
Reengineering the Naval Ship Concept Design Process
Dr. Alan Brown, Virginia Tech and LCDR Mark Thomas, USN

Abstract

Naval ship concept design is very much an “ad
hoc” process.  Selection of design concepts for as-
sessment is guided primarily by experience, design
lanes, rules-of-thumb, preference and imagination.
Objective attributes are not adequately synthesized or
presented to support efficient and effective decisions.
Attributes are often qualitative, inconsistent, and not
provided to design engineers in a format they can use.
The design space is very large, non-linear, discon-
tinuous, and bounded by a variety of constraints and
thresholds.  These problems make a structured search
of design space difficult.  Without a structured
search, there is no rational way to measure the opti-
mality of selected concepts relative to the millions of
other concepts that have not been considered or as-
sessed.   Responsible decisions cannot be made with-
out this information and perspective.

This paper addresses these problems in the con-
text of a systems approach to naval ship concept de-
sign.  Multiattribute value theory (MAVT) and the
Analytical Hierarchy Process (AHP) are used to
synthesize an effectiveness function.  A Pareto Ge-
netic Algorithm (PGA) searches design parameter
space and identifies non-dominated design concepts
in terms of cost and effectiveness.  Design concepts
are presented graphically as points on a non-
dominated cost-effectiveness frontier for considera-
tion by decision-makers.  A simplified surface-
combatant design demonstrates the process.

Introduction

Despite steady improvement in design tools, and
excellent progress in concurrent and systems engi-
neering (Kramer, 1996, and Tibbitts, 1995), naval
ship concept design is still very much an “ad hoc”
process.  Elements missing from this process are:

• A quantitative methodology for synthesizing
a manageable set of critical, but dissimilar
objective attributes

• An efficient method to search design space
for non-dominated concepts based on these
attributes

• An effective format to present these non-
dominated concepts for rational selection

Critical naval ship objective attributes are mis-
sion effectiveness, cost and risk.  Each of these over-
all attributes includes a number of specific attributes
or measures such as mission-specific Measures of Ef-
fectiveness (MOEs) whose cumulative value must be
synthesized in the overall measure.

Effectiveness, cost and risk are dissimilar attrib-
utes, and require different units of measure.  They
cannot rationally be combined into a single objective
attribute. They must be presented individually, but
simultaneously in a manageable format for tradeoff
and decision-making.  Manageable implies that only a
limited number of attributes can be considered si-
multaneously.  This requires either looking at one
piece of the problem at a time, or combining similar
objective attributes into an overall measure or index.

Effectiveness and risk are relatively abstract ob-
jectives that are sometimes difficult to measure quan-
titatively.  The effectiveness of a few concepts can be
analyzed using war gaming and other complex mod-
els, but this approach is not practical when evaluat-
ing many concepts in a structured search of design
space.  This paper presents a methodology for calcu-
lating an Overall Measure of Effectiveness (OMOE)
index using expert opinion to synthesize diverse in-
puts such as defense guidance, mission requirements,
threat, war game results and experience.  Risk re-
quires a similar treatment, and will be addressed in
subsequent work.

MOEs describe mission effectiveness in specific
scenarios.  Examples of MOEs are conflict duration,
territory lost or gained, casualties, and targets de-
stroyed.  Measures of Performance (MOPs) define
the performance of the ship system independent of
mission scenarios.  Examples of MOPs are sustained
speed, endurance and signatures.  Design parameters
(DPs) provide the physical description of the ship
system.  DPs determine MOPs, and MOPs determine
MOEs.  DPs also determine cost and risk.

Ultimately, a ship design is defined by specifying
millions of DPs, in thousands of drawings, and with
libraries full of technical specifications and informa-



2

tion.  Even in its simplest concept form, the definition
of a balanced ship design requires many DPs.   The
functional relationship of these DPs cannot be de-
scribed in a closed-form set of equations.

A total-system approach to ship design makes an
already complex problem more complex.  The goal of
a total system approach is to optimize the life cycle
cost-risk-effectiveness of the total ship system.  This
system includes the ship and everything outside the
ship that either affects it or is affected by it.   It usu-
ally requires an iterative and interactive process that
depends on an effective concurrent engineering or-
ganization to produce a true total-system result.

