springs that are generated is the same



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 90as the number of parents, hene a total replaement poliy is used. To evaluate theperformane of eah hromosome, a �tness funtion has been de�ned suh that toassess the losed loop behaviour of the autopilot system. Hene four objetives suhas: rise time, steady state error, overshoot and settling time have been used. Threeof these objetives: overshoot, rise and settling time have been treated as penal-ties in order to meet the spei�ed requirements, i.e., if the parameters are within arequired range, the penalty is zero and the penalty inreases when a threshold is ex-eeded. A multi-objetive approah simpli�ed to a salar optimisation is onsideredin this hapter by ombining the four losed loop performane riteria in one fun-tion O = O1 +O2 +O3 +O4, with O1 used for steady state error, O2 for overshoot,O3 for rise time and O4 for settling time. However, in Chapter 5, these riteria aretreated separately, hene a multi-objetive optimisation problem is also onsidered.
1010 0010

0010

...
...

... ... ...

... ...

...
...... ...
...

...

1

1

2

3

4

2 3 4e
e
.

1 2 43

a b c

1 2 43

e e ν ... ....
9 Real Genes

64 Binary Genes

1010 0010 0010
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The fuzzy ontrol parameters were tuned on a large set of randomly generated mod-els of aerodynami oeÆients. These models are simulated within the polynomialsof 0Æ to 45Æ roll angle. The polynomials are desribed in tables 2.1 and 2.2 of Chapter2. Eah individual (i.e. an alternative trajetory ontroller) has been evaluated on�ve trials, i.e. randomly generated missile models ( _x = fi+4fi+(gi+4gi)u) wherei = 1; : : : ; 5 and 4fi;4gi are non-linear funtions of the aerodynami oeÆients(Cyv; Cy� ; Xp; Cnr). In that ase �ve suessive evaluations of the same hromosomeinformation returned �ve sets of objetives. The maximum objetive value of the�ve trials (i.e. steady state error if multi-objetive optimisation is onsidered) hasbeen returned to the GA for evaluation of the hromosome. After all the individualshave been ranked, rossover and mutation operators are proessed separately forthe real and the binary part of the hromosome. The number of o�springs that aregenerated are the same as the number of parents, hene a total replaement poliyhas been used. The results shown in �g. 4.8 of Chapter 4 are obtained for the entireight range of 0Æ to 45Æ roll angle. For the salar optimisation problem, the algo-rithm has ahieved onvergene in approximate three hours omputational time ona 300 MHz Unix workstation. During the optimisation 6000 fuzzy logi ontrollerswere evaluated. However when this algorithm is applied to multi-objetive optimi-sation problem, see �g. 4.6, two problems arise.First, the GA proess has taken approximately 12 hours whih was omputation-ally ineÆient. For eah generation, Pareto solutions that are identi�ed are added
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Figure 4.6: GA Multi-objetive optimisationto the existing Pareto solution set. This produes a population with more indi-viduals for the GA to evaluate at eah generation. Beause 80% of the popula-tion were non-dominated solutions, they were on the Pareto front, hene at eahnext generation, the number of individuals to evaluate was progressively expanding.Also when a multi-objetive optimisation was onsidered, the ranking proess hastaken longer beause eah ontroller was evaluated based on four deision variables(Eri; T si; T ri; OSi shown in �g. 4.6), whih de�nes the losed loop performaneriteria suh as steady state error, settling time, rise time and overshoot.Seond, we annot maintain robustness beause the Pareto front was noisy, henewas never onsistent. Also we annot a�ord to test on many random models toover the parameter set to suÆiently maintain good solutions from one generationto the next one, beause we have not exerised enough models to be statistiallyonsistent. There were many good solutions within eah generation whih were loalbut were lost beause in the next generation they were tested on a ompletely newrandomly generated models. Sine the good solutions were lost it was not possibleto breed from them, and hene maintain a robust ontrol surfae towards modelunertainties whih may arise within suh large range of aerodynami oeÆients of0Æ to 45Æ roll angle.For solving suh a noisy problem non-dominated sorting may not be the best wayof ranking the individuals. Some other tehniques suh as MOGA, MOPSEA wouldprovide better performane, as detailed by Hughes [100℄.The omputation eÆieny of the GA algorithm an be improved if a oevolu-tionary approah is possible to apply. For example Pena-Reyes and Sipper [101℄have introdued the fuzzy ooperative oevolution to a real world problem suh asbreast aner diagnosis. In their framework the two oevolving speies were de�ned



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 93respetively as membership funtions and rules where the �tness of the individuals(membership funtions) depend on their ability to olaborate with individuals fromthe other speies (fuzzy rules). Further understandings of their algorithm is underinvestigation.Stability issue of the FLCA stability analysis of the nonlinear fuzzy ontroller in a losed-loop on�gura-tion with the equivalent feedbak linearized system is very diÆult. The amountof noise oming from the aerodynami oeÆients have aused unpreditable para-metri unertainties sine we annot measure them, neither we do know how manyaerodynami fores or moments will be distributed, hene impossible to analyti-ally analyse. The available analytial methods from nonlinear system theory suhas Lyapunov or Popov riterion require an aurate desription of the proess andthe stability proofs an generally only be applied under very speial onditions andvalid only for simpli�ed models. The resulting ontrollers are usually onservativebeause of the onservative nature of the stability riteria. Therefore the analysisof fuzzy ontrollers in pratie are mostly examined by simulation studies.4.2.3 Results for the salar optimisation problemFig. 4.7 shows the fuzzy surfae of the trajetory ontroller generated by the evo-lutionary algorithm. This has been developed with randomly generated modelsexerising the full range of aerodynami oeÆients from 0Æ to 45Æ roll angles. Thepolynomial models for 0Æ and 45Æ are de�ned in tables 2.1 and 2.2, in Setion 2.8.1of Chapter 2.Model variations at roll angle 45Æ have aused large steady state error to the ael-eration and the veloity responses, hene by using �xed gain trajetory ontrollertraking performane has not been ahieved, as shown in �g. 4.8a. On the otherhand the performane of the fuzzy ontroller has been veri�ed by 200 random trialsand the results have been summarised in �g. 4.8b, where the solid line shows theresponses for the model at 0Æ roll angle, and the dashed line is for the model at 45Æroll angle.The desired aeleration ad is ahieved by using the non-linear equation ad = f(v)whih is shown in more details in Chapter 2. Therefore the desired aeleration is afuntion of the lateral veloity demand. The error dynamis are onstruted usingthe ad signal and the feedbak of the atual states - veloity, rate, and aeleration.The results for lateral aeleration demand 10 m=se2 are shown in �g. 4.8. Thelateral aeleration is ontrolled through side-slip veloity and the losed loop per-formane riteria are de�ned for the side-slip veloity. As a result, the steady stateerror on lateral aeleration has not been orreted by the fuzzy trajetory on-troller when the model at roll angle 45Æ was used (see the dashed line of �g. 4.8b).
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Figure 4.7: Surfae of two input, one output fuzzy ontrollerHowever, for both models, at roll angle 0Æ and 45Æ, the fuzzy trajetory ontrollerhas ahieved satisfatory traking performane for side-slip veloity response withalmost no steady state error and no overshoot, shown by Blumel et al [102℄.
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a)Fixed gain trajetory ontroller b)Fuzzy gain trajetory ontrollerFigure 4.8: Results for 10 m=se2 lateral aeleration demandsolid line - model parameters at 0Æ roll angledashed line - model parameters at 45Æ roll angleConversely to �g. 4.7, the fuzzy ontrol surfae shown in �g. 4.9 has been devel-oped with the model exerising the nominal aerodynami oeÆients only. Fig. 4.9ashows the full fuzzy surfae of the trajetory ontroller generated by the evolution-ary algorithm. Fig. 4.9b shows the setion of the surfae that has been used, whihis only a small area. These results are obtained by using four membership funtionsfor the fuzzy logi ontroller, whih were not enough to ahieve good losed loopperformane. The ontour of 4.9b shows the usage of the di�erent regions (i.e. the�red rules of the full ontrol surfae). It is lear that only a small proportion is
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CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 984.3 Fuzzy Gain ShedulingThe FLC has been tuned for 5g lateral aeleration demand only. The responsesare very slow on rise time but good on steady state error, as shown in �g. 4.12.However, for demands higher than 8g, in this example 10g demand is demonstrated,the FLC has not been able to ontrol the veloity to the required demand. Thisis obvious, beause the range of the saling input-output domain has been hangedwhih has automatially altered the rule based struture. Therefore, a hange ofthe FLC saling domain is required for any other demand di�erent than the tunedone. An interpolation for a large set of demands (i.e. 1g; : : : ; 15g) and their FLC'sinput-output saling fators have been proposed in the next setion.
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4.3.1 Polynomial �t of the multiple demands for FLCs sal-ing fatorsInput-Output salingThe membership funtions de�ning the fuzzy values of ontroller inputs and on-troller outputs have been de�ned o�-line, on a ommon normalized domain. Thismeans that the atual physial values of the ontroller's inputs and outputs aremapped onto the same predetermined normalized domain. This mapping is allednormalization and it is done by the so-alled normalization fators. Input saling isthe multipliation of a physial, risp ontroller input with a normalization fator



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 99so that it is mapped onto the normalized domain. Output saling is the multipli-ation of a normalized ontroller output with a denormalization fator so that itis mapped bak onto the physial domain of the ontroller outputs. Hene, fuzzi�-ation, rule �ring and defuzzi�ation an be designed independently of the atualphysial domains of the ontroller inputs and ontroller outputs. The saling fators,whih desribe input normalization and output denormalization, play a roll similarto that of the gain oeÆients in a onventional ontroller. In other words, theyare of utmost importane with respet to the ontroller performane and stabilityrelated issues, i.e. they are the soure of possible instabilities, osillation problemsand deteriorated damping e�ets as noted by Palm [85℄. In Bonissone's hapter ofFantuzzi's book [84℄, the saling fators of the FLC have been tuned by GAs. Sometime saling fators are used to �ne tune the performane of the system in a similarway to the tuning of a PID ontroller. In [103℄ the �ring of the rules in a fuzzyontroller has been shown by Chen with di�erent values of the saling fators. Theadjustment of the fators is equivalent to the re-onstrution of the membershipfuntions in a rule-base, and should be done arefully if the linguisti meaning ofthe rule-base has to be preserved. It is inappropriate to tune the input saling fa-tors if the rule-base struture is onstruted by experts. Fine tuning an be betterahieved by tuning the membership funtions only, so that the linguisti meaningof the rule-base is preserved.Bearing in mind those valuable �ndings we ould suggest in future investigations toinlude the optimisation of the FLC's saling fators in our work in the presene ofunertainties. However for now, the three saling fators (error, derivative of errorand output) for eah required lateral aeleration demand 1g; 2g; : : : ; 15g have beendetermined via simulations based on the results obtained with �xed gain trajetoryontroller for the nominal model. Then a polynomial �tting has been used to in-terpolate between the required demands for side-slip veloities in order to obtainthe saling fators of the FLC's inputs and outputs for eah demand. As a result,smooth transition of the saling fators has been ahieved when a di�erent demandwas required within the above mentioned range.There are two possible ways of applying polynomial �tting: One, is to use thelinear relationship between the required side-slip veloity demands and their salingfators; Two, is to use the non-linear relationship between the required aelerationdemands and the saling fators for the veloity inputs and outputs of the fuzzyontroller.By applying the linear relationship type of polynomial �tting, it has been foundthat the �rst saling fator for the error is a 1st order polynomial and the polyno-mial urve is shown in �g. 4.13.SCv�er = f(vd) = vd (4.3)where vd represents the required side-slip veloity demand for the required lateralaeleration respetively. The saling fator for the derivative of error is of a 3rd



CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 100order polynomial: SCv�erd = f(vd) = p3v3d + p2v2d + p1vd + p0 (4.4)and the output saling fator is a 1st order polynomial.SCout = f(vd) = q1vd + q0 (4.5)where p0; : : : ; p3 and q0; q1 are the polynomial �t oeÆients for eah saling fatorsrespetively.The seond way is to interpolate between the required lateral aeleration demandsand their veloity saling fators respetively. The non-linear relationship (veloity-aeleration) an be seen in �g. 4.14. Again the fuzzy logi engine has been saledbetween (0; 1). In order to ahieve the orret saling fators for the inputs andoutput of the fuzzy trajetory ontroller we have interpolated the data between anumber of required demands for lateral aelerations (i.e.1g; 2g; : : : ; 15g) and theirorresponding saling fators for the error and derivative of error of side-slip veloityrespetively.For the �rst saling fator a 4th order polynomial �t has been obtained and thepolynomial urve is shown in �g. 4.14.SCv�er = f(ad) = b4a4d + b3a3d + b2a2d + b1ad + b0 (4.6)where ad represents the required lateral aeleration demand and SCv�er the orre-sponding saling fator respetively. The saling fator for the derivative of error isa 3rd order polynomial.SCv�erd = f(ad) = 3a3d + 2a2d + 1ad + 0 (4.7)and the saling fator for the output is a 4th order polynomial.SCout = f(ad) = d4a4d + d3a3d + d2a2d + d1ad + d0 (4.8)where b0; : : : ; b4 and 0; : : : ; 3 and d0; : : : ; d4 are the polynomial �t oeÆients foreah saling fators respetively.
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CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 1034.3.2 Results for a large range of lateral aeleration de-mandsIn a situation when a hange of a demand is required, smooth transition and gradualinterpolation between the fuzzy ontrol surfaes has been automatially ahieved.The FLC has been simultaneously tuned for two di�erent demands, in this ase5g and 15g. The resulting rule base struture and membership funtion's shapeshave been ahieved by the saling fators determined through the polynomial �tting.The linear type relationship to determine the polynomials for eah saling fator hasbeen used. The more points we use, the better �t we get. The purpose of suh atuning proess is to improve the system performane with the intention to maintainthe linguisti meaning of the fuzzy ontroller, whih has been validated for eahrequired demand.The FLC ontrol surfae is shown on the left side of �g. 4.15. It has been tested fora variety of required demands in this ase 1g; : : : ; 15g. It an be seen that for eahdemand, the FLC saling fators have hanged automatially and desired trakinghas been ahieved. However the linguisti meaning of the rule base struture hasbeen altered and variations in some rules an be seen. The absissa of the rightolumn �gures have presented the phase portrait for the side-slip veloity errors andtheir derivatives. Indiret lateral aeleration ontrol has also been ahieved by re-quiring di�erent side-slip veloity demands (for example 1g; 5g; 10g; 15g), as shownin �g. 4.16.
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Figure 4.15: The best tuned FLC for 15g and 5g simultaneously
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Figure 4.17: Fixed gain trajetory ontroller for multiple demands 15g, 10g, 5g, 1gIn order to ompare the performane of the �xed gain and the fuzzy gain trajetoryontrollers, we have demonstrated in �g. 4.17 and �g. 4.18 the side-slip veloity andlateral aeleration responses for a set of di�erent demands (1g,5g,10g,15g). Thefuzzy trajetory ontroller has been found to be superior to the �xed gain one. Thequality of the responses has been improoved on steady state error and overshoot.The feedbak linearizable system has been modi�ed by negleting the g term inthe system when feeding bak the aeleration. This rendered a signi�ant steadystate error whih has not been orreted by the �xed gain ontroller espeially whenhigher demands were required.Fuzzy Logi Trajetory Controller
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CHAPTER 4. ROBUST FUZZY AUTOPILOT DESIGN 1074.4 ConlusionsA fuzzy nonlinear trajetory ontroller has been proposed within the outer loopto improve the robustness of the Feedbak Linearization with respet to paramet-ri unertainties aused by hanges of the aerodynami oeÆients due to di�erentight onditions. The autopilot design has been found to be robust on mass hanges.The fuzzy logi-feedbak linearized ontrol design has been found to be more ef-fetive for improving the transient and steady state performanes than the �xedgain-feedbak linearized one. The ability of the FLC to improve the losed loopperformane while managing unertainties has been shown.The fuzzy inferening proedure an provide the means of systematially synthe-sizing various fuzzy rules to produe deision ations so that a omplex non-linearmissile system an be ontrolled. Fuzzy reasoning builds the understanding of im-preision into the proess, hene provide the ability to ontrol the system in anunertain environment and derive smooth ontrol ation for unertain system be-haviour whih is one of the most important harateristis of an intelligent ontrolsystem.The FLC is of nonlinear nature, hene an be designed to apture the nonlineardynamis of a system. By inreasing the number of the membership funtions, theFLC an ahieve better losed loop performane, but for the loss of omputationaltime, beause the number of rules inrease signi�antly. When a large number ofrules must be aptured and stored, the FLC implementation an be expensive (om-putationally speaking).The trial and error mehanism for tuning FLC parameters has been replaed by evo-lutionary algorithm optimisation using GAs for better adaptation and robustness.The hybrid ontrol strategy has been validated via extensive omputer simulations.A fuzzy logi sheduled ontroller for missile autopilot design has been examined.The fuzzy logi input output saling fators have been determined by using polyno-mial �tting for a large range (1g up to 15g) of multiple aeleration demands.This hapter has shown that fuzzy ontrollers an be used for solving engineeringproblems allowing the designer to investigate the properties of the system. Thesesystems are reliable over wide variations in plant dynamis and o�er ontrol de-signers a more elegant solution for suh a omplex autopilot design system. Alsohardware hip and board level solutions are available, as stated by Mneill andFreiberger [86℄, hene fuzzy ontrol systems an be prototyped.The next hapter will address the optimisation of the fuzzy trajetory ontrol pa-rameters from multi-objetive point a view.



Chapter 5Multi-objetive optimisation usingGAMany problems involve simultaneous optimisation of multiple objetives. In prin-iple, multi-objetive optimisation is very di�erent from single objetive optimisa-tion. In single objetive optimisation, one attempts to obtain the best design ordeision, whih is usually a global minimum or global maximum, whihever is theaepted de�nition of optimum. In the ase of multiple objetives one solution thatis best with respet to all objetives may not exist. These solutions are knownas non-dominated. Sine none of the solutions in the non-dominated set is abso-lutely better than any other, any one an be an aeptable solution. The hoie ofone solution over the others requires problem knowledge and problem related fators.One of the main requirements for an autopilot design is to yield a response asfast as possible with the minimum of overshoot so that any ommand is attainedquikly and is of the required magnitude. For low g demands only a slight overshootof short duration is usually aeptable, sine overshoot an ompensate for loss ofaeleration during the initial transient. For high g demands, overshoot is usuallyunaeptable sine the airframe strutural load limit may be exeeded as stated byLin [104℄. In order for the autopilot to yield an aurate and fast response it is veryimportant to assess the quality of lateral aeleration response, whih is quanti�edin terms of rise time, settling time, maximum perentage overshoot with almost nosteady state error. This means that while tuning the trajetory ontrol parameters,the optimisation proess should onsider these four riteria simultaneously, henethe single optimisation problem has beome one of multi-objetive optimisation,whih provides the designer with multiple solutions. Then, question an be asked:Is the engineer more interested in fast rise time responses or is a slow rise timewith no overshoot satisfatory? The four riteria are oniting in nature and aompromise solution must be used. It is interesting to mentioned here that in mostmulti-objetive optimisation ases it is not lear what kind of preferenes shouldbe spei�ed for eah objetive, whereas in this partiular ase the missile engineeris interested in ahieving losed loop performane values within spei�ed ranges inorder that the missile an respond as fast as possible to guidane ommands under108



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 109all ight onditions. The determination of these ranges has been proposed by theauthor in two di�erent ways:1. using referene points (ideal, maximum and minimum values for eah obje-tive), as disussed in Setion 5.42. handling the objetives as penalties based on fuzzy logi membership funtions,as disussed in Setion 5.5.Both ways inorporate preferene information into the geneti algorithm optimisa-tion proess to diret the searh towards feasible areas whih satisfy spei� valuesof the objetives. A Pareto based approah using non-dominated sorting is used toprodue optimal solutions.The aim of this hapter is to produe multiple solutions (alternative fuzzy tra-jetory ontrollers) whih allow the designer to selet the best and to investigate theproperties of the system.5.1 Multi-objetive optimisation problemMulti-objetive optimisation (also alled multi-riteria optimisation or vetor opti-misation) has been de�ned by Oyzka [105℄ as:the problem of �nding a vetor of deision variables whih satis�es onstraints andoptimises a vetor funtion whose elements represent the objetive funtions. Thesefuntions form a mathematial desription of performane riteria whih are usuallyin onit with eah other. Hene, the term 'optimise' means �nding suh a solutionwhih would give the values of all the objetive funtions aeptable to the designer.It an be stated as follows: Find the vetorx� = [x�1; x�2; : : : ; x�n℄Twhih will satisfy the m inequality onstraints:gi(x) � 0; i = 1; 2; : : : ; mthe p equality onstraints hi(x) = 0; i = 1; 2; : : : ; pand optimises the vetor funtionf(x) = [f1(x); f2(x); : : : ; fk(x)℄Twhere x = [x1; x2; : : : ; xn℄T is the vetor of deision variables. The problem is todetermine the partiular set of deision variables whih yields the optimum values



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 110of all the objetive funtions. The onstraints de�ne the feasible region F and anypoint x in F de�nes a feasible solution. The vetor funtion f(x) is a funtion whihmaps the set F in the set X whih represents all possible values of the objetivefuntions. The k omponents of the vetor f(x) represent the non-ommensurableriteria1 whih must be onsidered. The onstraints gi(x) and hi(x) represent therestrition imposed on the deision variables. The vetor x� denote the optimalsolutions (normally there will be more than one).The meaning of optimum is not well de�ned in this ontext, sine it is very rareto get x� suh that for all i = 1; 2; : : : ; k^x2X(fi(x�) � fi(x))In that ase, x� would be a desirable solution. However, normally the ase in whihall the fi(x) have a minimum in F at a ommon point x� does not our in pratieand in that ase ertain riteria need to be established to determine what would beonsidered as an 'optimal' solution.5.1.1 Ideal vetorThe vetor f � is an ideal vetor (the demanded level vetor) in the objetive spaewhih ontains referene values for eah riteria. The values f �j , j 2 1; : : : ; m anbe spei�ed by the deision maker or an be determined by solving eah singleoptimisation problem separately:f � = [minf1(x); minf2(x); : : : ; minfm(x)℄Generally the vetor f � is not attainable.5.1.2 Pareto OptimumThe onept of Pareto optimum was formulated by the eonomist Vilfredo Paretoin the 19th entury. A point x� 2 F is Pareto optimal if for every x 2 F either^i2I(fi(x) = fi(x�))or there is at least one i 2 I suh thatfi(x) > fi(x�)This de�nition says that x� is Pareto optimal if there exists no feasible vetor x whihwould derease some riterion without ausing a simultaneous inrease in at leastone other riterion. The Pareto optimum almost always gives not a single solution,but rather a set of solutions alled non-inferior or non-dominated solutions.1Non-ommensurable means that the values of the objetive funtions are expressed in di�erentunits



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 1115.1.3 Pareto frontThe minima in the Pareto sense are in the lous of the tangent points of the objetivefuntions. The region of points is alled Pareto front. It is not easy to �nd ananalytial expression of the line or surfae that ontains these points, and the normalproedure is to ompute the points F k and their orresponding f (F k). A point x� 2F is a weakly non-dominated solution if there is no x 2 F suh that fi(x) < fi(x�),for i = 1; : : : ; n. A point x� 2 F is a strongly non-dominated solution if thereis no x 2 F suh that fi(x) � fi(x�) for i = 1; : : : ; n, and for at least one valueof i, fi(x) < fi(x�). Thus, if x� is strongly non-dominated, it is also weakly non-dominated, but the onverse is not neessarily true.5.2 Review of multi-objetiveGAs-based approahesThe motivation to use an evolutionary tehnique suh as Geneti Algorithms (GAs)for multi-objetive optimisation problems is beause GAs are very useful for �ndingglobal solutions when applied to multi-modal noisy searh spaes. GAs work witha population of points as it is natural to use them to apture a number of solutionssimultaneously and are powerful in their searh for improvement. Hwang et al [106℄have provided an extensive survey of multiple objetive deision making approahes.Fonsea and Fleming [107℄, followed later on by Coello [108℄ has detailed many ofthem in the ontext of geneti algorithms optimisation. Only a brief disussion willbe given here in order to give some idea of the many possible ways of takling amulti-objetive optimisation problem.Coello [108℄ has distinguished between three di�erent groups: aggregating ('naive'),non - aggregating (none Pareto based) and Pareto based approahes. The �rst group(weighted approah, goal programming, goal attainment and onstraint method)work on the priniples of ombining all the objetives into a single one. There aresome obvious problems suh as providing some aurate salar information on therange of the objetives to avoid having one of them dominate the others. Thisimplies that the behaviour of eah of the objetive funtions should be known butin real world appliations this ould be a very expensive proess (omputationallyspeaking) and is not always possible. However, this is the simplest approah andone of the most eÆient proedures, beause no further interation with the dei-sion maker is required. Also, these approahes are appliable in ases when it isneessary to assign more importane to ertain objetives by using weights. Mostresearhers like Begg et al [109℄, Gen et al [110℄ use a simple linear ombinationof the objetives and then generate the trade-o� surfae by varying the weights.The approah has the disadvantage of missing the onave portions of the trade-o�surfae as detailed by Ritzel et al [111℄. In addition, if the deision maker (DM)has to assign targets or goals (goal programming) that have to be ahieved foreah objetive, the objetive funtion will try to minimize the absolute deviations



