
Automated Extraction of Problem Structure

Anthony Bucci1, Jordan B. Pollack1, and Edwin de Jong2

1 DEMO Lab, Brandeis University, Waltham MA 02454, USA�
abucci � ,pollack � @cs.brandeis.edu

http://demo.cs.brandeis.edu/
2 Decision Support Systems Group, Universiteit Utrecht

dejong@cs.uu.nl

Abstract. Most problems studied in artificial intelligence possess some form of
structure, but a precise way to define such structure is so far lacking. We inves-
tigate how the notion of problem structure can be made precise, and propose a
formal definition of problem structure. The definition is applicable to problems
in which the quality of candidate solutions is evaluated by means of a series of
tests. This specifies a wide range of problems: tests can be examples in classifica-
tion, test sequences for a sorting network, or opponents for board games. Based
on our definition of problem structure, we provide an automatic procedure for
problem structure extraction, and results of proof-of-concept experiments. The
definition of problem structure assigns a precise meaning to the notion of the un-
derlying objectives of a problem, a concept which has been used to explain how
one can evaluate individuals in a coevolutionary setting. The ability to analyze
and represent problem structure may yield new insight into existing problems,
and benefit the design of algorithms for learning and search.

1 Introduction

Most problems studied in artificial intelligence possess some form of structure. Taking
chess as an example, different players can be compared with regard to strategy, tactics,
and other aspects of their play. Thus, there are several dimensions along which the
behavior of players can be compared. Precise knowledge of such problem structure
would benefit both our insight into problems and the design of algorithms. It has so
far been unclear however how such dimensions might be defined precisely, and how
informative dimensions might be determined. We investigate how these notions can be
made precise, and propose a formal definition of problem structure. Based on this, we
describe an automatic mechanism to explore and represent problem structure.

We consider problems where the performance of a candidate solution, or candidate
for short, is determined by the outcomes of tests. We consider problems where the per-
formance of a candidate is determined by the outcomes of tests. For example, a classifier
may be evaluated on the errors it makes in classifying test examples; an evolved check-
ers player may be evaluated on its scores against some set of opponents; and a sorting
network can be evaluated on its ability to sort test sequences. This class of test-based
problems defines a broad range of problems.

� Corresponding author

The structure of a problem consists of a space and a mapping of the candidates
and tests into this space. The structure space is such that the outcome of a candidate
on any test can be uniquely determined given only the coordinates of the candidate.
Furthermore, a structure space is of minimum dimension given this constraint. The
structure space captures essential information about a problem in an efficient manner.

Since the quality of a candidate is determined by its outcomes on tests, tests may be
viewed as objectives in the sense of Multi-Objective Optimization (MOO; see [1], e.g.).
In this view, the structure space may be seen as a projection of the tests onto a smaller
set of dimensions or objectives, such that a one-to-one mapping exists between the can-
didate objective vectors for the two spaces. This resulting set of objectives will typically
be unknown at first, but is fundamental in the sense that it represents all relevant rela-
tions between candidates and tests in an optimally compact way. The axes spanning
the structure space may therefore be called the underlying objectives of a problem. The
term underlying objectives was first introduced in work on coevolution [2], where it
was observed that the tests in a coevolutionary algorithm tended to identify the objec-
tives that governed the evaluation of learners. A simpler version of the same idea was
presented in the form of the ideal test set and test dimension of [3].

In the realm of machine learning of game strategies, Arthur Samuel notes that terms
for the evaluation polynomial of his checkers player should ideally be generated by
the learning program itself. Samuel mentions the idea of an orthogonal set of terms
to be used in this evaluation polynomial [4]. Along similar lines, Susan Epstein has
argued that to be optimized, a game player should experience a variety of opponents
with varying skill levels [5]. We feel the present work offers a precise way to discuss
concepts like “orthogonal set of terms,” and to clarify which variety of opponents a
game player requires to be optimized.