The hierarchy of systems and subsystems in-
cluded in a total-ship-system is rightly called a "su-
persystem" (Hockberger, 1996).   At the bottom of
this hierarchy are the detailed components and char-
acteristics that define the ship.  Many lower-level
system decisions can be made at their own level or
one higher.  Others must be determined at the total
ship level.  Some compromise between global and lo-
cal optimization is essential to keep the problem
manageable.  The number of DPs at any level must
be kept to the minimum necessary to capture impor-
tant interdependence.  The highest level of optimiza-
tion should consider only those variables that have a
major impact on ship balance.  Frequently combat
systems, HM&E systems and ship characteristics can
be grouped into synergistic packages or suites.  This
reduces the number of variables that must be man-
aged early in the design process.

The primary objective of the concept design pro-
cess (as defined here) is to identify non-dominated
and feasible concepts for selection by decision-
makers based on the objective attributes of cost, ef-
fectiveness and risk.  Ideally, there should be no bias
or preference for particular DPs or MOPs.   They are
only fundamental and intermediate parameters.  Cost,
effectiveness and risk are the relevant objective at-
tributes.

A non-dominated solution, for a given problem
and constraints, is a feasible solution for which no
other feasible solution exists which is better in one
objective attribute and at least as good in all others.
Figure 1 illustrates this concept for a simple two-
objective (cost-effectiveness) problem.  The heavy
curve represents non-dominated solutions or the Pa-
reto-optimal frontier.  The preferred design should
always be one of these non-dominated solutions.  Its

selection depends on the decision-maker’s preference
for cost and effectiveness.  This preference may be
affected by the shape of the frontier and cannot be
rationally determined a priori.

Effectiveness
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Figure 1.  Two-Objective Attribute Space
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 Figure 2.  Three-Objective Attribute Space

When considering three attributes, the non-
dominated frontier is a surface, as illustrated in Fig-
ure 2.  Points on this surface represent feasible ships,
and can be mapped to specific design parameters.
With such a surface, the full range of cost-risk-
effectiveness possibilities can be presented to deci-
sion-makers, “knees in the curve” can be seen graphi-
cally, trade-off decisions can be made, and specific
design concepts can be chosen for further analysis.
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Figure 3.  Notional Concept Design Process

Proposed Design Process Framework

It is helpful to think of the design process as a
sequential mapping between four domains as shown
in Figure 3: 1) the mission or customer domain; 2)
the functional domain; 3) the physical domain; and 4)
the process domain (Suh, 1990).  Decisions made in
each domain are mapped into the subsequent domain,
moving from “what” to “how” in each mapping, and
then zigzagging down hierarchies in each domain as
the design is defined in increasing detail.  Customer
requirements (CRs) are the “what” for the functional
domain, functional requirements (FRs) are the
“how”.   FRs are the “what” for the physical domain,
design parameters (DPs) are the “how”.  DPs are the
“what” for the process domain, process variables
(PVs) are the “how”.  Results are fed back to the
customer, CRs are refined, and the mapping contin-
ues.  A notional top-level design hierarchy consistent
with this scheme is shown in Figure 4.

Exploration.  The naval ship design process is
initiated with the definition of a mission need and di-
rection to begin concept studies, but significant effort
precedes this direction.

Exploratory mission analysis provides a descrip-
tion of projected world political/military environ-
ments, and maintains a time-phased assessment of the

threat and future mission scenarios consistent with
defense planning guidance.  It determines joint force
and naval force structure, identifies future mission
deficiencies, and estimates the force level, mix and
mission performance required of future ships.
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 Figure 4.  Notional Top Level Design Hierarchy

Important products of exploratory mission analy-
sis include the Mission Need Statement (MNS),
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threat, required operational capabilities (ROCs),
projected operational environment (POE), mission
scenarios and MOEs.  Also important are war-
fighting model validation and sensitivity analysis in-
cluding the identification of critical ship MOPs.

Research, development, technology demonstra-
tion, and exploratory design identify, develop and
evaluate new systems, technology, and ship concepts.
Together with proven systems and concepts these
pieces must be assembled into balanced, feasible, and
cost-effective ship designs that must satisfy the
evolving mission need in an evolving environment.
Products of R&D and Exploratory Design include
new technology and systems, ship concepts, and a
preliminary definition of feasible ship and system
performance.  Expected performance is described
using upper and lower bounds on MOPs.  These
bounds are a function of technology risk that may be
quantified and included as a system attribute.