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 112from the targets to the objetives. This idea started from Zeleny [112℄ is alled'the ideal displaement' and later on was used by Weistro�er and Narula [113℄ asthe referene point approah, whih has been further expanded to the optimisti orpessimisti approah by Weistro�er [114℄. In our researh we have used this ideato speify goals for eah objetive. The di�erene is that it is ombined with non-dominated GA sorting, whih is a Pareto based approah, to provide the GAs withpreferable diretions in whih to searh for desirable solutions. Details are given inSetion 5.4. Some appliations of goal programming ombined with GA are pub-lished in the literature by Sandgren [115℄, Wienke et al [116℄. On the other handWilson and Maleod [117℄ eliited some problems assoiated with the goal attain-ment method. The main weakness is that, if there are two andidate solutionswhih are the same in one objetive funtion value, but di�erent in the other, theywill still have the same goal attainment value for their two objetives, whih meansfor the GAs that none will be better than the others. Another tehnique is theonstraint method, whih is based on minimization of one (the most preferred)objetive funtion and onsidering the other objetives as onstraints bounded bysome allowable levels �i. Hene, a single objetive minimization is arried out forthe most relevant objetive funtion subjet to additional onstraints on the otherobjetive funtions. The onstrained levels are then altered to generate the entirePareto optima set. This approah was suggested by Ritzel et al [111℄ as a simpleand naive way of solving multiple optimisation problems using geneti algorithms.The idea is to ode the GA in suh a way that all the objetives exept for oneare kept onstant(onstrained to a single value) and the remaining objetive is the�tness funtion for the GA. Thus, through a proess of running the GA numeroustimes with di�erent values of the onstrained objetives, a trade-o� surfae an bedeveloped. The obvious drawbak is that it is time onsuming and also tends to�nd weakly non-dominated solutions.The other big group within multi-objetive optimisation is the non-aggregatingapproahes that are not Pareto based. The vetor evaluated geneti algorithm -(VEGA) di�ers from simple geneti algorithm only in the way in whih seletionis performed. At eah generation, a number of sub-populations is generated by per-forming proportional seletion aording to eah objetive funtion in turn. For aproblem with k objetives, k sub-populations of size Nk are generated, assuming atotal population size of N . These sub-populations are shu�ed together to obtaina new population of size N on whih the GA applies the rossover and mutationoperator in the usual way. Sha�er [118℄ found that the solutions are non-dominatedin a loal sense, beause their non-dominane is limited to the urrent population.An individual who is not dominated in the generation, may beome dominated byan individual who emerges in a later generation. This approah is easy to imple-ment but Rihardson et al [119℄ notes that the shu�ing and merging of all thesub-populations orresponds to averaging the �tness omponents assoiated witheah of the objetives. The resulting expeted �tness orresponds to a linear ombi-nation of the objetives, where the weights are dependent on the distribution of thepopulation at eah generation. Certain points in onave regions will not be found



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 113through this optimisation proedure in whih a linear ombination of objetives isused, regardless of the set of weights. In the Lexiographi ordering tehnique,the objetives are ranked in order of importane by the designer. The optimumsolution is then obtained by minimizing the objetive funtions, starting with themost important one and proeeding aording to the assigned order of importaneof the objetives. The use of tournament seletion makes an important di�erenewith respet to VEGA, beause the pair-wise omparisons of tournament seletionwill make saling information negligible (Fonsea and Fleming [107℄), whih meansthat this approah may be able to see as onvex a onave trade-o� surfae. Theidea of Weighted Min-Max approah has been taken from game theory whihdeals with solving oniting situations. Knowing the extremes, obtained by solv-ing the optimisation problem for eah riterion separately, the desirable solution isthe one whih gives the smallest values of the relative inrements of all the obje-tive funtions. Hajela and Lin [120℄ inluded the weights for eah objetive in thehromosome and promoted their diversity in the population through �tness sharing,hene providing the ability to simultaneously generate a family of Pareto-optimaldesigns orresponding to di�erent weighting oeÆients in a single run of the GA. Asingle number used in the hromosomi string represented not the weight itself buta ombination of weights and the sharing was applied to those ombinations. Also,a mating restrition mehanism was imposed to avoid members within a radius �matto ross, hene keeping only feasible solutions at all generations. This approah mayreate a very high seletion pressure for ertain ombinations of weights. However,the use of a sharing fator may avoid premature onvergene, but it is diÆult todesign. On the other hand the use of mating restritions and feasibility heks dur-ing the entire evolution proess is a onstraint-handling approah and may not workin onave searh surfaes.Finally, Pareto based approahes are reviewed. The basi idea is to �nd the setof strings in the population that are Pareto non-dominated by the rest of the popu-lation. These strings are then assigned the highest rank and eliminated from furtherontention. Another set of Pareto non-dominated strings are determined from theremaining population and are assigned the next highest rank. This proess ontinuesuntil the population is suitably ranked. A nihing mehanism suh as sharing, asgiven by Goldberg and Rihardson [121℄, an allow the GA to maintain individualsall along the non-dominated frontier. The performane of Pareto ranking tehniqueis highly dependent on an appropriate seletion of �share value. The main strengthis that it is less suseptible to the shape or ontinuity of the Pareto front. Gold-berg [94℄ �rst suggested the use of non-domination ranking and seletion to movea population toward the Pareto front. MOGA has been desribed by Fonsea inZalzala and Fleming book [122℄. The rank of a ertain individual orresponds tothe number of hromosomes in the urrent population by whih it is dominated.All non-dominated individuals are assigned rank 1, while dominated ones are penal-ized aording to the population density of the orresponding region of the trade-o�surfae. To avoid premature onvergene a nihe-formation method is used to dis-tribute the population over the Pareto optimal region, but instead of performing



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 114sharing on the parameter values as Deb [123℄, they have used sharing on the obje-tive funtion values, whih means that two di�erent vetors with the same objetivefuntion values an not exist simultaneously in the population under this sheme.This ould be undesirable beause the user may be interested in this kind of solu-tion. Fonsea and Fleming [107℄ have proposed the use of a utility funtion ombinedwith MOGA to produe a method for the progressive artiulation of preferenes. Inthis ase it is possible to evolve only a ertain region of the trade-o� surfae byombining Pareto dominane with partial preferene information in the form of agoal vetor. The idea is to have a feedbak loop between the DM and the GA sothat ertain solutions (from the Pareto set) are given more preferene than others.Non-dominated sorting (NSGA) is based on several layers of lassi�ation of theindividuals, as given by Srinivas and Deb [124℄. Before the seletion is performedthe population is ranked on the basis of domination. All non-dominated individualsare lassi�ed into one ategory (with a dummy �tness value), whih is proportionalto the population size to provide an equal reprodutive potential for these individ-uals. To maintain the diversity of the population, these lassi�ed individuals areshared with their dummy �tness values. Then this group of lassi�ed individuals isignored and another layer of non-dominated individuals is onsidered. The proessontinues until all individuals in the population are lassi�ed. A stohasti remain-der proportionate seletion is used. Sine individuals in the �rst front have themaximum �tness value, they always get more opies than the rest of the population.This allows to searh for non-dominated regions and results in quik onvergene ofthe population toward suh regions. Sharing, on its part, helps to distribute it overthis region. The eÆieny of NSGA lies in the way in whih multiple objetivesare redued to a dummy �tness funtion using a non-dominated sorting proedure.With their approah any number of objetives an be solved and both maximizationand minimization problems an be handled. In this ase, sharing is done on the pa-rameter values instead of the objetive values (like MOGA does), to ensure betterdistribution of individuals, and to let multiple equivalent solutions exist. NihedPareto GA is a tournament seletion sheme based on Pareto dominane. Insteadof limiting the omparison to two individuals, a number of other individuals in thepopulation is used to help determine dominane. When both ompetitors are eitherdominated or non-dominated, the result of the tournament is deided through �t-ness sharing, as given by Goldberg and Rihardson [121℄. This approah does notapply Pareto seletion to the entire population, but only to a segment of it at eahrun, hene the tehnique is very fast and produes good non-dominated fronts thatan be kept for a large number of generations.Conluding remarksIn summary, if it is neessary to assign more importane to ertain objetives, anaggregating approah is the one to use, as it an hange the importane of the ob-jetives easily, in ontrast with the ranking tehniques (Pareto based approahes).However, the losed loop performane riteria of autopilot responses are all impor-tant, hene it is not appropriate to apply aggregating tehniques. Also, non-Pareto



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 115evolutionary algorithms are often sensitive to the non-onvexity of Pareto optimalsets, whih is not the ase for Pareto based algorithms, as given by Fonsea andFleming [125℄. However, there is no suh thing as the best method of applyingPareto-optimality, although the use of Pareto-based ranking seems to be gainingsome popularity in new researh. These methods allow information from the wholeof the population to be inorporated into the searh apabilities of the GA. Zitzlerand Thiele [126℄ have ompared four Pareto based approahes quantitatively, amongwhih the non-dominated sorting geneti algorithm have shown best performane.It has been hosen to populate the Pareto front of optimal solutions. The sharingmehanism is done in the parameters values (the hromosome struture) insteadof the objetive values (as in MOGA). The former ensures better distribution ofindividuals within the non-dominated front. In addition, preferable ranges for eahlosed loop performane riteria are required by the designer engineer before thestart of the optimisation proedure. That is why the Referene Point approah hasbeen suggested in ombination with the non-dominated sorting approah, in order toinorporate preferene information into the GA to guide the searh to the partiularPareto region that is of interest to the DM.5.3 GA strategy for �nding non-dominated solu-tionsThe evolutionary algorithm follows the usual format of ranking, seletion, rossover,mutation and evaluation, but with the real (membership funtions) and disrete(rule-base struture) parts of the hromosomes being proessed separately. Then,a multi-objetive approah is used to identify multiple solutions. The mehanismof the non-dominated sorting Pareto based approah has already been explainedin the previous Setion 5.2. The non-dominated ranking is detailed by Deb [123℄.All solutions in the population are ompared for domination on all objetives andthe ones that are not marked 'dominated' are non-dominated solutions. All thesenon-dominated solutions are assumed to onstitute the �rst non-dominated front inthe population. These solutions are temporarily ignored from the population andthe proedure is applied again. The resulting non-dominated solutions are assumedto onstitute the seond non-dominated front. This proedure is ontinued until allpopulation members are assigned a front. The ranking operation helps to preventpremature onvergene of the geneti algorithm.Sine all solutions in a partiular non-dominated front are equally important, all areassigned the same �tness value. We begin with solutions of the �rst non-dominatedfront. A dummy �tness value (equal to 1) is assigned to eah non-dominated solu-tion of the �rst front. However, in order to maintain diversity among solutions, asharing mehanism is applied to these individuals, reduing their assigned value ifthey have near neighbours (on a hromosome level). The sharing proess ensuresthat a spread of solutions is obtained aross the Pareto front. The minimum valueassigned to the �rst front solutions is identi�ed and then redued by 1%. This re-



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 116dued value is then used as the dummy value for the seond front solutions and thesharing proedure is performed among the solutions of the seond non-dominationfront. This proess is ontinued until all population members are assigned a shared�tness value. The onventional ranking and seletion proesses are then applied asnormal to the objetive obtained by the non-dominated ranking and the sharingoperation. After all solutions are assigned a �tness, a seletion operator based onthe stohasti universal sampling priniple is used to selet good individuals fromthe population for breeding, where a solution is seleted as a parent in proportionto its �tness value. With suh an operator, solutions of the �rst non-dominatedfront have a higher probability of being a parent than solutions of other fronts. Thisproess allows the algorithm to searh for non-dominated regions, whih will �nallylead to the Pareto-optimal front. This results in quik onvergene of the popula-tion toward non-dominated regions and the sharing proedure helps to distribute itover this region. Thus, the seletion operator helps to emphasize better solutionsin the population and reprodue them, but does not help to reate new solutions, amatter whih is performed by Crossover and Mutation operators. Before produingnew individuals, the onept of generation gap was employed. The generation gap(GGAP) represents the perentage of the population to be replaed during eahgeneration. For eah new generation (N*GGAP) individuals of the urrent popu-lation are seleted to be replaed in the next generation, where N is the numberof individuals in the population. In this work a generation gap of 20% is used.Crossover utilizes probabilisti deisions to exhange systemati information amongtwo randomly seleted individuals from the mating pool to produe new individuals.The proess involves piking uniformly, at random, a rossover point along the twoindividuals. This is followed by exhanging all haraters either to the right or leftof this point. Therefore, two new individuals are generated. On the other hand,mutation generates new individuals by modifying one or more of the gene valuesof an individual o�spring after rossover. Values for those operators are mentionedlater when the geneti strategy is given. The new individuals are then onatenatedinto the urrent population to generate the new population for the next generation.And the proess is repeated until a maximum number of generations is reahed.It is important to mentioned here that a di�erent evolutionary strategy than to-tal replaement is used and detailed further on. When the objetives are ombinedin one salar funtion as in Chapter 4, the same number of o�springs are gener-ated as parents and a total replaement poliy is used whih takes approximatelythree hours of omputational time. When using this strategy for the multi-objetiveoptimisation problem, it takes at least four times longer, beause the GAs are deal-ing now with four objetives and the ranking mehanism is working by omparingeah objetive for eah possible solution (individual). In addition, many dupli-ate solutions are generated during FLC tuning for the nominal model and alsothe non-dominated solutions from eah population are onatenated with the nextone, rendered in a larger number of evaluations of the ontrol parameters. In orderto prevent the expansion of the population, a di�erent GA strategy from that inChapter 4 is proposed here, see �g. 5.1. A population of 100 individuals is main-
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Figure 5.1: Geneti algorithm struturetained by the algorithm. In eah generation, 20 individuals are seleted for breeding.Crossover is performed at a rate of 0.9, with intermediate rossover being used forthe real values and uniform multi-point rossover for the binary part. A mutationrate of 2=137, with 137 being the length of the hromosome and a seletive pressureof 1:7 is used. The high rossover value and the low seletive pressure is used toslow onvergene and to help prevent a loal optimum being exploited. The 20 newindividuals are evaluated and then onatenated with the old population, forminga set of 120 individuals. Non-dominated ranking is then applied to this set and thebest 100 are taken for the next generation. In this appliation, muh of the feasiblespae of the ontroller is not used (see the results setion). The genes responsible forthese areas will settle to some semi-random state. That is why some solutions withvery similar ontrol surfaes may have very di�erent hromosomes. This featuredisturbs the sharing proess, so a �xed value of �share = 0:5 was used, as varying�share has little e�et for this problem.The main strengths of the non-dominated sorting approah is that it an handleany number of objetives independently and takes aount of non-domination duringthe ranking proess. In the next setion unique method is proposed to inorporatepreferene information into the evolutionary multi-objetive algorithm by using theoptimisti referene point approah to diret the GAs searh towards spei�ed areasfor optimal solutions.5.4 Optimisti Referene point approahAs shown by Hwang et al [106℄, preferene artiulation an be given by assigningweight oeÆients, priorities, or goal values whih indiate desired levels of per-formane in eah objetive dimension. The way goals are interpreted may vary.The goals may represent minimum levels of performane to be attained, Utopian



