The naive MIDEA:
a baseline multi—objective EA

Peter A.N. Bosman and Dirk Thierens

Institute of Information and Computing Sciences
Utrecht University, The Netherlands
{Peter.Bosman, Dirk.Thierens}@cs.uu.nl

Abstract. Estimation of distribution algorithms have been shown to
perform well on a wide variety of single-objective optimization problems.
Here, we look at a simple - yet effective - extension of this paradigm for
multi-objective optimization, called the naive MIDEA. The probabilistic
model in this specific algorithm is a mixture distribution, and each com-
ponent in the mixture is a univariate factorization. Mixture distributions
allow for wide—spread exploration of the Pareto front thus aiding the im-
portant preservation of diversity in multi-objective optimization. Due to
its simplicity, speed, and effectiveness the naive MIDEA can well serve
as a baseline algorithm for multi-objective evolutionary algorithms.

1 Introduction

Estimation of distribution algorithms (EDAs) are a class of evolutionary al-
gorithms that build at each generation a probabilistic model from the selected
solutions. EDAs are mainly characterized by the kind of probabilistic model they
learn. Somewhat surprisingly, it has become clear that even the use of a simple
univariate factorization as probabilistic model often leads to good performance
for discrete, single objective optimization problems. Considering their ease of
implementation, univariate EDAs have become a baseline algorithm that can be
used to generate reasonable good solutions quickly, thus setting a performance
level that more elaborated algorithms need to surpass to justify their use. The
goal of this paper is to show that a similar baseline algorithm can be constructed
for multi-objective optimization problems. The resulting algorithm - called the
naive MIDEA - is a simple, fast, and efficient multi-objective evolutionary al-
gorithm (MOEA) based on the concept of Pareto dominance, and can thus be
used as a baseline algorithm for more elaborate MOEAs.

The remainder of this paper is organized as follows. In Section 2 we spec-
ify the naive MIDEA algorithm as an instance of the more general MIDEA
(mixture-based, multi-objective iterated density—estimation evolutionary algo-
rithm) framework. In Section 3 we test the performance of the algorithm on
four multi-objective, combinatorial optimization problems, compare the results
with two state—of-the—art MOEAs, and discuss our findings. We present our
conclusions in Section 4.

2 The naive MIDEA

2.1 Mixture probability distributions

A mixture probability distribution is a weighted sum of k probability distri-
butions. Each probability distribution in the mixture distribution is called a
mixture component. Let Z = (Zy, Z1,...,Z;—1) be a vector of random variables
Z; associated with the i—th problem variable. A mixture probability distribution
is then defined as:

k—1
Pr(2) = Y BiP(Z))
=0

where g; > 0, ¢ € {0,1,...,k — 1}, and Zf:_ol B; = 1. The B; with which the
mixture components are weighted in the sum are called mixing coefficients.

The general advantage of mixture probability distributions is that a larger
class of dependency relations between the random variables can be expressed
than when using non—mixture probability distributions since a mixture prob-
ability distribution makes a combination of multiple probability distributions.
In many cases, simple probability distributions can be used as mixture compo-
nents to get accurate descriptions of the data in different parts of the sample
space. By using mixture probability distributions, a powerful, yet computation-
ally tractable type of probability distribution can be used within EDAs, that
provides for processing complicated interactions between a problem’s variables.

For multi-objective optimization, mixture distributions have an additional
advantage that renders them particularly useful. The specific advantage is geo-
metrical in nature. If we, for instance, cluster the solutions as observed in the
objective space and then estimate a simpler probability distribution in each
cluster, the probability distributions in these clusters can portray specific infor-
mation about the different regions along the Pareto optimal front that we are
ultimately interested in. Drawing new solutions from the resulting mixture prob-
ability distribution gives solutions that are more likely to be well spread along
the front as each mixture component delivers a subset of new solutions. The use
of such a mixture distribution thus results in a parallel exploration along the
current Pareto front. This parallel exploration may very well provide a better
spread of new solutions along the Pareto front than when a single non-mixture
distribution is used to capture information about the complete Pareto front.

To complete the construction of the mixture distribution we also need to
determine the mixing coefficients ;. This can be done in various ways. Here we
set (3; proportional to the size of the i—th cluster with respect to the sum of the
sizes of all clusters.

