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Abstract

This paper proposes a decision-making unit rule-based
genetic algorithm for eigenstructure assignment via
LQR designs. The proposed decision making frame-
work is formulated in terms of schema theorem, multi-
armed bandit problem and rule-based knowledge; the
purpose of these three elements is to guide, in an expert
manner, the parallel genetic search to find feedback
controllers families that perform the specified eigen-
structure assignment. The design techniques are based
on multiobjective optimization and independent runs
parallel genetic algorithm. An aircraft state space
model is used to study the strategy performance.

1 Introduction

One of the main features of intelligent systems may be
human knowledge emulation by a decision making unit.
In a previous work, [1], we observed that a regular GA
could lead the search into unfeasible regions of the so-
lution’s space. To improve the GA’s searching power
in [2], we proposed a decision making unit (DMU) with
strategies to guide the search to increase the likelihood
of finding feasible solutions. During the search pro-
cess it was observed that the insertion of the designer’s
knowledge and decisions guided the genetic search to
obtain good controllers families. Motivated by im-
provements obtained with the designer’s inference, a
rule-based decision-making unit to guide the genetic
search is here proposed. The results obtained from
the search are used to calculate state feedback con-
trollers gains for eingenstructure assignment via LQR
designs. The procedure developed in this work is part
of a second step in the direction of an intelligent sys-
tem for multivariable control design methodology we
are proposing for eigenstructure assignment.

The Eigenstructure Assignment problem has been fo-
cused by researchers because of its great influence on

0-7803-5519-9/00 $10.00 © 2000 AACC

dynamic systems response. Deterministic methodolo-
gies and techniques have been developed, [5], [10], and
many others, to solve the EA problem, but only in the
nineties some effort has been spent to make this assign-
ment via genetic algorithms, [4] and [9]. The feasibility
of this kind of solution ocurred as a consequence of
faster and cheaper CPU’s giving chance for new solu-
tion’s tools, [8], [6] and [7].

The great difficulty to find @ and R weighting matri-
ces for LQR design, that can satisfy EA requirements,
leads to a framework development based on multiob-
jective optimization and parallel genetic algorithm to
solve this problem.

This work is organized as follows. Section (2) describes
the EA problem formulated as a multiobjective op-
timization problem. Section (3) presents the parallel
multiobjective genetic algorithm (PMOGA) definitions
and how it works on a distributed environment. Section
(4) presents the main features of the genetic algorithm
optimizer. Section (5) presents the rule-based DMU
framework, describing its basic elements and strate-
gies. Section (6) presents DMU and controllers per-
formances results obtained from simulations on a high
performance computer network and section (7) presents
the conclusions.

2 Problem formulation

The eigenstructure assignment via classic linear
quadratic optimization problem is formulated as a mul-
tiobjective optimization problem and its details can be
found in [1].

The controller gains K(Q, R), where @ and R matrices
are independent variables, are given by the Algebraic
Riccati Equation (ARE) solution’s for the LR prob-
lem, where the control law v = —K(Q, R)z is found
when the minimization of the quadratic performance
cost J = [;°[z7Qz + uT Ruldt, subject to the restric-



tion & = Az + Bu is performed.

Clearly, the eigenstructure assignment problem, from
this point of view, consists on the gain matrix K(Q, R)
determination that imposes the specified closed-loop
system & = (A—BK(Q, R))z, where its spectrum range
must satisfy the design specifications and the left and
right eigenvectors must satisfy eigenvalue sensitivity re-
strictions.

The multiobjective optimization problem (MOP) for-
mulation that allows the determination of a con-
troller K(Q, R) through application of biased random
search technics to solve the eigenstructure problem,
is obtained by joining the LQR problem solution and
the eigenstructure restrictions (closed-loop system and
eigenvalue sensibility spectrum bounds). The MOP for-
mulation in a normalized form is:

mip > n(@.R 0

s.t.
31'(Q7R) < 1 i=1,.,n (2)
Ali S /\di(Q:R) S A?‘i i= 1:"'1"‘ (3)

where 3;(Q,R) = ( Z‘L?’CI;R’ ;‘QQ;?;)/E,- is the nor-

malized i-th eigenvalue sensitivity and the i-th design
specification ¢; > 0; ||L;(Q, R)||2 and ||R:(Q, R)||» are
the 2-norm of the left and right eigenvectors, respec-
tively, and < L;(Q, R) R:(Q,R) > is the eigenvectors
dot product. A;; and A,; are the left and the right i-ths
eigenvalues bounds, respectively, for the i-th desired
eigenvalue \gy;.