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 118performane levels to be approximated, or ideal performane levels to be mathedas losely as possible. Goals are usually easier to set than weights and priorities,beause they relate more losely to the �nal solution of the problem.Depending on how the multiple objetives have been onsidered, they will a�et theevolutionary algorithm behaviour in terms of onvergene and searhing throughfeasible regions for aeptable solutions. One way to explore this problem is tode�ne the losed loop performane riteria as four objetives using the ReferenePoint approah (Weistro�er [114℄), whih is a kind of preferene information for theGAs. Fonsea and Fleming [125, 127℄ have demonstrated the need for some degreeof preferene artiulation in Pareto based evolutionary optimisation by using a goalattainment method. In their work, they have also ahieved interative optimisationwith the DM. In this ase, if the DM �nds the andidate solutions unaeptable,DM an re�ne the preferenes in order to stimulate the GA to move in to a di�erentregion of the non-dominated set. In our ase, this kind of ative interation has notbeen neessary as we shall see.In the optimisti referene point approah, for example, the DM initially spei�esoptimisti objetive funtion values (not ahievable simultaneously) as the desiredvalues. A solution is found by minimizing the under ahievements of the objetivefuntion values with respet to the spei�ed desired values. The optimisti approahan be viewed as the speial ase of the referene point approah in whih all refer-ene values onsistently exeed the objetive funtion values at all the intermediatesolutions. The Referene Point approah has been applied to a salar optimisationproblem using a surrogate aggregating funtion, as given by Weistro�er [114℄, Stoy-anov et al [128℄. In our ase, the objetives are treated separately and, by speifyingthe desirable ranges for eah, GAs have ahieved simultaneous onvergene on allobjetives without having the opportunity to stak in a loal area on one of theobjetives. If referenes are not spei�ed, it may well be possible for a geneti driftto appear.Generally, the objetive riteria are not omparable and the numerial values maydi�er onsiderably. A proedure for normalization must be used to onvert theriteria yj(x) into a dimensionless funtion �j(x) for whih usually �j(x) 2 [0; 1℄.The optimisti referene point approah given by Weistro�er [114℄, and followed byNarula and Weistro�er [113℄ uses a funtion of losses to represent the losses fromthe ideal values y?j for the objetives given by:�j(x) = y?j � yj(x)y?j ; j 2 [1; : : : ; m℄: (5.1)If the ideal values y?j are very small numbers or y?j �! 0, the following alternativeform an be used: �j(x) = y?j � yj(x)yjmax � yjmin ; j 2 [1; : : : ; m℄: (5.2)



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 119where yjmax and yjmin are respetively the maximum and the minimum values ofthe riterion yj(x) in x 2 X, whih de�ne the set of feasible solutions.This approah is alled optimisti, beause y?j are the most desired values for eahobjetive. The form of equation (5.2) is applied to all four losed loop performaneriteria desribed in the next setion.5.4.1 Closed loop performane riteriaRise time (tr), steady state error, overshoot y(tp) and settling time (ts) are the im-portant riteria with whih to judge the quality of a unit step response. They areshown in �g. 5.2 and are used as objetives for the optimisation proess. The aimis to minimize eah within a spei�ed range, as required by the missile engineer.

Figure 5.2: Closed loop riteria� Steady state error in %er = j ydemand � yfinal jj ydemand j � 100� Evaluation of perentage overshoot %OSThe perentage overshoot, %OS is given by:%OS = ymax � yfinalyfinal � 100where %OS is the amount that the response overshoots the steady-state or �nalvalue, expressed as a perentage of the steady-state value. y presents the lateralaeleration or the side-slip veloity, depending whih one is ontrolled. ymax is thevalue at the time, the response reahes its �rst maximum peak.



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 120� Rise Time trRise time is de�ned as the time for the response to go from 10% to 90% of its�nal value. tr = time(yfinal � 0:9� yfinal � 0:1)� Settling Time tsSettling time (ts) is the amount of time required for the transient damped osil-lations to stay within �2%.ts = time((y > yfinal � 1:02) or (y < yfinal � 0:98))Rise time, settling time and peak time yield information about the speed of thetransient response. This information an help the designer to determine whetheror not the speed and the nature of the response degrade the performane of thesystem. The objetive values are all expressed in di�erent units and a normalizationproedure is neessary for further use, whih is explained in the next setion.5.4.2 Funtion of losses - preferene informationThe losed loop performane riteria are hosen as the following:� Steady state error:�1j(x) = Er?j � Erj(x)Erjmax � Erjmin ; j 2 [1; : : : ; m℄: (5.3)� Overshoot: �2j(x) = Os?j �Osj(x)Osjmax �Osjmin ; j 2 [1; : : : ; m℄: (5.4)� Rise time: �3j(x) = Tr?j � Trj(x)Trjmax � Trjmin ; j 2 [1; : : : ; m℄: (5.5)� Settling time: �4j(x) = Ts?j � Tsj(x)Tsjmax � Tsjmin ; j 2 [1; : : : ; m℄: (5.6)where m are the number of evaluated individuals.Table 5.1 shows the referene points used in the objetive alulations. The mostdesired values y?j for eah objetives are de�ned to satisfy the missile ontrol engineerrequirements for the Horton model.



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 121Ideal point Maximum point Minimum pointSteady State Error Er?j = 0:0[%℄ Erjmax = 2:0[%℄ Erjmin = 0:0[%℄Settling time Ts?j = 0:15[se℄ Tsjmax=0.25[se℄ Tsjmin = 0:1[se℄Rising time Tr?j = 0:08[se℄ Trjmax = 0:14[se℄ Trjmin = 0:07[se℄Overshoot Os?j = 4:5[%℄ Osjmax = 25:0[%℄ Osjmin = 2:0[%℄Table 5.1: Closed loop performane riteria5.4.3 Deision MakingBearing in mind that there will be more than one solution, the inuene of the dei-sion maker is of utmost importane. Pareto optimality is not the only step towardssolving a multi-objetive optimisation problem. The hoie of a suitable ompro-mise solution from all non-inferior alternatives is also important. It is not onlyproblem dependent, it depends also on the subjetive preferenes of a DM. Hene,the �nal solution to the problem is the result of both the optimisation proess andthe deision proess. Depending on how those two are ombined in the searh forompromise solutions, the following groups have been identi�ed by Hwang et al [106℄:� no artiulation of preferenes is needed from the DM� a priori artiulation of preferene - expressed before the searh is run� interative artiulation of preferenes - the preferenes are expressed and an bealtered as the searh is running� a posteriori artiulation of preferene-expressed after the searh is run, the DMhooses from a set of possible solutions provided at the end of the run.A priori methods learly allow a degree of ertainty by �xing the targeted out-ome in advane of the optimisation run.Interative methods allow the user both to reat to hanging situations in the appli-ation problem, and to interat with the optimisation proess by updating objetivesor goals as the optimisation is onduted.A posteriori methods have the advantage of allowing no possible solution to beeliminated prematurely in the optimisation proess by preserving all potential out-omes. This may be seen as a disadvantage if there are a large number of solutionsas the user may be presented with an exessive number from whih to make a hoie.Ultimately, the preferred method of DM is likely to be inuened by the problemrequirements. In fat, multi-riteria deision making (MCDM) is a �eld in whihwe are all well pratied in our personal lives, as we make deisions whih involvemultiple oniting riteria daily, without the support of a formal approah. Thevery nature of multiple riteria problems is that there is muh information of a om-



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 122plex and oniting nature, often reeting di�ering viewpoints and often hangingwith time. One of the prinipal aims of the MCDM approahes is to help deisionmakers organize and synthesize suh information in a way whih leads them to feelomfortable about making a deision, as stated by Zeleny [112℄:\ The deision unfolds through a proess of learning, understanding, informationproessing, assessing and de�ning the problem and its irumstanes".The multi attribute deision problem an be expressed in matrix format as:D = A1A2...Am 266664 x11; x12; : : : ; x1nx21; x22; : : : ; x2n...xm1; xm2; : : : ; xmn 377775 (5.7)Where Ai; i = 1; : : : ; m are possible ourses of ation (referred to as alternatives);xij; i = 1; : : : ; m; j = 1; : : : ; n are attributes with whih alternative performane aremeasured; i is the performane (or rating) of alternative Ai with respet to attributej. With respet to our problem the matrix is:D = Chrom1Chrom2...Chromm 266664 Er1; T s1; T r1; OS1Er2; T s2; T r2; OS2...Erm; T sm; T rm; OSm 377775 (5.8)where Eri; T si; T ri; OSi are the losed loop performane riteria and Chromistands for hromosomes whih de�ne the trajetory ontrollers and represent theompromise individuals at eah generation.In a typial run, about 95% of the solutions are non-dominated and of highly om-petitive nature. Final deision is made based on the maximum aeptable level foreah objetive, whih orresponds to the pre-spei�ed maximum desired values ofthe referene point approah. Only solutions whih are below the maximum desiredvalue on eah objetive are onsidered. Fig. 5.3 shows the trade-o� plots for thelosed loop performane riteria in the �nal population (last generation). Most ofthe solutions are non-dominated and the one shown in �g. 5.3b, within minimumand maximum range of eah riteria, as spei�ed by the DM has been onsideredas aeptable. The objetive values �j(x) in �g. 5.3 are normalized using equations(5.3, 5.4, 5.5 and 5.6). Eah ontinuous line in �g. 5.3 represents one set of thefour losed loop riteria for one alternative solution (the optimised fuzzy ontrollerparameters). A strong onit an be seen between overshoot and rise time, whihis expeted, with not so muh onit between rise and settling times. The magni-tude of the objetive values are saled, hene they do not represent their physialvalues. Also, on this plot we annot see the onit between settling time andovershoot or between settling time and steady state error. That is why a detailedtrade o� surfae for the individuals in a population is illustrated in �gures 5.4, 5.5



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 123and 5.6. The intention here is to show how solutions evolve within generations, sotrade o� dynamis an also be seen. Before the onvergene is ahieved, there aresome unaeptable solutions lustered in areas of higher objetive values, as shownin �g. 5.4, that die out as the evolution progresses. After onvergene (after ap-proximately 30 generations, as shown in �g. 5.7) most of the objetive values arewithin the pre-spei�ed range, whih is an indiation that solutions have onvergedtowards the desired feasible area (see the sale in �g. 5.5). There are some solutionsstrongly dominated on one objetive whih obviously are not taken under furtheronsiderations by the DM. Eah star represents the objetive value of an individualwithin a urrent population. Also, the non-dominated solutions are almost identialat the 151th generation and at the 250th generation when the optimisation proessis omplete. The fat that there are no major di�erenes suggest that an earlierstopping mehanism ould be used in this ase.
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Figure 5.6: Trade-o� between eah objetives at last generation 250