2.2 Selection operator

In multi—objective optimization we want the solutions to be as close to the
Pareto optimal front as possible, and we want a good diverse representation

of the Pareto optimal front. In a practical application, we have no indication
of how close we are to the Pareto optimal front. To ensure selection pressure
toward the Pareto optimal front in the absence of such information, the best
we can do is to find solutions that are dominated as little as possible by any
other solution. A straightforward way to obtain selection pressure toward non—
dominated solutions is therefore to count for each solution in the population the
number of times it is dominated by another solution in the population, which is
called the domination count of a solution [1, 5].

In the MIDEA selection we discern two cases. Call n the population size and
7 € [0...1] the selection threshold. If the number of non—dominated solutions -
those with a domination count of 0 - is less than or equal to |7n| we simply select
the |7n] solutions with lowest domination count (ties are broken at random).
However, if the number of non—-dominated solutions is larger than |7n]| we first
collect all non—dominated solutions in a set S¥. Next, the final selection S
is obtained from S¥ using a nearest neighbor heuristic to enforce diversity. We
start by picking a solution from &% with an optimal value for a randomly chosen
objective and move it to the set & which has now a single element. Note that
the choice of objective is arbitrary as the goal is to find a diverse selection of
solutions. For all solutions in 8%, the nearest neighbor distance is computed to
the solution in &. The distance that we use is the Euclidean distance scaled to
the sample range in each objective. The solution in S¥ with the largest distance
is then deleted from S* and added to S. The distances in ST are updated
by investigating whether the distance to the newly added point in & is smaller
than the currently stored distance. These last two steps are repeated until |7n]
solutions are in the final selection &. This selection operator has a running
time complexity of O(n?) which is equal to the complexity for computing the
domination counts.

2.3 The naive MIDEA

The naive MIDEA is an instance of the MIDEA framework for multi-objective
optimization using EDAs [1,9]. The MIDEA can be specified in pseudo—code as
follows:

| MIDEA |

1 Initialize a population of n random solutions and evaluate their objectives
2 Iterate until termination
2.1 Compute the domination counts
2.2 Select | Tn] solutions with the diversity preserving selection operator
2.3 Estimate a mixture probability distribution P™""™(Z)
2.4 Replace the non-selected solutions with new solutions drawn from P™""™(Z)
2.5 Evaluate the objectives of the new solutions

The naive MIDEA uses a simple univariate factorized probability distributions
in each cluster: Piveriate(Z) = Hé;(l) P(Z;). For discrete random variables, this
amounts to repeatedly counting frequencies and computing proportions for a

single random variable. Since in each cluster we thus disregard all dependencies

between random variables, we call this specific MIDEA instance naive in analogy
with the well-known naive Bayes classifier. However, the clusters are expected
to already provide a large benefit for multi—objective optimization. Moreover,
algorithms such as UMDA [8] and the compact GA [6] that also use the uni-
variate marginal probability distribution (without clustering) have proved to be
reasonably effective for single-objective optimization problems.

For computational efficiency reasons we apply a fast clustering algorithm.
Possibly this adds to the naiveness of our naive MIDEA instance, but other
clustering algorithms are easily implemented if required. The algorithm that
we use here is the leader algorithm, which is one of the fastest partitioning
algorithms. The use of it can thus be beneficial if the amount of overhead that
is introduced by factorization mixture selection methods is desired to remain
small. There is no need to specify in advance how many partitions there should
be. The first solution to make a new partition is appointed to be its leader.
The leader algorithm goes over the solutions exactly once. For each solution
it encounters, it finds the first partition that has a leader being closer to the
solution than a given threshold ¥4. If no such partition can be found, a new
partition is created containing only this single solution. To prevent the first
partitions from becoming quite a lot larger than the later ones, we randomize
the order in which the partitions are inspected. One of the drawbacks of the
randomized leader algorithm is that it is not invariant given the sequence of the
input solutions. Therefore, to be sure that the ordering of the solutions is not
subject to large repeating sequences of solutions, we randomize the ordering of
the solutions each time the leader algorithm is applied.