The structure of this paper is as follows. In section 2, we present a mathematical
definition of a coordinate system for a test-based problem. We give an example from
geometry to motivate our choice of definitions, and explore some of the properties and
implications of the definitions. In section 3, we present a polynomial-time dimension-
extraction algorithm which, given a problem, constructs a coordinate system for it. The
coordinate system need not be minimal, but it is guaranteed to span the problem in a cer-
tain sense and satisfy an independence criterion. Finally, in section 4, we present some
experimental validation of the formal and algorithmic ideas. We run the dimension-
extraction algorithm on the population in a coevolutionary simulation run on a game
with known dimension; we see that the algorithm correctly deduces the dimension or
overestimates it, depending on the game.

2 Geometrical Problem Structure

Let p : S � T � 2 be any function, where S and T are finite sets3 and 2 is the partially
ordered set 0 � 1. Here the set S is interpreted as the set of candidate solutions; T is
the set of tests or test cases, and 2 is the outcome of applying a test to a candidate.
The function p encodes the interaction between a test and a candidate; intuitively, we

3 The finiteness assumption is not strictly necessary, but it greatly eases the exposition.

can think of it as a payoff function. Such functions appear often in optimization and
learning problems. For example:

Example 1 (Function approximation). Let f : T � IR be a target function defined over
a set T , and let S be a set of model functions T � IR. The problem is to find a function in
S that matches f as closely as possible. Notice that if h

�
S is some candidate function,

then a point t
�

T can serve as a test of h. For example, we can define p : S � T � 2 by
p � h � t ��� δ � f � t ��� h � t ��� , δ the Kronecker delta function.

Example 2 (Chess). Let S � T �	� deterministic chess-playing strategies
 . For any two
strategies s1 � s2

�
S, define p � s1 � s2 ��� 1 if s1 beats s2, 0 otherwise. Then p is of form

S � T � 2.

Example 3 (Multi-objective Optimization). Let S be a set of candidate solutions, and for
each 0 � i � n 1, let fi : S � 2 be an objective. The optimization task is to find (an ap-
proximation of) the non-dominated front of these n objectives. Let T ��� f0 ��������� fn � 1
 ,
and define p : S � T � 2 by p � s � fi ��� fi � s � for any s

�
S, fi

�
T .

In this section, we will use such a function p to define an abstract coordinate system
on the set S. This coordinate system will give a precise meaning to the notion of under-
lying objectives. In all of our examples, S will be finite. At first glance it is not obvious
what a coordinate system on a finite set might look like. One of the major contributions
in this paper is forwarding an idea about how we might do that.

2.1 Motivation

As a motivating example for the definitions to follow, let us consider the 2-dimensional
Euclidean space E2, namely the set IR � IR with its canonical coordinate system and
pointwise order. Write x : E2 � IR and y : E2 � IR for the two coordinate axes; for any
point in E2, the function x returns the point’s x coordinate and the function y returns
its y coordinate. p � q holds for two points p � q � E2 exactly when x � p ��� x � q � and
y � p ��� y � q � both hold. Now consider these two families of subsets of E2. For each
r � s � IR:

Xr ��� p � E2 � x � p ��� r
 (1)

Ys ��� p
�

E2 � y � p ��� s
 (2)

Geometrically, Xr is the half plane consisting of the vertical line x � r and all points
to the right of it. Ys is the half plane consisting of the horizontal line y � s and all points
above it. Figure 1 illustrates these two families.

For brevity, let us write X for the family � Xr � r � IR and Y for � Ys � s � IR. In other words,
an element of the family X is one of the sets Xr, and an element of Y is one of the sets
Ys. We would like to show that X and Y can act as stand-ins for the coordinate functions
x and y. In particular, X and Y satisfy the following three properties:

1. Linearity: For all r� s � IR, Xr � Xs or Xs � Xr. Furthermore, Xr � Xs implies r � s.
Similarly, Yr � Ys or Ys � Yr and Yr � Ys implies r � s.

x

y

r

rX

y

x

s

Ys

Fig. 1. Typical members of the families X and Y ; see text for details.

2. Independence: There exist r� s � IR such that Xr and Ys are incomparable; that is,
neither is a subset of the other.

3. Spanning: For all p
�

E2 define f � p ��� inf
r
� p
�

Xr
 and g � p � � inf
r
� p
�

Yr
 . Then

f and g are well-defined functions from E2 to IR, and p � q in E2 exactly when
f � p ��� f � q � and g � p � � g � q � both hold.4

Property 1 states that the family X is linearly ordered by � ; Y is as well. Property
2 states that the two families X and Y give independent information about E2. Finally,
property 3 states that X and Y can together be used to recover the order on E2; this is
the sense in which they span the space.