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80
Gen = 200

O
bj

ec
tiv

e 
va

lu
es

Figure 5.7: Geneti algorithm onvergene



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 1265.4.4 Results using the referene approah1. Side-slip veloity ontrolThe nonlinear ontrol law of the autopilot design for the SISO system has beenonsidered. It is de�ned as Design 1 in Setion 3.3 of Chapter 3. A fuzzy logitrajetory ontroller has been added in an outer loop and multi-objetive optimisa-tion using a geneti algorithm has been used to determine the fuzzy logi ontrolparameters, as given by Blumel et al [129℄, [130℄.Fig. 5.8 shows the ontrol surfae setion used and the orresponding side slip ve-loity responses for two alternative solutions from the non-dominated set. Theseresults are obtained using �ve membership funtions. Solution (b) is one of the bestseleted aording to all four losed loop performane riteria: steady state errorwithin (2%), (5%) on overshoot, a fast rise time (0:05s) and very lose to ideal set-tling time(0:12s). Solution (d) has an aeptable steady state error(< 2%), almostno overshoot, but is very slow on rise time and on settling time. From a prati-al point of view, the �rst one would be preferred by a missile ontrol engineer.Both solutions have similar ontrol surfaes showing a `winged' struture (see theleft side of �g. 5.8). By looking at the phase portrait pattern, further informationfor the membership funtions and rules used an be extrated. The irles presentthe nominal ase of aerodynami oeÆients and the dotted lines are for the uner-tain ase. Solution (f) is very bad on steady state error, and hene, is not aeptable.The fuzzy logi ontroller is tuned for the nominal ase of the aerodynami oeÆ-ients, a demand of 2.57 m=s orresponding to 1g lateral aeleration, and is testedfor parameter variations within the ranges spei�ed in Setion 2.8 of Chapter 2.Two partiular ombinations of model variation have been used:1. [ Cyvmin Cy�min Cnrmax Xpmax ℄2. [ Cyvmax Cy�min Cnrmax Xpmin ℄Robust performane within 2% relative steady state error is ahieved. If we lookat the side-slip veloity response produed with the �xed gain trajetory ontrollershown in �g. 4.11 in Chapter 4, we an see that for the same ombinations of themulti-model airframe dynamis of aerodynami oeÆient unertainties, an error ofabout 7% is ahieved. On the other hand, in this ase the fuzzy trajetory ontrollerhas improved the robustness against these unertainties by 5%.
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CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 128In this hapter, the fuzzy ontrol parameters were mainly tuned for the nominalmodel oeÆients beause the proess was time demanding when multi-objetiveoptimisation was onsidered. One reason for this is beause of the use of binaryoding. The hromosome struture with the binary oding of the rule base systemallowes robust properties of the fuzzy ontroller to be used but the optimisation al-gorithm takes 12 hours on a 300 MHz Unix workstation. Also, in order to evaluateeah hromosome in the population, eah ontroller is tested on all vertex pointsmodels.Two hanges have been made to derease proessing time. First, a generation gapwas introdued to prevent a hange in number of individuals to be evaluated at eahgeneration. Seond, the hromosome struture was modi�ed to real-integer odingwhih redued the length of the hromosome by a fator r, where r is the numberof membership funtions. For evaluations of hromosomes on one trial only (i.e.1 set of model oeÆients and 1 required demand), the proessing time dereasedfrom 12 down to 5 hours using this approah. Four membership funtions and fourobjetives have been onsidered.2. FLC tuning on vertex points modelsThe fuzzy trajetory ontroller has been tuned for a set of worst ase vertex mod-els, 4 and 8 (i.e. Vmin and Vmax values on side-slip veloities at steady state, see�g. 4.10 in Chapter 4). Therefore the ontroller is robust against any parametriunertainties whih may appear within the range de�ned by the vertex models. Theexat model within the vertex models is determined by the ight ondition and willalso be a funtion of the aerodynami oeÆients (Cyv; Cy� ; Xp; Cnr) within theirunertainty ranges. Most of the results shown in the thesis were obtained basedon nominal model simulations to a step input. As a result, the fuzzy logi ontrolsurfae has been exerised very little and hene the robust properties of the resultingontroller were not as good as the ones obtained based on extensive simulations onall vertex models. There is still a problem assoiated with using a step input, how-ever. The di�erene from �g. 5.8 of Chapter 5 is that the fuzzy gain surfae shownin �g.5.9 has been tuned for a set of vertex points models, hene an maintain ro-bustness for any unertainties whih may arise within the ranges of these models.Multiple solutions were also obtained but not shown. Initially the ontroller wastuned on 5 trials (i.e. 4 vertex points models and the nominal one) for 250 gen-erations. The optimisation algorithm has taken approximately 27 hours on a PC300 MHz. A real-integer hromosome struture has been used. Most of the Paretosolutions at the last 5 generations were with a st.st. error bigger than 10%. Forevaluations of 22500 fuzzy ontrollers(i.e. NIND:GGAP:trials:MAXGEN), 250generations were not enough to obtain satisfatory losed loop performane riteria.The fuzzy ontroller was then tuned on 3 trials (two worst ase models and nominalone), but still the optimal objetive values were not satisfatory. Finally, the GAwere seeded with a set of Pareto solutions of the last 5 generations from the pre-vious run. Then for another 200 generations the optimisation was arried on two
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CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 1303. Lateral aeleration ontrolThe di�erene here is that the lateral aeleration ontrol and the nonlinear on-trol law detailed as Design 2 in Setion 3.3 of Chapter 3 is used. Again, only asingle plane for the yaw or pith hannel has been onsidered. As a result of multi-objetive optimisation, multiple solutions are obtained from whih the designer anhoose the one whih best satis�es his requirements. In �g. 5.10 we show a set of lat-eral aeleration responses with a variety of losed loop performane riteria. Someare unaeptable, with high overshoot values, are very slow on rise time or settlingtime, but some are very good with almost no steady state error and no overshoot.Fig. 5.11 shows the fuzzy gain surfaes for three of them and the orrespondingaeleration responses of these. (b) is the best on steady state error, and (d), whihis within 6% error from the demand, is probably not aeptable, although it hasno overshoot and has a satisfatory rise time. Finally, solution (f), whih is tooslow on rise time and settling time but within 3% on steady state error, may not beonsidered as an aeptable solution by the designer. The dashed line represents theaugmented aeleration whih shows an almost idential losed loop performane asthat for lateral aeleration. The only di�erene is in the non-minimum phase e�etwhih an be seen in the solid line for the lateral aeleration. However, it shouldbe remembered that here the augmented aeleration is used to design the nonlinearontrol law, but the atual lateral aeleration is used as the ontrolled output. Thefuzzy gain surfaes for the aeleration ontrol are more nonlinear ompared withthe surfaes for the side-slip veloity ontrol.
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CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 1325.4.5 Results for Fuzzy logi sheduled ontrollersmultiple demands ase - 1g, 5g, 10g, 15gMultiple solutions are obtained when a large range of di�erent veloity demands arerequired. The optimisation proess is examined using two trial 5g and 15g demandsand individuals with bigger objetive values are evaluated for further optimisation.It may be notied that the values of the riteria are very similar for all four de-mands, however a little o�set on the rise time an be observed on eah response as,for every required demand, the system hanges, whih then alters the fuzzy logiontrol properties.In �g. 5.12 a �xed gain trajetory ontroller is illustrated for all four demands.The presene of steady state error is due to the negleted �n ontrol surfae termin the system. Conversely, all fuzzy trajetory ontrollers (see �g. 5.13) have beenable to provide less fast solutions but with almost no osillations and very littlesteady state error. The losed loop riteria here have been onsidered suh thatthe referene point approah has been used to determine optimal solutions for theside-slip veloity ontrol of the fuzzy autopilot design.Various solutions have been presented to show the powerful interpolative meha-nism of the fuzzy sheduled ontrollers when multiple demands are required. Thesaling fators of the fuzzy ontroller have been determined by using polynomial �t-ting for eah demand. The optimisation proedure is able to �nd multiple solutions(alternative fuzzy ontrollers) in terms of losed loop performane riteria and isable to tune the ontrol parameters (membership funtions and rule base struture)simultaneously for multiple demands.
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CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 1345.5 The objetives de�ned as fuzzy onstraints-penaltiesAnother way of looking at multi-objetive optimisation is to speify the objetivesas onstraints, or in this ase as penalties using the fuzzy logi set theory to produethe membership funtions. This idea has been proposed previously by Trebi-Ollennuand White [18℄ and has been further investigated in our researh and applied tomissile fuzzy ontrol parameters. In [18℄ a multi-objetive fuzzy geneti algorithmoptimisation for seleting free ontrol parameters was used. The di�erene from ourwork is that Trebi-Ollennu has addressed the multi-objetive problem as a salaroptimisation problem and has generated multiple solutions by varying the weightsin order to address the relative importane of the fuzzy objetives. We have usedthis idea of representing the objetives as fuzzy onstraints, but have allowed theoptimisation proedure to �nd optimal solutions by using non-dominated sorting,hene ranking eah solution based on independent objetive values.Using fuzzy logi theory, the objetives an be presented as penalties with the fol-lowing membership funtions: �OS in �g. 5.5.1, �Tr in �g. 5.5.2 and �Ts in �g. 5.5.3.� Overshoot penalty
�OS = ( OS10 OS <= 101 + OS�1010 � 3 OS > 10
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[sec]Figure 5.5.3 Settling time penaltyThe steady state error is de�ned as disussed in Setion 5.4.1. The spei�ed rangefor aeptable solutions has been determined by the design engineer and is indiatedby the grey area.5.5.1 Results of fuzzy multi-objetive optimisationWe have hosen to show two alternative solutions in �g. 5.14 with oniting riteria:one whih is not so good on steady state error and one whih is too slow on risetime, but is very good on settling time. However, the fuzzy gain surfaes wereboth smooth and robust in the presene of model unertainties. In this ase, theobjetives have been fuzzi�ed as penalties. The objetive values of most solutionswere within the required range determined by the engineer as the preferable areawhih is penalised with zero value. Aording to the way the overshoot riteria hasbeen spei�ed here, it has given the GAs a hane to �nd solutions with almost noosillations, whih is very important for the autopilot performane, espeially whenhigher demands are required. Using this approah it was quiker to �nd solutionswhih satisfy the spei�ed ranges on eah objetive, although it is diÆult to tell hownon-dominated they were. This is beause, during the minimization proess, mostof the objetives have been given zero value when they have satis�ed the requiredrange, whih onfuses the non-dominated ranking proess. However, in the lastgeneration all solutions have objetive values within the spei�ed fuzzi�ed ranges,and hene they were all aeptable and no need of further DM was required. A prioriDM was suÆient to predetermine desired feasible solutions at the �nal stage. Thisway of handling objetives is more onvenient for engineers.5.6 Conluding remarksThis hapter has examined multi-objetive optimisation of the fuzzy logi trajetoryontroller parameters. This has been ahieved by evaluating four losed loop perfor-



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 136mane riteria whih asses the quality of the side-slip veloity or lateral aelerationresponses. Evolutionary algorithms, suh as geneti algorithms, have produed aset of results that populate the Pareto solution set, allowing the system designer theexibility of trading one solution against others to ahieve a desired performane.By using the Optimisti Referene Point approah we have inorporated prefereneinformation into the optimisation proedure, whih helps the GAs to onverge onareas of preferable solutions for eah objetive simultaneously. In addition, thisidea has been ombined with the Pareto based approah whih uses non-dominatedsorting, hene an eÆient Pareto front with optimal (non-dominated) solutions hasbeen produed simultaneously.
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CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION USING GA 137an be seen to provide useful information to the optimisation proess, whih wouldotherwise be faed with sampling a very large tradeo� surfae (when all the losedloop performane riteria have been de�ned in diret form). In onsequene, if thoseobjetives are de�ned as fuzzy onstraints (penalties), this an redue the size ofthe non-dominated set to searh for and it is ertain that the �nal non-dominatedsolutions at the end of the optimisation are lying within the aeptable regions, sothat the engineering design requirements have been satis�ed. Conversely, in the �rstase, the GA is searhing in a larger feasible area for aeptable solutions, but only asubset of the non-dominated set an be of pratial relevane, whih requires furtherinteration with the DM (i.e. seletive proess at the end of the optimisation). It isone of the aims of this hapter to analyse the behaviour of the optimisation proess,depending on the way objetives have been handled.The geneti algorithm performane depends on areful adjustment of several param-eters and the values assigned to these parameters may a�et performane drastially.The determination of GA operators an e�et onvergene to Pareto optimal frontand diversity preservation among Pareto solutions. It is also important to de�nestopping riteria for GAs based on multi-objetive optimisation tehniques, beauseit is not obvious when the population has reahed a point from whih no furtherimprovement an be reahed. The main way used to stop the GA proedure is to usea �xed number of generations or to monitor the population at ertain intervals andinterpret the results visually to determine when to halt the evolution proess. Theirparallel nature allows GAs greater ability to explore the searh spae and lessensthe risk of beoming stuk in a loal optimum.In this researh all the objetives were treated independently, however, if the mis-sile engineer is interested in solutions that are fast with almost no overshoot, it ispossible to alter the rule base struture of the fuzzy trajetory ontroller to produedesired solutions one the ontroller has been tuned. By studying in detail the rulebase struture it is possible to extrat information about whih rule a�ets the risetime, overshoot, settling time or steady state error. This is an area for further re-searh work.The evolutionary multi-objetive algorithms have ontributed eÆiently to solvinga real world problem suh as �nding the trajetory ontrol parameters of a highlymanoeuvrable missile system.