Mission Domain.  Customer needs and require-
ments are determined, and effectiveness is assessed in
the Mission Domain.   Initial inputs to this domain
are the MNS, POE, threat definition and mission sce-
narios.  Customer requirements (CRs) are the output.
In this research, CRs are specified in three ways: 1)
required operational capabilities (ROCs); 2) per-
formance constraints, goals and thresholds; and 3) an
overall mission measure of effectiveness (OMOE) in-
dex which defines mission effectiveness as a function
of ship MOPs.  The definition of a quantitative rela-
tionship between mission effectiveness and ship per-
formance in the mission domain is an essential pre-
requisite to a disciplined search of design parameters
in the physical domain.  Modeling, simulation and
expert opinion are used to define the OMOE as a
function of MOPs.  Some MOPs are binary, the ship
has a capability or it doesn't.  Others are continuous,
such as sustained speed or endurance.

Functional Domain.  In the Functional Domain,
top level functional requirements might include en-
close and protect, provide mobility, support and fight.
Consideration of functional requirements is most im-
portant when new design solutions or technologies
are sought and when paradigms are reevaluated.

Physical Domain.  Design parameters define the
ship in the Physical Domain.   The selection, synthe-
sis and balance of DPs determine ship MOPs, and
ultimately determine mission effectiveness.  Cost and
risk are determined as a function of DPs and process
variables (PVs).

In this research, a simple ship-synthesis model is
used to synthesize and balance designs in the physical
domain, and to calculate the first level of ship MOPs.
Balance requires that physical and functional con-
straints are satisfied.  A genetic algorithm (GA) is
used to search DP space in the physical domain, and
to generate and identify concepts on the non-
dominated objective attribute frontier.  More sophis-
ticated tools, models and simulations can be used
later in the design process on selected concepts to re-
fine the designs, demonstrate feasibility, and improve
MOP calculations.   Analysis results are added to a
design knowledge base and applied to update model
parametric equations, MOP, cost and risk calcula-
tions.  This provides a dynamic landscape or envi-
ronment for the genetic algorithm over the course of
the design process.  The updated non-dominated
frontier is used to reevaluate and adjust earlier top
level DP decisions during the design process until
further design changes are no longer cost-effective.

Process Domain.  Critical design parameters
must be related to process variables (PVs).  These
process variables may be synthesized in a build strat-
egy.  The build process must be refined at each level
of the design hierarchy to insure feasibility and
maximize producibility.  PVs effect cost and risk.

Building the OMOE Function

Early in the design process, designers and engi-
neers require a working model to quantify operators’
and policy-makers’ definition of mission effective-
ness, and define its functional relationship to ship
MOPs.   This quantitative assessment of effective-
ness is fundamental to a structured optimization pro-
cess.

There are a number of inputs which must be in-
tegrated when determining overall mission effective-
ness: 1) defense policy and goals; 2) threat; 3) exist-
ing force structure; 4) mission need; 5) mission sce-
narios; 6) modeling and simulation or war gaming re-
sults; and 7) expert opinion.  Ideally, all knowledge
about the problem could be included in a master war-
gaming model to predict resulting measures of effec-
tiveness for a matrix of MOP inputs in a series of
probabilistic scenarios.  Regression analysis could be
applied to the results to define a mathematical rela-
tionship between input ship MOPs and output MOEs.
The accuracy of such a simulation depends on mod-
eling the detailed interactions of a complex human
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and physical system and its response to a broad range
of quantitative and qualitative variables and condi-
tions including ship MOPs.  Many of the inputs and
responses are probabilistic so a statistically signifi-
cant number of full simulations must be made for
each set of discrete input variables.  This extensive
modeling capability does not yet exist for practical
applications.

An alternative to modeling and simulation is to
use expert opinion directly to integrate these diverse
inputs, and assess the value or utility of ship MOPs
in an OMOE function.  This can be structured as a
multi-attribute decision problem.  Two methods for
structuring these problems dominate the literature:
Multi-Attribute Utility Theory (MAUT, Keeney and
Raiffa, 1976) and the Analytical Hierarchy Process
(AHP, Saaty, 1996).  In the past, supporters of these
theories have been critical of each other, but recently
there have been efforts to identify similarities and
blend the best of both for application in Multi-
Attribute Value (MAV) functions (Belton, 1986).
This approach is adapted here for deriving an
OMOE.

The analytical hierarchy process (AHP) is a tool
developed by Saaty (1996) for solving multi-attribute
decision problems.  It uses a hierarchical structure to
abstract, decompose, organize and control the com-
plexity of decisions involving many attributes, and it
uses informed judgment or expert opinion to measure
the relative value or contribution of these attributes
and synthesize a solution.  Pair-wise comparison and
a maximum eigenvalue approach extract and quantify
this relative value.  The method allows and measures
inconsistency in value measurement, and is able to
consider quantitative and qualitative attributes.