Properties 1-3 make no reference to the special qualities of E2. In fact, they require
only the family X � Y of subsets of E2. Since we can define families of subsets in
any set, particularly finite ones, these three properties are a suitable abstract notion of
coordinate system which can be fruitfully extended to finite sets.

2.2 Terminology

We will require some terminology from discrete math, which we review next.
Recall that a preorder on a set S is a reflexive, transitive, binary relation on S. Unless

we state otherwise, the symbol � will be used for preorders; we will also write s1 � s2

to mean s2 � s1. The reflexive property means that for any s
�

S, s � s holds. The tran-
sitivity property means that for any three s1 � s2 � s3

�
S, s1 � s2 and s2 � s3 together

imply s1 � s3. A preorder is similar to a partial order. Partial orders are also antisym-
metric, meaning: whenever s1 � s2 and s2 � s1 both hold, it must be that s1 � s2. In a
preorder, antisymmetry may fail: both these relations may hold, but it may still be that
s1

�� s2. Preorders commonly arise from functions into sets that are already ordered. For
instance, if f : S � IR, then we can compare two s1 � s2

�
S using f . Namely, there is a

preorder � f on S defined: s1 � f s2 exactly when f � s1 � � f � s2 � . Antisymmetry of � f

is then equivalent to f being injective.
A linear order is a partial order which satisfies the trichotomy law: for any two

s1 � s2, either s1 � s2, s2 � s1, or s1 � s2 must hold. A partial order need not satisfy
this property. In other words, a partial order can have incomparable elements, meaning
two s1 � s2

�
S such that neither is � the other. The canonical example of a partial order

4 In this example f � x and g � y. This property is the definition of the order on E2 in disguise.

is the power set of a set. The power set is partially ordered by inclusion: given any
two subsets of a set, it need not be true that one is a subset of the other. We refer the
reader to a discrete mathematics text such as [6] for more details and discussion of these
concepts.

2.3 Coordinate Systems

Before defining a coordinate system on S, we will need some preliminary definitions to
simplify notation.

Let p : S � T � 2 be any function on the finite sets S and T . For each t
�

T , define
the set Vt � � s � S � p � s � t � � 0
 . The set Vt is therefore the subset of all candidates which
do poorly against the test t. We can use these sets to define a preordering on T . Namely,
define t1 � t2 if Vt1 � Vt2 . Observe that in general this will be a preorder: there is no
guarantee that Vt1 � Vt2 implies t1 � t2. However, reflexivity and transitivity hold. It will
be convenient to define two formal elements t � ∞ and t∞ and extend the order � from
T to T � T

� � t � ∞ � t∞
 by defining t � ∞ � t � t∞ for all t
�

T . That is, t � ∞ and t∞ are
respectively the minimum and maximum of � extended to T . For any subset U � T , we
will write U for U

� � t � ∞ � t∞
 . Under the mapping t �� Vt , t � ∞ corresponds to /0 and t∞
corresponds to S. This formal device will make certain arguments easier. In particular,
for any s

�
S and any U � T , there will always be t1 � t2 � U such that p � s � t1 � � 0 and

p � s � t2 � � 1. U will always have a minimum and a maximum.
[3] argues that a function like p induces a natural ordering on the set S which is

related to the idea of Pareto dominance in multi-objective optimization. We argue that
this ordering captures important information about how two candidate solutions in S
compare to one another in an optimization problem defined by p. Let us write

�
for

this ordering; then for any s1 � s2
�

S, s1
�

s2 holds if p � s1 � t � � p � s2 � t � for all t
�

T . For
instance, in the multi-objective optimization example, s1

�
s2 exactly when fi � s1 ���

fi � s2 � for all objectives fi
�

T . In the multi-objective optimization literature the latter
condition means s2 covers s1.

With these preliminaries, we can define a coordinate system on S. The sets Vt will
play a role analogous to the Xr and Yr above. The ordering

�
on S is the one we wish to

span.