Chapter 6Conlusions, Disussions andFuture workThe main objetives of the thesis were to design an autopilot system for lateral ve-loity and aeleration ontrol of a highly non-linear missile. The ontrol system wasrequired to be robust in the presene of parametri unertainties of the model andto be valid for a large range of multiple demands. The other important objetivewas to obtain multiple solutions of alternative ontrollers that allow the designerthe freedom to hoose those whih satisfy spei�ed requirements of the losed loopperformane so that the autopilot system respond eÆiently to guidane ommands.Missiles are mainly employed in a military environment. As tehnology matures,targets beome more agile with a variety of new shapes whih are more diÆult todetet, hene missiles are required to be highly manoeuvrable and aurate. Gener-ally in a typial guidane senario they are required to follow a spei� trajetory.In order to do that, they should perform agile, fast and exible manoeuvres whihinvolve rapid hanges from low to high altitude and from low to fast speed. Missilesystems are well de�ned in their dynami behaviour, but are highly non-linear. Mostdesigns have been able to use linear design and analysis tehniques. This requiresthe use of a linear model for an airframe whih moves in any diretion. The systemmust be linearized about many ombinations of speed along multiple axes in order toaount for the omplexity of the system. This additionally ompliates the designas separate ontrollers are required for eah on�guration. The main problem is thatthere are limited theoretial guarantees of stability in nonlinear operation. Anotherproblem is the omputational load, due to the neessity of omputing many linearontrollers. This researh has been foussed at non-linear tehniques to design theautopilot system to overome many of these problems.Designing an autopilot system is not an easy task. It involves several stages. Start-ing from the given model we �rst have to understand the dynamis of that model.How does it behave in open loop? How sensitive is it towards variations in the aero-dynamis and then how to design a ontrol algorithm to respond quikly to guidaneommands? We have studied non-linear tehniques sine they an apture the non-138



CHAPTER 6. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 139linearities and produe a single design whih is valid over the entire envelope. Thereis very little researh reported in the literature for using Feedbak Linearizationapplied to a missile system, whih determined our hoie to use it. The di�erenefrom other people's work is that instead of ontrolling aeleration through anglesand rates we use lateral veloity and augmented aeleration as outputs to ontrollateral aeleration. One the system was linearized a simple �xed gain ontrollerwas not enough to produe a robust solution, even though for a nominal model,the tehniques were suessful and the desired trajetory ahieved. However in areal senario the assumption that model parameters will not hange is unrealisti,whih require robust tehniques to replae the �xed gain ontroller in the outer loop.Using fuzzy logi theory was an appropriate hoie sine it has been proved in theliterature its ability to deal with vague and impreise information. The only prob-lem with designing a fuzzy logi ontroller is that it uses trial and error methodsto tune its parameters (i.e. the rule base struture and the membership funtions).This involves many iterations before an appropriate design is ahieved whih is timedemanding and not very pratial. We designed the rule base struture for thenominal model, whih wasn't robust to parametri unertainties. An evolutionaryalgorithm was then used to tune the fuzzy ontrol parameters whih were then ro-bust for the spei�ed unertainties. Multiple solutions were then obtained by usingmulti-objetive optimisation, whih allowed the designer to hoose feasible solutionswhih satisfy spei�ed requirements.The missile model has been provided by Matra British Aerospae Co. as a realresearh model. In Chapter 2, we have shown the omplexity of the model whih isof highly non-linear nature with severe ross-oupling. The polynomials of aerody-nami funtions were �tted to the set of urves taken from look-up tables derivedfrom wind tunnel measurements. Wind tunnel tehniques provide the best estimatesof the aerodynamis but they will always be subjet to variability and unertainty.In real ight senario, for every instane of this missile type, the aerodynamialfuntions may deviate from their nominal values. These potential variations intro-due parametri unertainties of the non-linear system. A set of onvex models isprodued that map the vertex points in a high order parameter spae (of the orderof 16 variables). The multiple model desription of the airframe aerodynamis istested for sensitivity on the aerodynami oeÆients. The analysis has shown thatthe missile behaviour is most sensitive to the entre of pressure oeÆient, whihwas expeted as this is the oeÆient most responsible for airframe stability. Themodel parameters an take any values randomly generated within the vertex points.This allows more than 1000 models to be exerised and the ontrol system testedfor robustness.In Chapter 3, Feedbak Linearization tehnique is detailed as a nonlinear onven-tional tool to transform the non-linear system dynamis into a linear form by usingstate feedbak, hene a simple linear ontrol tehnique an be used in the outer loop.In other words this is dynami inversion, in whih a nonlinear ontrol law is designedto globally redue the dynamis of the seleted ontrolled variables to integrators.



CHAPTER 6. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 140A losed loop system is then designed to make the ontrolled variables exhibit aspei�ed ommand response. Approximate Feedbak Linearization has been usedfor lateral motion ontrol. The main di�erene from other researh work is thatinstead of using angles or body rates as outputs for the linearization proess, lateralveloities and body aelerations were used. The design has retained the order andthe relative degree of the system in the linearization proess, hene has produeda linearized system with no internal dynamis. Both SISO (the redued 2nd or-der system, without interation between lateral motion and roll) and MIMO (full5th order) systems have been onsidered. Desired traking performane has beenahieved assuming an exat knowledge of the nominal model parameters suh as:aerodynami oeÆients and missile on�guration parameters (i.e., referene area,Mah number, mass, moment of inertia).One of the main problems with applying the Feedbak Linearization tehnique isthat the proess produes a system with the same relative degree as the originalsystem, but usually with an order that is less. Indeed, the linearized system orderis the same as the relative degree unless pre-ompensators are used to arti�iallyhange the order and the relative degree. This proess results in internal dynamis,whih are modes that are e�etively rendered unobservable by the linearization pro-ess. If the system is non-minimum phase, then the internal dynamis are unstable.In order to produe linearized systems that have no internal dynamis, tehniqueswhih preserve the dynami order of the system were needed. In this work we haveseleted an output that relates to the variable that is to be ontrolled, whih givesa greater relative degree and we have negleted small terms related to the inputduring the di�erentiation proess that allow the �nal relative degree to be ahievedand whih also retains the order of the system in the linearization proess. Thisresulted in approximate FL, whih an only be done if the negleting terms in thenon-linear design will not produe unstable zeros, as they will additionally destabi-lize the losed loop system and degrade the performane. There will always be aninherent zero in the model beause the missile system is non-minimum phase but �rstit is important to hek the stability of that zero before laiming the method is valid.By applying approximate FL to the Horton missile, the design has resulted in alinear equivalent system with no internal dynamis (\no unobservable" states dur-ing the linearization), and with a design of a trajetory ontrol whih has givensmall traking errors for both lateral veloities and aelerations. The simulationresults have shown desired traking performane for a large range lateral aelera-tion demands up to 100 m=se2. Full deoupling for the highly non-linear missilesystem has been ahieved. All designs for the SISO and the MIMO systems haveinvolved inreasing the speed of response suÆiently for a linear approximation to beinadequate for design purposes, and the responses for both small and large demandshave been shown to be invariant. Although the Horton model has been designedfor Cartesian ontrol, it has also been useful to apply Polar Control as it has sig-ni�antly redued the omputational load of the non-linear ontrol design, whih isimportant (less risky and less expensive - omputationally speaking).



CHAPTER 6. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 141The prinipal disadvantage assoiated with Feedbak Linearization is the lak ofestablished methods for robust synthesis. By applying FL, desired traking per-formane has been obtained by assuming an exat knowledge of aerodynami o-eÆients and missile on�guration parameters in the entire ight envelope. In areal ight senario, this assumption is not valid and for parameter variations fromnominal model, the Feedbak Linearization annot guarantee desired losed loopperformane neither is robustness provided.In Chapter 4, a robust non-linear trajetory ontroller based on fuzzy logi hasbeen applied in the outer loop to provide robustness for the feedbak linearizablesystem with respet to signi�ant parametri unertainty introdued into the systemthrough the aerodynami oeÆients. The fuzzy feedbak linearized ontrol designhas been found to be more e�etive for improving the transient and steady stateperformanes than the �xed gain feedbak linearized ontrol design. The ability toimprove the losed loop performane while managing unertainties has shown theadvantage of using the fuzzy logi theory. It has provided the means of systemati-ally synthesising various fuzzy rules to produe deision ations so that the omplexmissile non-linear system an be ontrolled. This allows exible robust manoeuvra-bility. It has been diÆult to determine by hand the fuzzy ontrol parameters whihwill ount for any of the parametri unertainties generated in the system. The trialand error mehanism has been involved with many iterations before an appropriatedesign has been ahieved whih is time demanding and not very pratial. Hene ithas been replaed by evolutionary algorithm optimisation using geneti algorithmfor better adaptation and robustness. The rules and the membership funtions ofthe fuzzy trajetory ontroller have been generated simultaneously. Eah hromo-some onsisted of a rule set and its assoiated membership funtions. This allowedthe GA operators to integrate multiple fuzzy rule sets and their membership fun-tions at the same time. The hybrid ontrol strategy has been validated via extensiveomputer simulations and has produed a suessful robust non-linear autopilot de-sign. Although omplex, the ontrol system is reliable over wide variations in plantdynamis and o�ers an elegant solution to designers.However, the designer should be areful when looking for quality of the losed loopperformane within reasonable omputation time. It is usually a trade-o�, beausefuzzy systems perform better when more membership funtions are used, but unfor-tunately this inreases omputational time, as the size of the rule base struture inthe fuzzy mehanism inreases signi�antly. Hene the trade-o� between proessingtime and performane is important to take into aount. Still new fast tehnologyan help for implementation of suh systems.Again in Chapter 4, for the normalised fuzzy logi engine, the three saling fators(error,derivative of error and output) for eah required lateral aeleration demand(1g; 2g; : : : ; 15g) have been determined via simulations based on the results obtainedwith a �xed gain trajetory ontroller for the nominal model. Then a polynomial



CHAPTER 6. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 142�tting has been used to interpolate between large range of required demands forside-slip veloities in order to obtain the saling fators of the FLC inputs and out-puts for eah demand. As a result smooth transition of the saling fators has beenahieved when di�erent demands have been required within the above mentionedrange. This has determined the smooth transition and gradual interpolation betweenthe ontrol surfaes when multiple demands have been required. The FLC struturehas been simultaneously tuned for multiple demands. The resulting rule base andmembership funtion's shapes have been ahieved by de�ning the saling fators foreah demand through the polynomial �tting. The purpose of suh a tuning proesswas to improve the system performane with the intention to maintain the linguistimeaning of the fuzzy ontroller, whih has been validated for eah required demand.To the best of the author's knowledge this is the �rst reported fuzzy logi sheduledontroller for multiple demands of a missile autopilot design in the literature.In Chapter 5, multiple solutions were obtained simultaneously by using multi-objetive optimisation of the fuzzy logi trajetory ontrol parameters, allowingthe system designer the exibility of trading one solution against others. This hasbeen ahieved by evaluating four losed loop performane riteria whih asses thequality of the side-slip veloity or lateral aeleration responses. An evolutionary al-gorithm has produed a set of results that populate the Pareto solution set by usingPareto based approah with non-dominated sorting. The main strengths of this ap-proah are that it an handle any number of objetives independently and an takeinto aount non-domination during the ranking proess. An unique way has beenproposed to inorporate preferene information into the evolutionary multi-objetivealgorithm by using the Optimisti Referene Point approah to diret the GA-searhtowards spei�ed areas for preferable optimal solutions on eah objetive simultane-ously. The non-dominated sorting method has provided good performane, both interms of inferior solutions and in terms of its overage of the available non-dominatedpoints. The preferability mehanism has helped the designer to implement the de-sign requirements into the optimisation proedure.In most multi-objetive optimisation problems it is not lear what kind of pref-erenes should be spei�ed for eah objetive, whereas in this partiular ase themissile engineer is interested in ahieving losed loop performane values withinspei�ed ranges in order for the missile to respond as fast as possible to guidaneommands and be able to y in supersoni regime. The determination of theseranges has been proposed by the author in two di�erent ways: by using referenepoints (ideal, maximum and minimum values for eah objetive), and by handlingthe objetives as penalties based on the fuzzy logi membership funtions priniple.Both are di�erent ways to inorporate preferene information into the geneti algo-rithm optimisation proess to diret the searh towards feasible areas whih satisfyspei� values of the objetives. As we have used non-dominated sorting for formingthe Pareto front, the onept of risp preferability (using referene approah) hasbeen seen to provide useful information in the optimisation proess whih wouldhave otherwise been faed with sampling a very large trade-o� surfae (when all the