A hierarchy is a simplified abstraction of the
structure of a system used to study and capture the
functional interactions of its attributes, and their im-
pact on total system behavior or performance.  It is
based on the assumption that important system enti-
ties or attributes, which must first be identified, can
be grouped into sets, with the entities of one group or
level influencing the entities of the neighboring group
or level.  One can conceptualize a hierarchy as a
bottoms-up synthesis of influence on the top level be-
havior of a system, or as the top down distribution of
influence of top level behavior to low level attributes.
Alternatives are compared in terms of the lowest level
attributes and this comparison is rolled up through

hierarchy levels to an assessment of relative overall
system behavior or performance.

The first step in building an AHP hierarchy is to
identify critical attributes affecting the decision or
system behavior.  The level of detail of these attrib-
utes depends on the decision being made.   These at-
tributes are then organized into a hierarchy structure
that follows a logical breakdown or categorization as
shown in Figure 5.  System options or alternatives
comprise the bottom hierarchy level.

Next, the relative influence of each attribute on
system performance and attribute values for each al-
ternative must be estimated.  Saaty recommends a
nine level dominance scale for the pair-wise compari-
son of attribute influence on higher level attributes.
This results in a “ratio scale” comparison of attrib-
utes.  Pair-wise comparison or cardinal values may
be used to assign attribute values for each alternative.
Pair-wise comparison generates more information
than is necessary with individual absolute measure-
ments or estimates.  The AHP synthesizes and evalu-
ates the consistency of this redundant information and
calculates best-fit relative values.

Although the AHP was developed primarily for
comparison of management alternatives, it has also
proven to be a robust method for application in
MAVT (Belton, 1986).   The AHP provides a struc-
tured method for deriving an additive weighted value
function, and by careful application can also be used
to derive non-linear attribute value or utility without
the more cumbersome lottery comparison approach.

The OMOE function must include all important
effectiveness/performance attributes, both discrete
and continuous, and ultimately be used to assess an
unlimited number of ship alternatives.  Successful
application AHP/MAVT to this problem requires a
very structured and disciplined process as follows:

1. Identify, define and bound decision attrib-
utes.  Identify critical mission scenarios.  Identify
MOE(s) for each mission scenario.   Establish goals
and thresholds for all MOEs.   Identify ship MOPs
critical to mission scenario MOE assessment and
consistent with the current design hierarchy level.
Set goals and thresholds for these MOPs.

2. Build OMOE/MOP hierarchy .  Organize
MOEs and MOPs into a hierarchy as shown in Fig-
ure 5, with specific ship MOPs at the lowest level.
Association with the performance of a discrete sys-
tem may define some MOPs.  Others are continuous
performance variables such as sustained speed.
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3. Determine MOP value and hierarchy
weighting factors.  Use expert opinion and pair-wise
comparison to determine MOP value and the quanti-
tative relationship between the OMOE and MOPs.
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Figure 5.  Notional Top Level OMOE Hierarchy
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Figure 6 illustrates an example value index for
ship weapons capacity derived using pair-wise com-
parison.   In this model weapons capacity is both a
discrete MOP, where it represents the performance
associated with this capacity, and a design parameter.
The metric for this MOP is the number of vertical
launch missile cells.  The MOP threshold is 32 cells,
and the MOP goal is 128 cells.  Thresholds represent
the absolute minimum acceptable performance.
Goals typically represent either a point of diminishing
marginal value or a technology limitation.  The pair-
wise comparison is structured to compare the relative
value of MOP options to achieve a particular MOE
(Ordnance on shore target, etc.) in a specific sce-
nario.

Figure 7 illustrates an example value index for
ship sustained speed.  Sustained speed is a continu-
ous MOP, not a design parameter.  It is a function of

the ship design, primarily the hull form and installed
power.  The threshold for this MOP is 26 knots, and
the goal is 32 knots.   Pair-wise comparison is ac-
complished for discrete values of speed at one knot
increments, and a value function is fit to these results
to calculate intermediate values.  Again, the pair-wise
comparison is structured to compare the relative
value of MOP options to achieve a particular MOE
(Ordnance on target, etc.) in a specific scenario.
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Figure 7.  Continuous MOP Value Function

Once MOP value is determined for all MOPs,
pair-wise comparison is used to determine MOP and
MOE hierarchy weights.  In this case the pair-wise
comparison is structured to compare the relative
value of achieving the goal in the first MOP or MOE
and only the threshold in the second, versus achieving
only the threshold in the first MOP and the goal in
the second.  This pair-wise comparison is accom-
plished at all levels of the hierarchy.  A maximum ei-
genvalue approach is used to extract and quantify av-
erage relative values and an inconsistency measure-
ment.   MOP weights calculated for the Figure 5 no-
tional hierarchy are shown in Figure 8.  An OMOE
function, OMOE = g(MOP), is derived from these
weights and from the MOP value functions.