Summarizing, the pseudo-code of the naive MIDEA is as follows:

naive MIDEA
(instantiation of steps 2.8 and 2.4 of the general MIDEA framework)

1(c% ¢, ...,c* 1) < LeaderAlgorithm(%,)
2fori< 0tok—1do
2.1 B; + |c*|/|mn]
22for j<—0tol—1do
2.2.1 Estimate the univariate marginal probability distribution P*7(Z;) for
random variable Z; from the solutions in the i-th cluster (i.e. c*)
3for i<+ |Tn] ton—1do
3.1 Initialize a new solution z
3.2 Choose an index q € {0,1,...,k — 1} with probability 3,
33for j«0tol—1do
3.3.1 Draw a value for Z; from the univariate marginal probability distribution
P%3(Z;) associated with the g-th cluster
3.4 Add z to the set of new offspring.

3 Experiments

In this section we compare the naive MIDEA to two state—of-the—art MOEAs
that aim at obtaining a diverse set of solutions along the Pareto front. The
SPEA algorithm by Zitzler and Thiele [13] and the NSGA-II algorithm by Deb

et al. [3] showed superior performance compared to most other MOEAs [3,11].
The multi—objective optimization problems are described in Section 3.1. The
performance measures we use to score the results of the algorithms with are de-
scribed in Section 3.2. In Section 3.3 we present our experimental setup. Finally,
in Section 3.4 we discuss the obtained results.

3.1 Multi—objective optimization problems

The test—suite we have used consists of four multi-objective optimization prob-
lems with two different dimensionalities resulting in a total test size of 8 prob-
lems. Figure 1 specifies the four problems. Next to being binary, these problems
are also multi—objective variants of well-known combinatorial optimization prob-
lems. The number of objectives for these problems is not restricted to two and
is denoted by m.

| Name |Deﬁnition |
Maximize (fo(x), fi(x),..., fm—1(x))

Where OVi:fi(w)zz:;":_Ol sgn([zz_:lo(ci)jkébwk])
1if >0
osgn(:c):{ 0if z=0
-1if z<0
e ®|01 ®M01 ®M01
1

MS

Maximum
Satisfiability

-1 0 000 1/0 1
Maximize (fo(x), fi(x), ..., fm—1(x))
KN Where o Vi: fi(z) =Y/} Pyz;

(Knapsack) —1
Such that e V 7 : Ej_:O Wijz; < ¢

Minimize (fo(x), fi(x),..., fm-1(x))

SC ‘Where oeVi: fl(:l}) = Zé;t Cijx;
(Set Covering)

Such that e V i: Vo<jcr : 3w o(Ai)jexr > 1
Minimize (fo(x), fi(x),..., fm-1(x))
Where eVi: fi(x) = Zé;%) Wijxj

(Minimal) Such that e Vscv : Em]-e(s><(v—5)) zj 21

Spanning
[] ngv H Eac]-e(SXS) .’I}j S |S| -1

MST

Tree

Fig. 1. Binary multi-objective combinatorial optimization test problems.

Mazimum satisfiability. In the maximum satisfiability problem, we are given a
propositional formula in conjunctive normal form. The goal is to satisfy as many
clauses as possible. The solution string is a truth assignment to the involved
literals. These formulas can be represented by a matrix in which row 4 specifies
what literals appear either positive (1) or negative (—1) in clause 4. In the multi—
objective variant of this problem, we have m of such matrices and only a single
solution to satisfy as many clauses as possible in each objective at the same time.

Knapsack. The multi-objective knapsack problem was first used by Zitzler and
Thiele [13] to test MOEAs. We are given m knapsacks with a specified capacity
and n items. Each item can have a different weight and profit in every knapsack.
Selecting item 4 in a solution implies placing it in every knapsack. A solution
may not cause exceeding the capacity of any knapsack.

Set covering. In the set covering problem, we are given [locations at which we
can place some service at a specified cost. Furthermore, associated with each lo-
cation is a set of regions C {0,1,...r—1} that can be serviced from that location.
The goal is to select locations such that all regions are serviced against minimal
costs. In the multi-objective variant of set covering, m services are placed at a
location. Each service however covers its own set of regions when placed at a
certain location and has its own cost associated with a certain location. A binary
solution indicates at which locations the services are placed.

