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ABSTRACT

GA performance in high-dimensional optimisation problems can be enhanced by the use of a ‘pseudo subspace’
technique. The method works by projecting the parameter space onto a lower dimensional subspace in the first

stages of the optimisation process, in order to allow the GA search to discover the most promising area of the
solution space. Subsequently, the dimensionality of the model is progressively increased uniil a pre-determined
limit is reached. Comparison between the pseudo-subspace procedure and a conventional GA, using two different

GA implementations, shows the former to

be more successful when applied to two geophysical problems

characterised by different solution-space geomeliry and mathematics. This technique could be easily transferred to
different image processing or pattern recognition problems where geometrical relationships between the

parameters are maintained.
1. Introduction

In recent years genetic algorithms (GAs) have
increasingly been used to address complex
optimisation problems [1-3]. One field in which GAs
are currently enjoying particular success is geophysics
[4-8]. Although the underlaying physics and
mathematics may strongly differ, geophysical
inversion problems usually share three common
features: a high degree of non-linearity, a large number
of parameters to be determined and a high cost of
function-evaluation. Accordingly, since the resulting
high-dimensional solution space can be searched only
with small populations in order to keep the
computational effort acceptable, the correct
reconstruction of many closely interconnected
parameters may be particularly difficult. In this paper
we present a technique to tackle high-dimensional
problems that allows for a GA's performance to be
improved by the inclusion of a procedure, here called
‘pseudo-subspace’ search, whereby the complexity of
the model defining the solution is progressively
increased during the inversion. This technique has
been tested on two different GA implementations on
two geophysical optimisation problems. The tests
show that the use of such a technique is crucial to
achieve high quality solutions at a reasonable cost.

2. Genetic Algorithm Implementation

For this study a real-coded GA has been implemented
in which an individual is represented by an array of real
values corresponding to the parameters to be
determined. Currently no theoretical rules for the
implementation of GA operators are available in the
literature. Since such choices can critically affect the
success of a particular GA application a number of
possible implementations have been tested for each
operator in order to select the most effective
configuration. Details of such tests may be found in
[5]. Our tests show a multi-point crossover with a rate

of 0.8 and a traditional mutation operator with a rate of
0.01 is the most effective configuration for the
optimisation problems described below. Two kinds of
selection have been implemented: linear normalisation
selection [2, 3], and parent selection [91.

In linear normalisation selection an individual is
ranked according to its fitness and then it is allowed to
generate a number of offspring proportional to its rank
position. This selection technique pushes the
population towards a single solution in a reasonably
fast manner.

In parent selection all individuals are allowed 1o
generate a single offspring regardless of their fitness.
All the individuals are mated randomly and through
crossover each couple creates two offspring. If the
offspring fitnesses are better than those of the parents
they are substituted for them in the population. With
this method diversity is kept in the population.
Accordingly, convergence is slower than in the linear
normalisation selection but a large number of different
solutions can usually be found.

These two different selection strategies have a major
impact on the GA optimisation process.
Consequently, two different GA schemes have been
implemented to tackle the two different problems that
will be described below.

3. Pseudo-Subspace Genetic
Algorithms

Williamson [10] describes the inversion of seismic
reflection data using of a multi-staged approach in
which the resolution of the Earth model is
progressively increased during the process. The method
has been used in the context of a local optimisation
scheme and a more detailed description of its
theoretical basis may be found in [11, 12]. We have
used a similar approach in the GA global search. For




carly generations, the total number of parameters
required by the problem is 'compressed’ into a much
smaller number. In geophysical applications of GAs it
is common for the problem to involve the distribution
of some physical property within the subsurface,
usually expressed as values at nodes of a grid. In this
case ‘compression' is achieved by using a coarse grid in
the early stages of the optimisation, with
'decompression’ achieved by introducing a
progressively finer grid as optimisation progresses. At
the start of the operation the parameter space has
relatively small dimensions. Within a few generations
the GA defines approximately correct values at the grid
nodes. Because an exact solution very likely cannot be
found with such a coarse grid spacing there is no need
to run the GA for many generations at this stage and
consequently only a small sample population is also
sufficient. In subsequent generations the spacing of the
grid nodes is halved and hence the parameters are
progressively 'decompressed’. The new parameters that
are introduced at this stage are linearly interpolated
with respect to the parameters optimised in the
previous stage. Different techniques may also be
implemented depending on the physics of the problem.
Again the GA is run, in what is now a higher
dimensional space, for few generations with a
relatively larger population. This process is repeated
until the size of the grid reaches some pre-determined
limit, whereupon the GA is run for a larger number of
generations, and with a larger population, until an
acceptable convergence is reached.