Ship Design Synthesis Model

The ship synthesis model used in this research is
based on a model originally developed by Reed
(1976).  Reed’s model was based on two earlier
codes, DD07 and CODESHIP (CNA, 1971).  Reed’s
model has been improved and updated at MIT for
over two decades by a long series of naval officer
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students and faculty, and specifically for use with a
genetic algorithm (GA) by Shahak (1998).  It follows

the basic process shown in Figure 9.
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Most recently modules have been added to inter-
face with a payload database, and calculate acquisi-
tion cost, seakeeping index and effectiveness.  It has
also been updated to be more consistent with regres-
sion-based equations for weight, area and electric
power as they have evolved in ASSET (DTMB,
1990).  The current version is self-balancing, and
written in FORTRAN 90.

In the GA application of this synthesis model, in-
put design parameters (genes) are specified in a ship
design matrix (chromosome).   An example is shown
in Figure 10.   Design parameter descriptions are
listed in Table 1.  Specific payload systems with
weight, area and power requirements are associated
with each payload description.  The ship is balanced
and resulting MOPs, OMOE, and Life Cycle Cost

(LCC) are calculated.  The GA uses these results to
assess fitness and breed the next generation of ship
variants.

Balance requires that physical and functional
constraints are satisfied.  The ship must float.  It
must have adequate stability, volume, area, electric
power, etc.  It must provide required capabilities and
satisfy minimum thresholds for performance.  The
ship synthesis model uses regression-based equations
for weight, volume, area and electric power.  Resis-
tance is calculated using Gertler/Taylor Standard Se-
ries (Gertler, 1954).  Cost is calculated using a modi-
fied weight-based algorithm.  LCC as defined for this
analysis includes only follow-ship acquisition cost,
life cycle fuel cost and life cycle manning cost.
Seakeeping is assessed using the McCreight Index.

Cp Cx C∆L CBT CD10

0.61 0.82 80 2.9 11.1
CRD Cmanning AAW ASUW ASW
0.2 0.5 1 2 1
C4I MCM NSFS SEW Weapons
1 4 1 1 1

Range Stores Shafts CPS ICR/GT
3 2 2 1 1

Figure 10.  Design Parameter Chromosome
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Table 1.  Design Parameter Descriptions

Design Parameter Description
1 - Prismatic Coefficient (Cp) 0.5-0.7; 20 increments
2 - Maximum Section Coefficient

(Cx)
0.7-0.9; 20 increments

3 - Displacement to Length Ratio
(C)L)

60.0-90.0; 15increments

4 - Beam to Draft Ratio (CBT) 2.8-3.7; 9 increments
5 - Length to Depth Ratio (CD10) 10.0-15.0; 10 increments
6 - Raised Deck Ratio (CRD) 0.0-0.4; 4 increments
7 - Manning Factor (CManning) 0.5-1.0; 5 increments
8 - AAW Payload 1 - Theater TBMD

2 - Area TBMD
3 - Area Defense
4 - Limited Area Defense
5 - Self Defense

9 - ASUW Payload 1 - Long Range
2 - Medium Range
3 - Short Range
4 - Self Defense

10 - ASW Payload 1 - Area Domonance
2 - Adverse ASW Environment
3 - Good ASW Environment
4 - Torpedo Defense

11 - C4I Payload 1 - Advanced
2 - Current

12 - MCM Payload 1 - Limited Clearance
2 - Mine Recon
3 - Mine Avoidance
4 - Limited Mine Advoidance

13 - NSFS Payload 1 - Advanced (VGAS,
      NATACMS, ATWCS)
2 - Full
3 - Medium
4 - Minimum

14 - SEW Payload 1 - Advanced
2 - Current

15 - Weapons Capacity (VLS) 1 - 128 cells
2 - 64 cells
3 - 32 cells

16 – Range or fuel capacity 1 - 10000 nm
2 - 7000 nm
3 - 5000 nm
4 - 4000 nm

17 - Stores Duration 1 - 60 days
2 - 45 days

18 - Shafts 1 or 2
19 - CPS 0 (none) or 1 (full)
20 - ICR or GT 0 (ICR) or 1 (LM2500)

Design Optimization

Ship design optimization is not a new concept,
but it poses difficult problems (Leopold, 1965, Man-
del, 1966 and Mandel, 1972).  As discussed previ-
ously, ship design space is non-linear, very discon-
tinuous, and bounded by a variety of constraints and
thresholds.  These attributes inhibit effective applica-
tion of mature gradient-based optimization techniques
including Lagrange multipliers, steepest ascent meth-
ods, linear programming, non-linear programming
and dynamic programming.