Minimal spanning tree. In the minimal spanning tree problem we are given
an undirected graph (V, E) such that each edge has a certain weight. We are
interested in selecting edges Er C E such that (V, Er) is a spanning tree. The
objective is to find a spanning tree such that the weight of all its edges is minimal.
In the multi—objective variant of this problem, each edge can have a different
weight in each objective.

3.2 Performance indicators

To measure the performance of a MOEA we only consider the subset of all non—
dominated solutions that is contained in the final population that results from
running the MOEA. We call such a subset an approximation set and denote it
by S. The size of the approximation set depends on the settings used to run the
MOEA with. To actually measure performance, performance indicators are used.
A performance indicator is a function that, given an approximation set S, returns
a real value that indicates how good S is with respect to a certain feature that
is measured by the performance indicator. More detailed information regarding
the importance of using good performance indicators to evaluate MOEAs may
be found in dedicated literature [2,7,12]. Here we will use three performance
indicators:

1. The Front Spread (FS) indicator measures the size of the objective space
covered by an approximation set [13]. A larger F'S indicator value is prefer-
able given equal values for the other indicators. The FS indicator for an

approximation set S is defined to be the maximum Euclidean distance in-
side the smallest m—dimensional bounding—box that contains S:

m—1

FS(S) = | D max(zo onesxs{(fi(2°) - fi(z1))?} (2)

=0

. The Front Occupation (FO) indicator measures the size of the set of non—
dominated solutions [10]. Since a larger set of trade—off points is more de-
sirable, a larger FO indicator value is preferable given equal values for the
other indicators.

FO(S) = 5] 3)

. The Front to Set Distance indicator (Dp._s) computes for each solution
in the discrete Pareto optimal set the distance to the closest solution in an
approximation set S and takes the average as the indicator value:

1

D’PF—>S(S) = |PS|

> mingoes{d(z% 2")} (4)

zlePg

Since we are interested in performance as measured in the objective space,
the distance between two multi-objective solutions 2° and 2! is the Eu-
clidean distance between their objective values f(2°) and f(2!).

The Dp,._,s indicator represents both the goal of getting close to the Pareto
optimal front as well as the goal of getting a diverse, wide—spread front of
solutions. A smaller value for this performance indicator is preferable.

A performance indicator that is closely related to the Dp,_,s indicator, is
the hypervolume indicator by Knowles and Corne [7]. In the hypervolume
indicator, a point in the objective space is picked such that it is dominated
by all points in the approximation sets that need to be evaluated. The indi-
cator value is then equal to the hypervolume of the multi—dimensional region
enclosed by the approximation set and the picked reference point. This value
is an indicator of the region in the objective space that is dominated by the
approximation set. The main difference between the hypervolume indicator
and the Dp, s indicator is that for the hypervolume indicator a reference
point has to be chosen. Different reference points lead to different indicator
values. Moreover, different reference points can lead to indicator values that
indicate a preference for different approximation sets. Since in the Dp,_,s
indicator the true Pareto optimal front is used, the Dp,_,s indicator does
not suffer from this drawback. Of course, a major drawback of the Dp,._,s
indicator is that in a real application the true Pareto optimal front is not
known beforehand. In that case, the Pareto front of all approximation sets
could be used as a substitute for the actual Pareto optimal front.

D'Pp—)S

EA M5100 KN100 50100 MST105 M51000 KN 1000 501000 MST1035
SPEAUVX 12.5 | 9.59 | 2.92 1.43 183 67.3 518 6.10
SPEA™* 11.6 8.50 | 2.99 1.50 277 83.1 452 5.75

NSGA-II* 114 | 7.75 | 2.61 1.21 185 84.1 260 6.45
NSGA-II** 11.5 | 8.87 | 2.63 1.49 289 121.0 329 5.95
naive MIDEA|| 7.95 | 4.13 | 1.52 | 1.19 37.2 30.4 117 3.39

Fig. 2. Average of the Dp,._.s performance indicator on all combinatorial problems.