CHAPTER 6. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 143losed loop performane riteria have been de�ned in diret form). Whereas, if thoseobjetives are de�ned as fuzzy onstraints (penalties) this has redued the size ofthe non-dominated set to searh and it is ertain that the �nal solutions at the endof the optimisation lie within the spei�ed fuzzy�ed ranges, so that the engineeringdesign requirements are satis�ed and no need of further DM is required. A prioriDM was enough to predetermine desired feasible solutions at the �nal stage. Con-versely in the �rst ase, the evolutionary algorithm has searhed in a larger feasiblearea for aeptable solutions, but only a subset of the non-dominated set has been ofpratial relevane, whih required further interation with the DM (i.e. a seletiveproess at the end of the optimisation).By using the approah of handling objetives as fuzzy onstraints, it was muhquiker to �nd solutions whih satisfy the spei�ed ranges on eah objetive. Al-though many dupliate solutions were produed, most important was that these so-lutions were all aeptable. We suggest that seeing the multi-objetive optimisationproblem as a multi-onstraint one, may atually help designers to re�ne aeptablesolutions �rst and then to investigate further on optimising eah objetive to spei�values.Evolutionary algorithms seems to gain popularity in the multi-objetive optimisa-tion world. In this thesis GAs have shown to be promising and reliable optimisatorsas well as to be useful deision making tool. Finding global optimal solutions wasnot the only onsideration, as providing solutions with robust performane in thepresene of unertainties was equally important. In Chapter 5, geneti algorithmshave been also suessful in �nding multiple solutions when a large range of di�er-ent veloity demands have been required. Various solutions have been presented toshow the powerful interpolative mehanism of the fuzzy sheduled ontrollers whenmultiple demands were required. The saling fators of the fuzzy ontroller havebeen determined by using polynomial �tting for eah demand. The optimisationproedure has been able to �nd multiple solutions (alternative fuzzy ontrollers) interms of losed loop performane riteria and has been able to tune the ontrol pa-rameters (i.e. the membership funtions and the rule base struture) simultaneouslyfor multiple demands.The onlusions were disussed here as a means of illustrating the role of the au-topilot and the importane of designing it to meet spei� requirements ditated bythe guidane loop. This researh work has ahieved an elegant and eÆient solutionof designing a robust autopilot system. The evolutionary multi-objetive algorithmshave ontributed for solving a real engineering problem suh as �nding the traje-tory ontrol parameters of a highly manoeuvrable missile system. To the knowledgeof the author these results have not been shown in the literature before.



CHAPTER 6. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 1446.1 Future workImportant areas of work for further investigation an be identi�ed suh as:An important issue is to �nd a way to simplify the derived nonlinear ontrol lawof the Feedbak Linearization by using a well-trained neural network within theinner loop of the system. This will be useful to relieve the omputational load ofthe nonlinear ontrol law and to provide better robustness of the losed loop system.A omparison of a Neuro Networks Feedbak Linearization with Fuzzy FeedbakLinearization an give us better understanding how intelligent systems behave andhow do they di�er in terms of performane, omplexity and eÆieny.In this researh all the objetives were treated independently, however if the missileengineer is interested in solutions that are fast with almost no overshoot, it is pos-sible to alter the rule base struture of the fuzzy trajetory ontroller to produedesired solutions one the ontroller has been tuned. By studying in details the rulebase struture, is possible to extrat information about whih rule a�ets the risetime, overshoot, settling time or steady state error.Tuning the saling fators for inputs and outputs of the fuzzy ontroller for eahrequired demand an be given to the GAs as they should be able to handle this taskeasily.Not many people have done interative deision making ombined with geneti al-gorithms. During the optimisation proess, if the DM �nds the andidate solutionsunaeptable, DM an re�ne the preferenes so to stimulate GAs to move on to adi�erent region of the non-dominated set.It is an open researh area for developing new evolutionary algorithms using genetiprogramming strategies. Some omparisons with other existing multi-objetive op-timisation evolutionary Pareto based approahes like MOGA may be an interestingthing to do.Finally, extend the multi-objetive optimisation work to MIMO system.
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Appendix ANomenlature
A.1 Abbreviations�g. �gureFL Feedbak LinearizationSMC Sliding Mode ControlVSCS Variable struture ontrol systemROV Remote operated vehileRCAM researh ivil airraft modelFLC Fuzzy Logi ControlSISO single-input single-output systemMIMO multi-input multi-output systemDOF degree of freedomI/O Input/OutputCLOS ommand to line of sightNNs Neural NetworksCMAC erebellar model arithmeti omputer
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APPENDIX A. NOMENCLATURE 147GAs Geneti AlgorithmsGGAP generation gapSF saling fatorVEGA vetor evaluated geneti algorithmMOGA multi-objetive geneti algorithmsNSGA non-dominated sorting geneti algorithmDM deision makerMCDM multi-riteria deision makingBTT bank-to-turn motionSTT skid-to-turn motion



APPENDIX A. NOMENCLATURE 148A.2 VariablesChapter 2x roll axisy pith axisz yaw axisX, Y, Z foresL, M, N moments in eq 2.6p roll rateq pith rater yaw rateU veloity along the roll axisv veloity along the pith axisw veloity along the yaw axisVo total Veloity� elevator angle� rudder angle� aileron angle� pith inidene� yaw inidene� total inidene� aerodynami rollIy, Iz lateral inertiaIx inertiam mass of the airframed missile diameterS wing hordM Mah numberSoS speed of sound� air densityxg entre of gravityXp entre of pressurexf �n moment armxsm stati marginxsf lateral moment armxsr roll moment arm



APPENDIX A. NOMENCLATURE 149_q equation _w equationmq pith rate moment zw pith veloity foremw pith veloity moment zq pith rate forem� aileron ontrol oupling moment z� aileron ontrol oupling forem� elevator ontrol moment z� elevator ontrol foreCmq damping moment oe�. Czw side-slip normal fore oe�.Cmw side-slip ontrol moment oe�. Cz� �n roll fore oe�.Cm� �n roll moment oe�. Cz� �n normal fore oe�.Cm� �n side-slip moment oe�._r equation _v equationnr yaw rate moment yv yaw veloity forenv yaw veloity moment yr yaw rate foren� aileron ontrol oupling moment y� aileron ontrol oupling foren� rudder ontrol moment y� rudder ontrol foreCnr damping moment oe�. Cyv side-slip normal fore oe�.Cnv side-slip ontrol moments oe�. Cy� �n roll fore oe�.Cn� �n roll moment oe�. Cy� �n normal fore oe�.Cn� �n side-slip moment oe�._p equationlp roll rate momentl� rudder ontrol oupling momentl� elevator ontrol oupling momentl� aileron ontrol momentClp damping moment oe�.Cl� �n oupling moment oe�.Cl� �n oupling moment oe�.Cl� �n roll moment oe�.a1; : : : ; a5 system parameters (see Appendix C)b1; : : : ; b7 system parameters (see Appendix C)1; : : : ; 4 system parameters (see Appendix C)4a1; : : : ;4a5 hange in system parameters (see Setion 2.8.1)4b1; : : : ;4b7 hange in system parameters (see Setion 2.8.1)41; : : : ;44 hange in system parameters (see Setion 2.8.1)fv; fw; fr; fq; fp non-linear funtions of a non-linear systemgv; gw; gr; gq; gp non-linear funtions related with the inputz ight diretion used for Polar oordinates� ight angle of orientation used for Polar oordinates



APPENDIX A. NOMENCLATURE 150Chapter 3x state variabley output of a non-linear systemf(x),g(x) smooth vetor �elds whih have ontinuous partialderivatives of any required orderh(x) smooth salar funtion of the state xwhih is the output (i.e. y) of a non-linear systemrh gradient of hLfh(x) Lie derivative of h with respet to fLgh(x) Lie derivative of h with respet to g� the new input to the linearized system�(x) non-linear state feedbak�(x) non-linear state feedbak related to the inputE deoupling matrix of a MIMO systemu stati state feedbak for deoupled losed loop behaviourr relative degree of a non-linear systeme; _e; : : : ; en�1 desribe the losed loop error dynamisk0; k1; : : : ; kn�1 oeÆients of a Hurwitz polynomial�1(x); : : : ; �i(x) series of funtions related to h(x)�1; : : : ; �r a variable whih is used to transform a non-linearsystem into new oordinates 1(�; u); : : : ;  n�r(�; u) internal dynamis of a non-linear system 1(x1; u1) the negleted term of the approximatefeedbak linearization (see eq.3.43, eq.3.57, eq.3.64) 2(x2; u2) the negleted term of the approximatefeedbak linearization (see eq.3.66)� lateral aeleration�� augmented aelerationz ight diretion used for Polar oordinates� ight angle of orientation used for Polar oordinates



APPENDIX A. NOMENCLATURE 151Chapter 4�A a membership funtion of fuzzy set A�B a membership funtion of fuzzy set BA,B fuzzy sets of the inputs of a fuzzy systemO fuzzy set of the output of a fuzzy systemU risp set alled the Universe of DisourseSe saling fator for error input variableSde saling fator for derivative of error input variableSu saling fator for ontrol output variableyo defuzzy�ed output of a fuzzy systemW l degree of ful�llment of the lth ruleAi membership funtion i of input ABj membership funtion j of input BOk membership funtion k of output OO objetive funtionO1 steady state error objetive funtionO2 overshoot objetive funtionO3 rise time objetive funtionO4 settling time objetive funtion4f;4g unertainties in the modelaused by aerodynami oeÆientsSCv�er saling fator of the error inputof the normalised fuzzy ontrollerSCv�erd saling fator of the derivative of error inputof the normalised fuzzy ontrollerSCout saling fator of the outputof the normalised fuzzy ontrollerp0; : : : ; p3 oeÆients of SCv�erd polynomial in 4.4q0; q1 oeÆients of SCout polynomial in 4.5b0; : : : ; b4 oeÆients of SCv�er polynomial in 4.60; : : : ; 3 oeÆients of SCv�erd polynomial in 4.7d0; : : : ; d4 oeÆients of SCout polynomial in 4.8



APPENDIX A. NOMENCLATURE 152Chapter 5x vetor of deision variablesgi(x) inequality onstraintshi(x) equality onstraintsf(x) objetive vetor funtionx� vetor of deision variables whih yieldsthe optimal values of all obj. funtionsf � ideal vetor in the objetive spae�share sharing value�j(x) funtion of lossesy�i ideal objetive valueyimax maximum objetive value required a priori by DMyimin minimum objetive value required a priori by DMer steady state errorOS overshoottr rise timets settling timeEr� ideal referene point of �1(x) objetive funtionOs� ideal referene point of �2(x) objetive funtionTr� ideal referene point of �3(x) objetive funtionTs� ideal referene point of �4(x) objetive funtionErmax maximum referene point of �1(x) objetive funtionOsmax maximum referene point of �2(x) objetive funtionTrmax maximum referene point of �3(x) objetive funtionTsmax maximum referene point of �4(x) objetive funtionErmin minimum referene point of �1(x) objetive funtionOsmin minimum referene point of �2(x) objetive funtionTrmin minimum referene point of �3(x) objetive funtionTsmin minimum referene point of �4(x) objetive funtionm number of evaluated individuals in a populationA1; : : : ; Am alternative solutionsxij attributes whih measure alternative performaneChromi hromosomes to be evaluated in a generationEri; T ri; T si; Osi losed loop performane riteria with whihalternative solutions are evaluated�OS overshoot penalty�Tr rise time penalty�Ts settling time penalty[Cyvmin Cy�min Cnrmax Xpmax℄ vertex points model[Cyvmax Cy�min Cnrmax Xpmin℄ vertex points model