3 Parallel Multiobjective Genetic Algorithm

The multiobjective genetic algorithm (MOGA), Fig
1, was designed based on the interaction between
the decision-making unit and the genetic algo-
rithm (GA) optimizer. A MOGA set interacting
on a distributed enviromment constitutes the par-
allel multiobjective genetic algorithm, PMOGA
(MOGA,,MOGA;,MOGAs, ..., MOGA,), where
MOGA, is the coordinator or master task and the
MOGA;, i = 1,...,n, are the coordinateds or slave
tasks. The PMOGA basic elements description are
presented in [2].

In a few words, the PMOGA works as follows: the
DMU’s are fed by an initial population (randomly
generated); this population after an evaluation by
the DMU coordinator (DMU¢) is sent to the dis-
tributed ‘GA-optimizers, OTIMp = (GA,,GA,, ...,
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Transient Population

Figure 1: MOGA; basic strucuture as PMOGA single
unit.

GA,), where each G A; makes one search and generates
a transient population to feed their own DMU;, the set
of distributed DMU’s is DMUp = (DMU;, DMU,,
... DMU,). Each DMU; takes decisions to guide the
search, assembles a new population and sends it to its
G A; optimizer. These processes go on until a stopping
criterion is reached. '

4 Genetic Optimizer

This section gives a general description of the GA-
optimizer basic elements, that are: matrices @ and R
genetic modeling, genetic operations and fitness func-
tion team (calculations and ordering). Further details
can been seen in [2]. The matrices modeling and genetic
operations are all numerically performed on a decimal
basis.

The GA-optimizer main features are the guest opera-
tor, whose purpose is to untrack some populations of
saturation levels and to allow a better exploration of
the search space, and small size permanent and tran-
sient populations.

Each matrix @ and R is represented by one chro-
mosome and matrices @ and R pairs are called QR-
individuals and a set of QR pairs comprises a popula-
tion.

The genetic operations are performed in two sequen-
tial steps, that are: chromosomic operations and eval-
uations of individuals generated from those operations.
The first step, chromosomic operations are reproduc-
tion, crossover, mutation and guest. The second step,
fitness functions calculation and ordering provide in-
formation to the decision-making unit.

The fitness function set: FFieqm = (ffi,ffos s [ fn)
defines a fitness function team. Each ff;, j =1,....,n
structure is built up with one cost function and a pre-
vious selection criterion.



5 Rule-based Decision-Making Unit

The decision-making unit (DMU) proposed in this work
is a logical rule-based framework, whose main purpose
is to formulate decision strategies to guide the genetic
optimizer search. The decisions are made based on ge-
netic operations past history, each one obtained from
GA-optimizer fitness function structure team, schema
theorem, multi-armed bandit paradigm and designer
knowledge, that are inserted interactively to break
DMU static rules and to furnish new directions to the
search.

A strategy based on the schema theorem, to explore
the individual’s maximum strength, and on the multi-
armed bandit paradigm, to extract strength potential-
ities that can exist on the weakest one, is presented in
[3] and these strategies are translated into boolean rules
and applied to this DMU.

The inserted rules, Rage and Qqq. rules, act directly
on the crossover (z-over) operations and their control
parameters are the z-over multiplicative factors that
were designed primarily to suffer variations according
to population’s age and that now have as a second func-
tion: to guide the GA-optimizer search. Initially, the
individual matrix R was chosen to act as a regulation
vehicle because of its influence in feedback controller
. determination due to its direct participation on the al-
gebraic Riccati equation and on controllers gains cal-
culations. After exhaustive computational experiments
we concluded that dynamic changes on the parameter
¢, that acts on matrix @ alleles during z-over opera-
tions, contributed to improve the G A-optimizer search,
not only reducing the ) and R matrices search cycle
but also improving the controller quality.

The Ro4e and Qqg, rules purposes are to define the con-
trol parameters 7,4, and gq4. directions (left or right)
and sizes variations. The rqg. and g,z variations are
based on a comparative analysis between individuals R,
controllers gains K, eigenvalues sensitivities and eigen-
values ranges restrictions.

The rule-based DMU basic structure and its interac-
tions with the G A-optimizer are shown on Fig. 2, that
shows DMU interacting only with z-over operations for
Rgge-rule. The schema theorem (STheorem) and the
multiarmed bandit paradigm (MABParadigm) act on
both R and @ individuals. The rules will act based on
probability and the R,g.-rule will actively participate
on the search if any MOGA is having problems to find
feedback controllers. The time spent with the analy-
sis justifies this strategy. The STheorem and MAB-
Paradigm strategies actions are based on three rules.
The first one acts on population or best individual pre-
mature convergence detection. The second one acts
based on small probability of occurrence. The third
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Figure 2: Interactions between Rule-based DMU and GA-
optimizer in a MOG A;

one acts in a deterministic manner and periodically
between generations life and death. The difference be-
tween these rules is their occurrence probability.