Front Spread FS

EA M5100 KNIOO 50100 MST105 MSIOOO KN1000 501000 MST1035
SPEAUX 116 69.5 | 64.6 30.6 288 254 631 52.1
SPEA™* 126 82.6 | 51.0 32.5 399 308 636 50.8

NSGA-IIV* 120 78.3 | 14.8 26.3 370 288 144 33.7
NSGA-II** 129 76.6 | 12.8 23.9 364 291 107 36.1
naive MIDEA|| 172 | 115 | 24.7 | 34.3 538 453 204 57.0

Fig. 3. Average of the F'S performance indicator on all combinatorial problems.

3.3 Experimental setup

Optimization problem dimensionalities. We used test instances with di-
mensionality [= 100 and [= 1000. For the maximum satisfiability problem, we
generated the test instances by generating 2500 clauses for [= 100 and 12500
clauses for I = 1000 with a random number of literals between 1 and 5. For
the knapsack problem, we generated instances by generating random weights in
[1;10] and random profits in [1; 10]. The capacity of a knapsack was set at half
of the total weight of all the items, weighted according to that knapsack objec-
tive. For set covering, the costs were generated at random in [1;10]. We used
250 regions and 2500 regions to be serviced for I = 100 and [= 1000 respec-
tively. We varied the problem difficulty through the region—location adjacency
relation. This relation was generated by making each location adjacent to 70
and 50 randomly selected regions for [= 100 and | = 1000 respectively. Finally,

Front Occupation FO

EA M5100 KNIOO 50100 MST105 MSIOOO KN1000 501000 MST1035
SPEAUX 46.8 | 46.5 | 25.0 42.8 49.4 49.5 26.2 48.8
SPEA'* 46.1 | 77.6 | 24.3 80.1 49.9 49.7 26.5 95.0

NSGA-IIV* 33.5 | 35,5 | 7.80 32.3 35.4 33.1 7.50 64.7
NSGA-II** 41.1 | 37.5 | 6.80 24.5 42.0 36.4 7.20 64.8
naive MIDEA|| 52.6 | 57.8 | 10.4 23.7 116 104 6.27 60.0

Fig. 4. Average of the FO performance indicator on all combinatorial problems.

Population Size n
EA MS100] g\ 100] 52100 a5 7105] 3751000 g Ar1000] 5>1000] 575771035
SPEAUX 25 25 25 25 25 25 25 25
SPEAX 25 50 25 100 25 25 25 50
NSGA-IIV* 350 325 300 200 200 250 200 250
NSGA-II** 100 175 250 200 150 200 150 200
naive MIDEA|| 750 625 | 1300 | 4700 1100 1175 | 1625 1875

Fig. 5. Population sizes used for the combinatorial problems.

for the minimum spanning tree problem, we used full graphs with 105 edges (15
vertices) and 1035 edges (46 vertices). The dimensionality of these problems is
therefore not precisely 100 and 1000. The weights of the edges were generated
randomly in [1;10].

Dp, s Front Spread FS Front Occ. FO
n|wn gllwm| |[»|n Sllw| |w|lw o »
Statistically gg%%g. g g*c%%ee. g g@%%g. &
Significant >>§§3§ B >§§§§ B >>§§3§o 8
Improvement | | | &L |5 |2 | B O = S| SO
Matrices '_c”_'; w} '_c”_;;b Hc:'_“;< g
% = » = » =
> > >
SPEAUX 0|-1{-2|0|-8(|-11| [0|-4|1|0]|-4| -7 0(-4/6|6|-2(6
SPEA'X 1{01|-4|0(-8|-11 410|8]|71-3|| 16 4108 222
NSGA-IIV* 2|410(41]-7|| 3 -11-8|0|1|-8|[-16| |[-6|-8|0]|-1]-3(|-18
NSGA-II™* 0|01|-4|01|-8|-12| |0|-7|-1|0]|-8][-16| |-6|-8|1|0|-5(|-18
naive MIDEA 8|8(7(8|0(31 4(3(8|8|0]23 21-2(3|5|0{ 8

Fig.6. Number of times an improvement was found to be statistically significant in the
Dop,. s, FS and FO performance indicators, summed over all tested problems. The numbers
in a single row indicate the summed number of significantly better or worse results compared
to the algorithms in the different columns.