4. Examples

4.1. Inversion of Magnetic Data. In this
problem we aim to reconstruct the bottom contact
between two geological bodies of different magnetic
susceptibility by the inversion of magnetic anomaly
data measured on the earth surface, or at small altitudes
above it [13]. The contrast in magnetisation of the two
rock bodies causes local perturbation of the Earth's
magnetic field and the form of these 'anomalies’ can be
used to define the geometry of the bodies. In our
example the geometry of the contact between the
different rocks types is defined at the nodes of a regular
grid. In this example the finat image is described by a
5 x 5 grid. The inversion of magnetic data is
characterised by ambiguity problems, i.e. an infinite
number of solutions can be found that satisfy the
observed data (see for example [14]). Usually the
ensemble of all the possible solutions belongs to a
domain whose dimension is only slightly lower than
the global parameter space. Recently this problem has
been addressed by trying to obtain a number of
solutions large enough to describe the shape of this
ambiguity domain [15]. Despite the fact that the
solutions do not define a normal distribution, we have
found that their arithmetic average usually gives a
satisfactory representation of the global ensemble.
Accordingly, the 'parent selection’ implementation has
been used to tackle this problem, Through the use of
such an operator, a number of different solutions are

allowed to converge while the GA population is kept
relatively diverse and thus able to span the large global
minimum that results from the inherent ambiguity of
the problem. Figure 1 shows the result of the
application of this technique to the inversion of
magnetic data. Figure la shows the synthetic image
used to produce the dataset that has been inverted.
Figure 1b and 1c shows the results from the inversion
with and without the inclusion of the ‘pseudo-
subspace’ technique, respectively. Clearly the initial
low-dimensional search has directed the successive
space sampling towards the most promising area of the
solution space.

Fig. 1. Variation of the depth of the contact between
two geological bodies with different magnetic
properties. Synthetic model (top), results obtained




using GA with the ‘pseudo-subspace’ method (middle)
and solution from a traditional GA (bottom).

4.2. Inversion of Seismic Refraction Data.
In seismic refraction surveying the aim is to
reconstruct the seismic velocity field in a cross-section
through the Earth, by the inversion of the travel times
of seismic energy generated at or near the surface and
detected by a line of detectors [13]. Again, this is
achieved by describing the Earth in terms of some
physical property at the nodes of a grid, in this case
the propagation velocity of the seismic waves. Usually
this kind of application requires larger grids than the
ones used in the inversion of magnetic data. Here we
present results obtained using a 9 x 5 grid. In another
test the same technique has been used to successfully
reconstruct images with up to 105 nodes [16]. In our
experience, the seismic refraction problem in a fixed
grid is characterised by a unique global minimum.
Also, the parameters are so strongly related that a
wrong parameter may affect the values of most of the
remaining parameters in the domain. Accordingly, the
use of the 'linear normalisation selection’ is more
effective because it allows for more rapid sampling of
promising valleys. Figure 2 presents the results from
the application of the conventional GA (Fig.2c) and
the GA including the pseuo-subspace search (Fig.2b)
in the inversion of a dataset produced using the model
in Figure 2a. Again, the inclusion of the ‘pseudo-
subspace' search is clearly crucial in obtain a good
quality solution.

Fig. 2. Inversion of seismic refraction data. The
images show the variation in the seismic waves
propagation velocity. Synthetic model (a), results

obtained using GA with the ‘subspace-like’ method ®)
and solution from a traditional GA (c).

5. Discussion and Conclusions

The inclusion of a ‘pseudo-subspace’ technique that
allows for the complexity of the model to be
progressively increased during the inversion process
has proved to be particularly beneficial in addressing
two high-dimensional highly-non linear geophysical
optimisation problems. The ability of the method to
quickly and accurately detect the most promising areas
of the solution space in the early low-dimensional
stages of the process allows the GA to concentrate the
later search in such areas and reconstruct high-quality
solutions. The early low-dimensional iterations are
also effecient from a computational point of view,
allowing for a much faster convergence. This technique
has successfully solved problems characterised by up
to 105 parameters, otherwise beyond the normal
computational limits for a global optimisation method
in geophysical applications. The extension of the
method to other image processing and pattern
recognition problems where simple spatial
relationships among the parameters are present 1s
straightforward. It is important to the success of the
method that the actual process of compression does not
result in insufficient data such that the forward
problem can not be satisfactorily computed. For
instance, in the case of the seismic data, an
approximate scheme is used to calculate the seismic
travel times. This scheme must be able 1o still
calculate these times to a reasonable approximation
even when the grid of velocity values is coarse.

In the examples presented the parameters being
‘compressed’ are all of the same type, ¢.g. values of
seismic velocity. To compress parameters of different
type it is necessary to define approximate relationships
between these parameters. For example, in a
simultaneous inversion of seismic and gravity data,
the loose relationship between density and seismic
velocity can be exploited and hence these two
properties compressed in a single parameter at the
beginning of the process. In the later stages of the
optimisation process, after 'decompression’, a more
accurate and independent determination of these
parameters would occur.
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