In the simplified design problem presented in this
paper, each design variant requires 12.5 seconds on a
200 MHz PC to balance and evaluate.   An exhaus-
tive search would assess over ten trillion variants re-
quiring over 4 million years on this machine!  Ran-
dom search does not require a closed-form solution
and has advantages of simplicity and insensitivity to
discontinuities, but it still requires many iterations,
and is computationally impractical for a large design
problem.   Exponential random search improves the
efficiency of random search, but also requires many
concept iterations.  Genetic algorithms (GA) offer
great promise to tackle this difficult problem.

Twenty-five years ago John Holland developed a
genetic algorithm to abstract and explain the adaptive
processes of natural systems for use in the design of
artificial systems (Goldberg, 1989).  Since that time,
this algorithm has been applied with success to a
wide range of problems.  Genetic algorithms use
models of natural selection, reproduction and muta-
tion to improve a population of individuals or vari-
ants based on the “survival of the fittest”, or in the
case of Pareto Genetic Algorithms (PGAs), based on
the dominance and distribution of variants (Thomas,
1998).   GAs are ideally suited to optimizing discon-
tinuous and disjointed functions, and to optimization
where no closed-form function exists (or no mathe-
matical function at all, as with experimental data).
The robustness of a particular GA depends on its ex-
ploration and efficiency qualities.  Exploration refers
to its ability to master the design space and consis-
tently identify the global optima.  Efficiency refers to
the effort required to identify the global optima.  Ro-
bustness implies an effective balance between these
qualities.  Genetic algorithms are very robust relative
to other methods.

Figure 11 illustrates the PGA process used in this
application.  An initial population of 200 variants is
created by random selection of design variables
within the design space specified in Table 1.   A
chromosome with 20 design parameters as in Figure
10 represents each variant.  The ship variants defined
by these chromosomes are balanced, and evaluated
using the ship synthesis model resulting in an assess-
ment of feasibility and objective values (OMOE and
LCC) for each variant.   Fitness indicates a variant’s
relative dominance in the population based on OMOE
and LCC.   A Goldberg (1989) ranking scheme is
used.  Variants are sorted into layers of Pareto-
dominance.  Each layer contains all variants that are
dominant to subsequent layers.  Variants are sorted



9

with the best variant in the highest layer getting a
rank of one and the poorest in the lowest layer a rank
of 200 (population size).    A geometrically decreas-
ing probability of selection is assigned to each variant
based on its rank.  Equivalent variants (same domi-
nance layer) are ordered randomly within their layer,
probabilities are averaged for variants in the same
layer, and the same average value is ultimately as-
signed to each.  Variants are penalized for infeasibil-
ity and for similarity to other variants.  This mini-
mizes niches and duplicate variants, and forces the
selection to spread out over the objective frontier.

Solution space
boundaries

Other input

Initialization
Method

par.in data file
DDG_forced

data file
  Random

initialization

No Forced

Yes

gen=1,gen_max

Ship Synthesis
Self-balanced Model

Feasible?Penalty?
No

YesFeasibility Penalty

Yes

No

Sort into Dominance Layers / Niche
   Penalty

Selection

Crossover

Mutation

Convergence?

       Report
and end

Yes

No

Figure 11.  Pareto Genetic Algorithm (PGA) Process

Once selection probabilities have been assigned,
selection can proceed.  A roulette wheel is con-
structed with 200 segments representing each variant.
The area of each segment is equal to the variant se-
lection probability.  Baker’s (1987) selection method
is used.  This method “spins” 200 (population size)
equally space markers once (vice spinning one
marker 200 times) to select 200 variants (some mul-
tiple times) for survival and reproduction.

Once a surviving population is selected, 25 per-
cent of these are chosen in pairs at random for cross-
over.  A cut is made at a random location in the
chromosomes of each pair.  Design parameters below
the cut are swapped between the parents producing
new variants.  A small percentage of individual de-
sign parameters (genes) in the selected variants are
chosen randomly to mutate.  In mutation, the value of
a single design parameter is replaced with a new
value chosen at random.  After these operations are
completed, new variants in the new population are
evaluated and the process cycles until convergence.
Each cycle defines a new generation.