Optimization problem constraints. The set covering, knapsack and minimal
spanning tree problems have constraints. To deal with them, we can use a re-
pair mechanism to transform infeasible solutions into feasible solutions. Another
approach is based on the notion of constraint—domination introduced by Deb et
al. [4]. This notion allows to deal with constrained multi—objective problems in
a general fashion. A solution z° is said to constraint—dominate solution z! if any
of the following is true:

1. Solution 29 is feasible and solution z' is infeasible
2. Solutions 2° and 2! are both infeasible, but z° has a smaller overall con-
straint violation

3. Solutions z° and z! are both feasible and 2% > z!

The overall constraint violation is the amount by which a constraint is violated,
summed over all constraints. We have used this principle for the set covering
problem. For the knapsack problem, an elegant repair mechanism was proposed
earlier by Zitzler and Thiele [13]. For the minimal spanning tree problem, the
number of constraints grows exponentially with the problem size . We therefore
propose to use repair mechanisms for these latter two problems.

Knapsack repair mechanism. If a solution violates a constraint, the repair mech-
anism iteratively removes items until all constraints are satisfied. The order in
which the items are investigated, is determined by the maximum profit/weight
ratio. The items with the lowest profit/weight ratio are removed first.

400

Knapsack, | = 100

2180

Maximum satisfiability, | = 100

390 |-

370 |

360 |

350 -

340 |

330 |

320

300

na‘ive MID‘EA L
NSGA-II (UX) -~
SPEA (UX) -

2160

2140

2120

2100

2080

2060

2040

naive MIDEA ——
NSGA-II (UX) -~
SPEA (UX) -~

290

55

300 310 320 330 340 350 360 370 380

Minimal spanning tree, | = 105

2020

L L L L L L L
2040 2060 2080 2100 2120 2140 2160 2180

Set covering, | = 100

50

40

35

25

20

' ' haive MIDEA ——
NSGAHII (UX) -
PEA (UX) %~

24

22 -

' ' haive MIDEA ——
NSGAHII (UX) -
SPEA (UX) -

20

50

10 15 20 25 30

Fig. 7. Pareto fronts over 50 runs on all tested problems with dimensionality I = 100.

Minimal spanning tree repair mechanism. First the edges are removed from the
currently constructed graph and they are sorted according to their weight. Next,
they are added to the graph such that no cycles are introduced. This is done
by only allowing edges to be introduced between the connected components in
the graph. If after this phase, the number of connected components has not
been reduced to 1, all edges between the connected components are regarded in
increasing weight and again the connected components are merged until a single
component is left.

Knapsack, | = 1000 Maximum satisfiability, | = 1000
T T T T T T T - 11000 - - - - T r T T
naive MIDEA —— naive MIDEA —+—
NSGA-II (UX) --x--- NSGA-II (UX) --x---
3900 SPEA (UX) % 10950 - SPEA (UX) %

10900

10850
3800

10800
10750
3700
10700
10650 |

3600
10600

10550

3500

1 10500 i B

L 10450
3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 10500 10550 10600 10650 10700 10750 10800 10850 10900 10950 11000

Minimal spanning tree, | = 1035 Set covering, | = 1000
130 T T T T T T T T 650 T T T T T T T
* naive MIDEA —+— naive MIDEA —+— *e
i NSGA-II (UX) ---x--- *..
SPEA (UX) ---%-- *
600 - q
120
550 x 4
110 X
500 x. q
%
100 450 X q
Kemmmmmsy X
X—X\

92

350 |- —

80
300 | —

250 L L L L L L L L
200 250 300 350 400 450 500 550 600 650

70

Fig. 8. Pareto fronts over 50 runs on all tested problems with dimensionality [= 1000.

General algorithmic setup. We ran every algorithm 50 times on each prob-
lem. In any single run we chose to allow a maximum of 20-10? evaluations for the
problems of dimensionality I = 100 and a maximum of 100 - 10® evaluations for

the problems of dimensionality I = 1000. As a result of imposing the restriction
of a maximum of evaluations, a value for the population size n exists for each
MOEA such that the MOEA will perform best. For too large population sizes,
the search will become a random search and for too small population sizes, there
is not enough information to perform adequate model selection and induction.
We therefore increased the population size in steps of 25 to find the best results.
To actually select the best population size, we selected the result with the lowest
value for the Dp,._,s indicator.