Appendix BPhysial Parameters of HortonMissile ModelSymbol Meaning Value�0 Sea Level Air density 1:23kg=m3� Air Density �0 � 0:094hd Referene diameter 0:2mS Referene area d2=4 = 0:0314m2m Mass 125kgIz; Iy Lateral Inertia 67:5kgm2Ix Inertia 6:75kgm2
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Appendix CNon-linear funtions of the statespae modelThe non-linear funtions fv; fw; fr; fq; fp and gv; gw; gr; gq; gp from the equation ofmotion (2.42) shown in Chapter 2 are given here:fv(v; w; r) = V o( �Cyv0 + �Cyv�pv2 + w2)v � Urgv(v; w) = V oVo( �Cy�0 + �Cy��pv2 + w2fr(w; v; r) = �Ro 1d [(�xp0 �Cyv0 + �xp� �Cyv0)pv2 + w2+(�xp0 �Cyv� + �xp� �Cyv�(v2 + w2)℄v + d2Ro( �Cnr0 + �Cnr�pv2 + w2)rgr�(v; w) = RoSfVo( �Cy�0 + �Cy��pv2 + w2)gr�(v; w) = �RoSfVo[( �Cy�0RN2 + �Cy��RN1)pv2 + w2 + �Cy�0RN1 + �Cy��RN2(v2 + w2)℄fw(v; w; q) = W o( �Czw0w + �Czw�pv2 + w2) + Uqgw(v; w) = W oVo( �Cz�0 + �Cz��pv2 + w2)fq(v; w; q) = Qo[d2 �Cmq0q + 12dCmq�pv2 + w2q + 1d(�xp0Czw0w)+1d(�xp� �Czw0 + �xp0 �Czw�wpv2 + w2 + 1d(�xp� �Czw�w(v2 + w2))℄gq�(v; w) = �QoVoSf( �Cz�0 + �Cz��pv2 + w2)gq�(v; w) = QoSfVo[( �Cz�0RN2 + �Cz��RN1)pv2 + w2 + �Cz�0RN1 + �Cz��RN2(v2 + w2)℄fp(p) = �100Ix pgp�(v; w) = 500RL1Ix + RL2Ix 180Vo3:14pv2 + w2gp�(v; w) = 500RL1Ix + RL2Ix 180Vo3:14pv2 + w2gp� = �500Ix (C.1)154



APPENDIX C. NON-LINEAR FUNCTIONS OF THE STATE SPACE MODEL155where the Mah number M , and the total veloity Vo are slowly varying and where:M = VoSoSV o = W o = 12m�VoSQo = Ro = 12Iyz �VoSd (C.2)The parameters a1; : : : ; a5, b1; : : : ; b10 and 1; : : : ; 4 are de�ned here whih are usedin Chapter 3 to desribe the non-linear system in parametri format:a1 = V o �Cyv0a2 = V o �Cyv�a3 = �Ua4 = V oVo �Cy�0a5 = V oVo �Cy��b1 = �Ro 1d �xp� �Cyv�b2 = �Ro 1d(�xp0 �Cyv0 + �xp� �Cyv0)b3 = �Ro 1d �xp0 �Cyv�b4 = d2Ro �Cnr�b5 = d2Ro �Cnr0b6 = RoSfVo �Cy��b7 = RoSfVo �Cy�0b8 = �RoSfVo( �Cy�0RN2 + �Cy��RN1b9 = �RoSfVo �Cy�0RN1b10 = �RoSfVo �Cy��RN21 = �100Ix2 = �500Ix3 = 500RL1Ix + RL2Ix 180Vo�4 = 500RL1Ix + RL2Ix 180Vo� (C.3)



Appendix DLie Algebra
D.1 Lie Derivative and Lie BraketThe terminology used in di�erential geometry has been introdued here by desribingthe following mathematial tools: A vetor funtion f : Rn �! Rn is alled a vetor�eld inRn whih means to every vetor funtion f orresponds a �eld of vetors in ann dimensional spae. A smooth vetor �eld is a funtion f(x) whih has ontinuouspartial derivatives of any required order. Given a smooth salar funtion h(x) of thestate x , the gradient of h is denoted by rhrh = �h�x (D.1)The gradient is represented by a row-vetor of elements (rh)j = �h�xj . Similarly,given a vetor �eld f(x), the Jaobian of f is denoted by rf :rf = �f�x (D.2)and it is represented by an n� n matrix of elements (rf)ij = �fi�xj .Lie DerivativesGiven a salar funtion h(x) and a vetor �eld f(x), a new salar funtion Lfh isde�ned, alled the Lie derivative of h with respet to f. By de�nition [14℄ the Liederivative of h with respet to f is a salar funtion de�ned by Lfh(x) = rhf(x).Thus the Lie derivative Lfh is the diretional derivative of h along the diretion ofthe vetor f. First and higher order Lie derivatives an be de�ned as:Lfh(x) = �h�xf(x) (D.3)and respetively: Lkfh(x) = Lf (Lk�1f h(x)) (D.4)Similarly, if g is another vetor �eld, then the salar funtion LgLfh(x) is given by:LgLfh(x) = rLfh(x)g (D.5)156



APPENDIX D. LIE ALGEBRA 157Lie BraketsBy de�nition the Lie braket of f and g is a third vetor �eld de�ned by:[f ; g[ = rgf �rfg (D.6)where f and g are two vetor �elds on Rn and where rg and rf represent theJaobians (matries) of g and f respetively.Suessive Lie brakets [f; :::; [f; g℄; :::℄ an be de�ned as follows:ad0f(g) = gad1f(g) = [f; g℄...adkf(g) = [f; adk�1f (g)℄ (D.7)where \ad" represents \adjoint". Both Lie Derivatives and Lie Brakets are the mainmathematial tools used by Feedbak Linearization for nonlinear dynami systems.D.2 Feedbak linearization of MIMO systemsInput-Output linearization of MIMO systems [14℄ is obtained similarly to the SISOase, by di�erentiating the outputs yi until the inputs appear. Assume that ri is thesmallest integer suh that at least one of the inputs appears in y(ri)i , theny(ri)i = Lrif hi + mXj=1LgjLri�1f hiuj (D.8)with LgjLri�1f hi(x) 6= 0 for at least one j, in a neighbourhood 
i of the point x0.Performing the above proedure for eah output yi yields2666664 yr11......yrmm
3777775 = 2666664 Lr1f h1(x)......Lrmf hm(x)

3777775+ E(x)u (D.9)where the (m x m) matrix E(x) is de�ned asE(x) = 2664 Lg1Lkfh1(x) : : : LgmLkfh1(x)... : : : ...Lg1Lkfhm(x) : : : LgmLkfhm(x) 3775 (D.10)where 0 � k � 2n � 1. De�ne then 
 as the intersetion of the 
i. If as assumedabove , the partial relative degrees ri are all well de�ned, then 
 is itself a �nite



APPENDIX D. LIE ALGEBRA 158neighbourhood of x0. Furthermore, if E(x) is invertible over the region 
, thensimilarly to the SISO ase the input transformationu = E�1 2666664 �1 � Lr1f h1......�m � Lrmf hm
3777775 (D.11)yields m equations of the simple formyrii = �i (D.12)Sine the input �i only a�ets the output yi, (D.11) is alled a deoupling ontrollaw, and the invertible matrix E(x) is alled the deoupling matrix of the system.The system is then said to have relative degree (r1; : : : ; rm) at x0 and the salarr = r1 + : : :+ rm is alled the total relative degree of the system at x0.
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Figure D.1: MIMO ontrol designAn interesting ase is when the relative degree of a system is the same as its or-der, i.e., when the output y has to be di�erentiated n times (with n being thesystem order) to obtain a linear input-output relation. In this ase, the variablesy; y1; : : : ; yr�1 may be used as a new set of state variables for the system, and thereis no internal dynamis assoiated with this input-output linearization. In this asethe Input-Output linearization leads to Input-State linearization by Slotine in [14℄.D.3 Complex Nonlinear Derivative_(a2x1qx12 + x32) = a2 _x1qx12 + x32 + a2 x21 _x1px12 + x32 + a2 x1x3 _x3px12 + x32 (D.13)Suh a omplex nonlinear derivative has been used for the nonlinear feedbak ontrollow derived in MIMO ase Design1



Appendix EFuzzy logi glossaryAristotle's law of "A or not A" always holds in probability, while Buddha's law"A and not A" holds in real life situations. The fuzzy entropy theorem has beenproved in 1986: "Fuzziness is the ratio of Buddha over Aristotle". The fuzzier theset the more Buddha resembles Aristotle". Fuzzy Logi has two meanings. The �rstmeaning is multi-valued or 'vague' logi. Everything is a matter of degree inludingtruth and set membership. The seond meaning is reasoning with fuzzy sets or withsets of fuzzy rules. This dates bak to the �rst work on fuzzy sets in the 1960s and1970s by Lofti Zadeh at the University of California at Berkeley. Other synonyms:gray logi, loudy logi, ontinuous logi.Fuzzy RuleA onditional of the form IF X is A,THEN Y is B. A and B are fuzzy sets:"IF theroom air is ool, THEN set the motor speed to slow". In math terms a rule is arelation between fuzzy sets. Eah rule de�nes a fuzzy path (the produt A x B) inthe system "state spae"- the set of all possible ombinations of inputs and outputs.The wider the fuzzy sets A and B, the wider and more unertain the fuzzy path.More ertain knowledge leads to smaller pathes or more preise rules. Fuzzy rulesare the knowledge building bloks in a fuzzy system. In math terms eah fuzzy ruleats as an assoiative memory that assoiates the fuzzy response B with the fuzzystimulus A. Then stimuli similar to A map to responses similar to B. In this senseeah fuzzy rule de�nes fuzzy assoiative memory, or FAM. A set of FAM rules in afuzzy system ats as a FAM at higher level. It too onverts similar inputs to similaroutputs.Fuzzy setA set whose members belong to it to some degree. In ontrast a standard or non-fuzzy set ontains its members all or none. The set of even numbers has no fuzzymembers. Eah number belongs to it 0% or 100% . The set of big moleules hasgraded membership. Some moleules are bigger than others and so belong to it togreater degree. In the same way most properties like redness or tallness or goodnessadmit degrees and thus de�ne fuzzy sets. In math term a fuzzy set is either a pointin a hyperube or a urve. A fuzzy set with n members is equal to a list of n numbers159



APPENDIX E. FUZZY LOGIC GLOSSARY 160or �t values. Eah �t value lies in the interval from 0 to 1 and stands for the degreethat that member belongs to or �ts in the fuzzy set. The set of all suh lists of n�t values de�nes a solid unit hyperube of n dimensions (with 2n orners made upof the 2n binary lists of 0s and 1s or the 2n non-fuzzy sets). Eah fuzzy set is onepoint in this fuzzy ube. The same holds as the number n grows to in�nity. Thesame holds as the number n grows to in�nity. Three tall men (0:90:50:3) means the�rst is 90% tall, the other is 50% tall or as muh not-tall as he is tall.,the third manis 30% tall or more not tall than tall. A urve de�nes a fuzzy set for a ontinuumof ases like all possible temperature values between 50Æ and 100Æ or all possiblear veloities between 0 mph and 120 mph. The height of the urve between 0 and1 measures the �t value or degree that the element belongs to the fuzzy set. Anon-fuzzy set looks like a step. Part of the urve is the at line at 100% and the restis the at line at 0%. In this world ontinuity is a useful �tion for math analysisand for engineering design. Up lose there are only disrete values and a �nite andsmall set to temperature values or even ar veloities. This amounts to \sampling"a fuzzy urve at several plaes and gives a �nite �t list for the fuzzy set. The moresamples the more aurate the �t list and the larger the dimension of the hyperubein whih it sits as a point.Fuzzy systemA set of fuzzy rules that onverts inputs to outputs. In the simplest ase an expertstates the rules in words or symbols. In the more omplex ase a neural systemlearns the rules from data or from wathing the behaviour of human experts. Eahinput to the fuzzy system �res all the rules to some degree as in a massive assoia-tive memory. The loser the input mathes the if-part of a fuzzy rule, the more thethen part �res. The fuzzy system adds up all these output or then part fuzzy setsand takes their average or entroid value. The entroid is the output of the fuzzysystem. Fuzzy hips perform this assoiative mapping form input to output thou-sands or millions of times per seond. Eah map form input to output de�nes oneFLIPS- or fuzzy logial inferenes per seond. The Fuzzy Approximation Theoremshows that a fuzzy system an model any ontinuous system. Eah rule of the fuzzysystem ats as a fuzzy path that the system plaes so as to resemble the responseof the ontinuous system to all possible inputs.ProbabilityThe mathematial theory of hane. A probability is a number assigned to an event.The larger the number the more \likely" the event will our. In probability theoryall unertainty omes from an unde�ned \randomness" or \hane".In math terms all probability numbers must add up to one. All events are biva-lent. Either an event happens or not, in whih ase its opposite happens. Theprobability that either the event A happens or its opposite not-A happens is 100%.Events in probability theory are just the blak-white sets of set theory. In this senseprobability theory rests on bivalent logi.



Appendix FSoftware implementationThe software is build under Matlab environment using \C" language. The dynamisof the missile is written in \C" as S-funtion and the non-linear ontrol law is writtenin \C" as mex funtion. Both are ompiled under Matlab. The simulation of theautopilot system is designed using Simulink library and it is alled from the Matlabworkspae. The Fuzzy logi trajetory ontroller is produed by using the FuzzyLogi toolbox in Matlab language. The geneti algorithm strategy is written withthe help of the GA funtions provided by She�eld University, UK. The simulationswere mainly ran on a 300MHz Unix Workstation or PC. The optimisation algorithmis used to generate the fuzzy ontrol parameters. The obtained fuzzy ontroller isthen tested on a missile model. A performane analysis is done o�-line for eahautopilot simulation. The maximum objetive value is returned to the optimisationalgorithm for evaluation of the tested fuzzy ontroller. The optimisation proessrepeats for large number of iterations until satisfatory losed loop performane ofthe autopilot system is obtained.
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