Compared to other optimization techniques, ge-
netic algorithms are particularly well suited for gen-
erating a Pareto-optimal frontier because they im-
prove the fitness of a population of concepts simulta-
neously.  By penalizing for niching, this population
spreads out over non-dominated values of the objec-
tive attributes, and ultimately defines the Pareto-
optimal frontier.

Surface Combatant Design

A simple surface-combatant concept design is
used to evaluate and demonstrate this design method-
ology.   A Mission Need Statement, Required Opera-
tional Capabilities (ROCs) and mission scenarios
were developed for a notional Land Attack Surface
Combatant.  A group of warfare experts consisting of
MIT naval officer students and faculty were briefed
on this mission need, and an effectiveness hierarchy
similar to Figure 5 was developed.  Measures of Ef-
fectiveness were identified for each of three critical
mission scenarios: 1) Surface Action Group (SAG);
2) Amphibious Readiness Group (ARG) escort; and
3) Mine Counter Measures (MCM) Group escort.
Ship MOPs were identified for each MOE.  Goals
and thresholds were set for all MOEs and MOPs.
The AHP was applied using questionnaires and group
discussion.  AHP results were used to build an
OMOE function.  Typical MOP value functions and
MOP weights are shown in Figures 6 through 8.

Once the OMOE function was determined, criti-
cal design parameters to be varied were selected, and
structured as a GA chromosome.  These DPs in-
cluded hull form parameters, payload packages to
achieve various levels of warfare area performance,
ship endurance, number of shafts, use of a Collective
Protection System (CPS), propulsion gas turbine se-
lection, and a manpower reduction factor.
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Table 2.  Select Non-dominated Feasible Variants
Ship A Ship B Ship C Ship D

LBP (ft) 422.8 440.4 520.9 588.5
Beam (ft) 52.5 59.9 55.5 75.0
D10 (ft) 36.8 40.0 35.9 52.6
Draft (ft) 17.5 21.2 19.8 24.2
Displacement (lton) 5524.2 6713.8 8899.2 16612
Shafts 1 1 2 2
Range (nm) 4000 5000 7000 10000
Sustained Speed (knt) 27.1 27.0 31.0 29.2
GM/B .108 .129 .101 .111
Generators/kW 3/3000 3/3000 3/3000 7/3000
CPS no yes full full
AAW RAM,SPS-

49,CIWS,SDS
ESSM,SM,SPS-49,X-Band ra-
dar, Mk92 MFCS

ESSM,SM,SPY-1D, X-
Band radar,Mk99 GMFCS

ESSM,SM,SPY-1D, X and S Band
radar, GMFCS

ASUW 5”/54 w/ERGM,GFCS Harpoon, 5”/54
w/ERGM,GFCS

Harpoon,AN/SWG-
1,VGAS,GFCS

TASM/TMMM,
ATWCS,VGAS,GFCS

ASW 1.5m sonar, SSTD, helo
haven, SVTT,NIXIE

5m sonar(passive), SSTD,
NIXIE, SVTT,helo haven,VLA

5m sonar, SSTD, LAMPS
MKIII,NIXIE,SVTT,VLA

5m sonar, SSTD, LAMPS MK3,
NIXIE,SVTT,VLA,SQQ-89,
LBVDS

C4I Baseline Baseline CEC,JTIDS, digital comm,
TADIX/TACINTEL

CEC, JTIDS, digital comm, TA-
DIX/TACINTEL

MCM Degaussing Degaussing Mine avoidance sonar, de-
gaussing

Mine avoidance sonar, Remote
Minehunting System, degaussing

NSFS N-ATACMS, 5”/54
w/ERGM,GFCS

N-ATACMS, 5”/54
w/ERGM,GFCS

VGAS, N-ATACMS,
ATWCS

VGAS, N-ATACMS, ATWCS

STK TWCS,TLAMs,UAVs TWCS,TLAMs,UAVs ATWCS,TLAMs,UAVs ATWCS,TLAMs,UAVs
SEW SLQ-32V2, DLS SLQ32V2,DLS AIEWS,DLS AIEWS,DLS
VLS cells 32 64 64 128
Hello hangar / helos 0 0 Yes/2 Yes/2
Crew 108 120 184 266
Follow ship Acquisi-
tion Cost ($M)