Algorithms. We tested three MOEAs. In the following we will describe the
details that are required in addition to the details given in earlier sections for
constructing the actual MOEAs that we will use for testing.

1. For SPEA, we used uniform crossover and one—point crossover with a prob-
ability of 0.8. Bit—flipping mutation was used in combination with either
of these recombination operators with a probability of 0.01. These settings
were used previously by the SPEA authors [11]. We allowed the size of the
external storage in SPEA to become as large as the population size.

2. For NSGA-II, we used the same crossover and mutation operators as above.

3. For the naive MIDEA, we used the leader clustering algorithm in the objec-
tive space such that four clusters were constructed on average. If the number
of clusters becomes too large, the requirements for the population size in-
creases in order to facilitate proper factorization selection in each cluster.
We do not suggest that the number of clusters we use is optimal, but it will
serve to indicate the effectiveness of parallel exploration along the Pareto
front as well as diversity preservation. For the truncation percentile, we used
the often used value 7 = 0.3.

3.4 Results

To compare the MOEAs, we investigated their average performance with re-
spect to performance indicators introduced in Section 3.2. For the Dp,._,s per-
formance indicator, we used the Pareto front over all results obtained by all
MOEAs.

For each of the performance indicators, we computed their average and stan-
dard deviation over the 50 runs to get an assessment of their performance. The
averages are tabulated in Figures 2 through 4 (standard deviations can be found
in the technical report). The best results are written in boldface. The popula-
tion sizes that led to the best performance, are tabulated in Figure 5. Although
the average behavior is the most interesting, the standard deviations are vital
to determine whether the differences in the average behavior of the different
algorithms are significant. To investigate these significances, we have performed
Aspin-Welch—Satterthwaite (AWS) statistical hypothesis T—tests at a signifi-
cance level of a = 0.05. The AWS T—test is a statistical hypothesis test for the
equality of means in which the equality of variances is not assumed. For each

problem, we verified for each pair of algorithms whether the average obtained
performance indicator values differ significantly. We assigned a value of 1 if an
algorithm scored significantly better and a value of —1 if an algorithm scored
significantly worse. We summed the so obtained matrices over all problems to get
the statistically significant improvement matrices that are shown in Figure 6. We
also computed the sum for each algorithm of its significant improvement values
over all other algorithms to indicate the summed relative statistically signifi-
cant performance of the algorithms. A less detailed summary of the statistical
significance tests is shown in Figure 9. In this figure histograms are used to indi-
cate the sum of the results of the statistical significance tests for each algorithm
compared with all other algorithms. The histogram represents the sums for the
different tested dimensionalities and their average.

20

15 .

10 =
5 _—
o .

ST e

-10
-15
-20

D'PF—>$

20
15
10

-15
-20

:

FS

20
15

10

|- —_—
= R
-15
-20

FO

SPEAY* SPEA'™® NSGA-II"* NSGA-II'* naive MIDEA

mmmm 100 dimensions === 1000 dimensions
—— Average

Fig.9. A summary of the results of the statistical hypothesis tests performed for
each pair of algorithms. For each algorithm, the sum of the outcome of the statistical
hypothesis tests is shown for the combinatorial problems for each dimensionality sepa-
rately. Furthermore, the average of these values is also shown, which serves as a global
indicator of the performance of an algorithm relative to the other tested algorithms.

3.5 Discussion

The naive MIDEA performs obviously better when the dimensionality of the
problem becomes larger. This is most likely due to the efficient diversity explo-
ration and preservation in MIDEA. As the dimensionality of the problem goes
up, the parameter search space becomes larger and the number of solutions in
the objective space becomes larger as well. In Figures 7 and 8 the Pareto fronts
over 50 runs for all algorithms are plotted on one problem from each problem
class and dimensionality. The better diversity preservation and proper distribu-
tion of the points along the front can be seen clearly for the problems of larger
dimensionality. For the lower dimensionality problems, better diversity preser-
vation can also be observed, which is most exemplified by the fact that the naive
MIDEA obtains non—dominated solutions at the outer ends of the front for the
knapsack problem with [= 100.