6 Results

The results were obtained from simulations performed
on a computer network. The simulated system was
an aircraft’s, L1011 Tristar type, state space variable
linear model; its A, B and C matrices are given in [10],
and the design specifications are given in [4].

Ten search tasks were spawn on a high performance
parallel computation environment, that is based on
IBM-SP computers. One of the tasks (coordinator)
creates the initial population and distributes it among
the other tasks (coordinateds). The permanent popu-
lation is built up of 10 individuals (controllers), i.e., for
each new generation only 10 individuals survive to the
conditions imposed by the fitness structure functions.

The simulation’s main purpose was to verify the R,
and Qa4 rules performance and these intentions were
made possible due to the choice of a hard case, as it was
difficult to find a feedback controller satisfying eigenval-
ues ranges restrictions or eigenvalues sensitivity speci-
fications.

Fig. 3 presents the changes on z-over parameters pro-



vided by the rules and the worst eigenvalue sensitivity
8;(Q, R) for eight tasks out of ten; the main purpose
of these figures is to show the effectiveness of the pro-
posed rules for a hard convergence case. Each figure
shows, in a comparative manner, the parameters varia-
tions and the eigenvalues sensitivity restrictions for the
same tasks, both when the rules are activated and for
the case that the rules are not triggered by the DMU.
For instance, Fig. 3, presents four curves (a, b, ¢ and
d); Fig. 3a shows the parameters changes over inter-
vals and there are no modifications of the parameters
inside of each interval; Fig 3b presents the worst eigen-
value sensitivity for these parameters variations; Fig.
3c shows the parameters variations according to the
Rgge and Qg rules and there are parameters changes
on each interval; Fig. 3d presents the corresponding
5;(Q, R), but the worst one, A, obtained for these
rules actions. The final population profile can be trans-

a) No rule action b) Eigenvalue sensitivity
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Figure 3: Master task - z-over parameters changes and
worst eigenvalue sensitivity

lated into a performance qualitative index that repre-
sents the quality of the GA-optimizer search. Fig. 4
presents the populations profiles by means of the worst
eigenvalue sensitivity, A, eq. (2), and by means of the
eigenvalue sensitivity cost function sum, Eg, eq. (1).
Comparisons are made with the initial population and
the final populations when the z-over parameter rules
are not on and when these rules are activated. All the
obtained population profiles with the implemented z-
over rules presented a better profile than those without
these rules activations.

The controllers performances were tested by impulse
signal responses. Two types of simulations were per-
formed. The first one, considers a family of controllers
that comes from the same task and all are feasible. The
second one takes into account controllers that present
the smallest worst eigenvalues sensitivities among all
controllers that come from the final population of each
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Figure 4: Master task population profile - a) Worst eigen-
value sensitivity. b) Sensitivity cost function.

distributed task, eq. (4). Another simulation, simi-
lar to the first one, was performed considering a con-
trollers family where the majority of the feasible con-
trollers presented slight differences among worst eigen-
value sensitivities and also small differences among
their eigenvalues ranges.

4)

controller, = minmax 3;(Q, R)
7 i

PRI

where n is the dynamic system order, m is the perma-
nent population size and [ is the number of tasks. For
simulation type one, / is the number of controllers that
present the smallest Ag.

Fig 5 presents the simulation type one results associ-
ated to a controllers family that comes from slave-03
task. These results are compared with the basic con-
troller impulse response simulation, given by [4]. Most
of these controllers present good performance, with the
exception of controller 3, Fig. 5d, that did not present
a desirable performance for the state variable Xj; if
more trials had been made a better controller 3 could
also have been obtained.

For the type 2 simulation, the controllers performances
are shown on Fig. 6. The controllers for most of the
tasks were better than the basic controller, except for
slave 2 task controller, Fig. 6c.

7 Conclusions

The proposed rule-based decision-making unit, using
the schema theorem, the multiarmed bandit paradigm



State Variables

State Variables

a)Basic Controller b) Task-03 - Controller 01

Figure 5: Impulse input signal response - Task 03 con-
trollers 01-02

and the crossover operation parameters tunning (Q,ge
and R, rules), interacting with the GA-optimizer, has
shown to be a valuable logical device to guide the ge-
netic search in finding the @ and R weighting matrices
for the eigenstructure assignment problem via LQR de-

signs.

The DMU rule-based strategies improved the compu-
tational efficiency of our parallel genetic algorithm. Its
performance can be considered good, taking into ac-
count that a hard case was chosen to match the de-
sign specifications. In spite of not guaranteing to find
a global extrema, a problem that increases when the
solution’s space frontiers are enlarged, as a problem
solver tool for eigenstructure assignment, it can be said
that the parallel genetic algorithm together with a fit-
ness functions team, rule-based DMU, small population
and guest operator has shown to be an efficient tool for
controller design when the entire system eigenstructure
has to be assigned.
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