547.6 656.6 888.6 1242.3

LCC ($M) 628.3 943.5 1319.7 1867.5
OMOE 0.2296 .4627 .7523 .9562

Ship manning was calculated based on historical
data and reduced by a manpower reduction factor.
Weight and cost for automation was increased con-
sistent with the manpower reduction.   Weight, area
and power were specified for each payload package.
Chromosome DPs are described in Table 1.  Other
DP’s were held constant for all designs.
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 Figure 12.  OMOE/LCC Frontier
 A PGA search was completed for the design

space specified in Table 1 using OMOE and LCC as

objective attributes.  The optimization was run for 50
generations, taking 26 hours on a 200 MHz PC.
LCC was defined to include acquisition cost, dis-
counted life cycle fuel cost and discounted life cycle
manpower cost.   Results of this search are presented
in Figure 12.   The data points represent LCC and
OMOE values for a sample of feasible variants in
generations 1, 40 and 50.   Generation 1 is a random
selection of design parameters.  Convergence to a
non-dominated frontier can be seen in the evolution
from Generation 1 to Generation 40 and finally to
Generation 50.  Generation 50 results approximate
the design frontier.  Many of these points are non-
dominated.

Ships A, B, C and D are non-dominated and rep-
resent “knees in the curve”.  Characteristics for these
ships are listed in Table 2.  Variants between Ships C
and D on the frontier have 2 shafts.  Variants below
Ship B on the frontier have one shaft.  Between Ships
B and C, there is a mix of one and two shaft ships.
Ship D is the feasible ship with the highest OMOE.

Although non-dominated, none of these ships can
be identified as “the best”.   Selection of the preferred
design is up to the customer, but Figure 12 provides
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the customer with important information to make this
selection: 1) the engineer can assure the customer
with confidence that non-dominated variants have
been identified;  2) the non-dominated frontier pro-
vides a perspective on the design space;  and 3) some
variants stand out as providing good value given a
range of acceptable cost.   In this example, Ships A,
B, C and D are noteworthy.

A discussion with the customer might consider
the following:

•   Ship A represents a low-end alternative.  It has
good performance in Naval Surface Fire Support
(NSFS) with other MOPs at threshold values.   It
represents the best alternative if acquisition cost is
limited to $500-600M.  Most war fighters would not
be impressed, but it is the best for the money.

•   Ship D is the high-end variant.  It achieves
goal performance in most MOPs.  The big cost driver
for ships to the right of Ship C is the addition of an
S-band radar.  This radar has a large ship impact due
to its power (seven 3000 kW generators) and cooling
requirements.  Ship D would be an excellent candi-
date for an Integrated Power System (IPS), an option
which is not included in the present model.  As a me-
chanical drive ship, it is only worth the money if full
TBMD capability is essential.

•   Ship B is the most effective of the single shaft
ships at a reasonable price.  Its AAW and ASW sys-
tems are much more capable than Ship A and the ac-
quisition cost is still low.  It is an excellent choice for
a reasonable low-end capability.

•  Ship C stands out as a particularly sharp knee
in the curve.  It has excellent capability in all areas
and the price is comparable to a number of variants
with much less effectiveness.   It is a “Best Buy”, and
if the acquisition cost is manageable, this would be
an excellent choice.

Conclusions

It is estimated that more than 80 percent of a na-
val ship’s ultimate acquisition cost is locked in during
concept design.  For a class of ships, this means tens
of billions of dollars.  An “ad hoc” process for mak-
ing these critical design decisions is not adequate.
Figure 11 appears to be a simple and somewhat in-
tuitive result, but it is not, and its implications are
revolutionary.  Without this kind of information, we
cannot make responsible decisions.

Key elements addressed by this methodology are:

• It provides a practical method for the ship
designer to calculate an Overall Measure
of Effectiveness (OMOE) which represents
customer requirements and relates ship
measures of performance (MOPs) to mis-
sion effectiveness.  This is an essential pre-
requisite to a disciplined search of design
parameters.

• It includes an efficient method to search
design space for non-dominated concepts.

• It provides a consistent format for pre-
senting and trading off a manageable set of
dissimilar objective attributes (effective-
ness, cost, and risk).

Essential future work includes:
• Integrate with a design database and prod-

uct model.
• Extend to later stages of design using a dy-

namic landscape PGA.
• Validate the AHP/MAVT approach to de-

fine and calculate an OMOE.
• Integrate with a process/shipbuilding

model.
• Extend to include risk as a third objective

attribute.
• Evaluate existing ship designs using this

methodology.
• Compare the GA performance to other op-

timization techniques.

The methodology described in this paper does not
replace imagination and experience.  It provides a
practical tool to manage a complex total-system
problem that cannot be managed by experience and
intuition alone.  It represents essential change in how
we do naval ship concept design.
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