The naive MIDEA is arguably a very effective algorithm on the test suite
used. Moreover, the naive MIDEA runs quickly, even for problems with many
variables. The experimental results indicate that clustering the objective space to
construct mixture probability distributions in MIDEAs leads to efficient MOEAs,
even for simple univariate probabilistic models. It can be expected that the use
of clustering is also an appealing technique for more traditional MOEAs that do
not use probabilistic models. Actually, a MOEA that applies uniform crossover
and restricted mating within the clusters should behave rather similar as the
naive MIDEA. Whether one is 'more baseline’ as the other seems to be a matter
of personal taste.

4 Conclusions

In this paper we have presented the naive MIDEA for multi—objective optimiza-
tion. The naive MIDEA clusters the selected solutions in the objective space,
after which it estimates a univariate factorization in each cluster separately. New
solutions are then drawn from the so—obtained mixture probability distribution.
The naive MIDEA is a specific instance of the algorithmic framework MIDEA
which is a general form of an EDA for multi-objective optimization in which
a probabilistic model is learned. For the specific task of multi-objective opti-
mization, the use of mixture distributions obtained by clustering the objective
space has been observed to stimulate the desirable parallel exploration along the
Pareto front. The naive MIDEA has only little computational overhead since
clustering in the objective space can be done very fast as can the estimation
of a univariate factorization. Furthermore, although no further exploitation of
dependencies between a problem’s variables is used in the naive MIDEA, the
results obtained compare favorably to results obtained with algorithms in which
clustering the objective space is not used. Concluding, the naive MIDEA has
been found to be a fast, easy—to—use and effective algorithm for multi-objective
optimization. Considering its simplicity, speed, and effectiveness the algorithm
might play a role as baseline algorithm for MOEAs.

References

1.

10.

11.

12.

13.

P. A. N. Bosman and D. Thierens. Multi-objective optimization with diversity
preserving mixture—based iterated density estimation evolutionary algorithms. In-
ternational Journal of Approrimate Reasoning, 31:259-289, 2002.

P. A. N. Bosman and D. Thierens. The balance between proximity and diversity
in multi-objective evolutionary algorithms. IEEE Transactions on Evolutionary
Computation, 7:174-188, 2003.

K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoe-
nauer et al., editor, Parallel Problem Solving from Nature — PPSN VI, pages 849—
858. Springer, 2000.

. K. Deb, A. Pratap, and T. Meyarivan. Constrained test problems for multi—

objective evolutionary optimization. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, editors, First International Conference on FEvolutionary
Multi—Criterion Optimization, pages 284-298, Berlin, 2001. Springer—Verlag.

C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1-16, 1995.

G. Harik, F. Lobo, and D. E. Goldberg. The compact genetic algorithm. In Pro-
ceedings of the 1998 IEEE International Conference on Evolutionary Computation,
pages 523-528. IEEE Press, 1998.

J. Knowles and D. Corne. On metrics for comparing non-dominated sets. In
Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pages
666674, Piscataway, New Jersey, 2002. IEEE Press.

H. Miihlenbein and G. Paaf}. From recombination of genes to the estimation of
distributions I. binary parameters. In A. E. Eiben et al., editor, Parallel Problem
Solving from Nature — PPSN V, pages 178-187. Springer, 1998.

D. Thierens and P. A. N. Bosman. Multi—objective mixture-based iterated density
estimation evolutionary algorithms. In L. Spector et al., editor, Proceedings of the
GECCO-2001 Genetic and Evolutionary Computation Conference, pages 663670,
San Francisco, California, 2001. Morgan Kaufmann.

D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Graduate School of Engineering of
the Air Force Institute of Technology, WPAFB, Ohio, 1999.

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2):173-195, 2000.

E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. Grunert da Fonseca.
Why quality assessment of multiobjective optimizers is difficult. In W. B. Lang-
don et al., editor, Proceedings of the 2002 Genetic and Evolutionary Computation
Conference, pages 666-674, San Francisco, California, 2002. Morgan Kaufmann.
E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative
case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257-271, 1999.