Definition 4 (Coordinate System). A family T �	� Ti � i � I of subsets of T is a coordinate
system for S (with axes Ti) if it satisfies the following two properties:

1. Linearity: Each Ti is linearly ordered by � ; in other words, for t1 � t2 � Ti, either
Vt1 � Vt2 or Vt2 � Vt1 .

2. Spanning: For each i
�

I, define xi : S � Ti by: xi � s � � min
t � Ti

� s � Vt
 � min
t � Ti

� p � s � t � �
0
 , where the minimum is taken with respect to the linear ordering on Ti. Then, for
all s1 � s2

�
S, s1

�
s2 if and only if � i

�
I � xi � s1 � � xi � s2 � .

The definition of xi � s � as the minimal t
�

Ti such that p � s � t � � 0 implies that
p � s � t � � 1 for all t � xi � s � . The requirement that Ti be linearly ordered guarantees that
if s

�
Vt1 and t1 � t2, then s

�
Vt2 as well. It follows that if t � xi � s � , then s

�
Vt ; i.e.,

p � s � t � � 0. Consequently, if Ti ��� t0 � t1 � ����� � tki
 is an axis and xi � s � � t j, we can
picture s’s placement on the axis like this:

p � s � t � 1 1 ����� 1 0 ����� 0
Ti t0 � t1 � ����� � t j � 1 � t j � ����� � tki

This picture is the crux of what we mean by “axis.” For any candidate s, the above
picture holds. s’s coordinate on a particular axis is exactly that place where it begins to
fail against the tests of the axis. Intuitively, we can think of an axis as representing a
dimension of skill at the task, while s’s coordinate represents how advanced it is in that
skill.

We have not assumed independence because we would like to consider coordinate
systems that might have dependent axes. Much as in the theory of vector spaces, we
can show that a coordinate system of minimal size must be independent. However, as
we will see shortly, in this discrete case there is more than one notion of independence
which we must consider.

Definition 5 (Dimension). The dimension of S, written dim � S � , is the minimum of � T �
taken over all coordinate systems T for S.

Remark 6. Because S and T are finite, dim � S � will be well-defined if we can show at
least one coordinate system for S exists. We will do so in section 2.4.

In the meantime, let us assume coordinate systems exist and explore some of their
properties.

Definition 7 (Weak Independence). A coordinate system T for S is weakly indepen-
dent if, for all Ti � Tj

� T , there exist t
�

Ti, u
�

Tj such that Vt and Vu are incomparable,
meaning neither is a subset of the other.

Then we have a theorem reminiscent of linear algebra:

Theorem 8. Let T be a coordinate system for S such that � T � � dim � S � . Then T is
weakly independent.

Sketch of Proof. Suppose T is not weakly independent. Then there are two axes, call
them Ti and Tj, such that all tests in Ti are comparable to all tests in Tj. Consequently,
we can create a new coordinate system T

�

as follows. First, T
�

has all the axes as T
except Ti and Tj. Create a new axis Tk by forming Ti

�
Tj and then arbitrarily removing

duplicates (which are t � u such that Vt � Vu). The resulting Tk is then linearly ordered,
and so can be an axis. Put Tk in T

�

. Then, T
�

is also a coordinate system for S, but
� T � � is one less than � T � , contradicting the fact that T was minimal. Thus, T must be
independent.

��

2.4 Existence of a Coordinate System

In this section we prove that any function p : S � T � 2 with S and T finite gives rise
to a coordinate system on S. Simply put, the set of all chains in T satisfies definition
4. Once we can show one such coordinate system exists, we know that a minimal one
exists and there is a reasonable notion of the dimension of S.

Definition 9. A chain in T is a subset C � T such that, for all t1 � t2 � C, either Vt1 � Vt2
or Vt2 � Vt1; further, Vt1 � Vt2 implies t1 � t2.

Let C be the set of all chains in T . Then:

Theorem 10. C is a coordinate system for S.

Proof. Write C � � Ci � i � I . By definition, each Ci is linear. Thus we need only check that
this family spans

�
.

(�) Assume s1
�

s2. We want to show � i � xi � s1 � � xi � s2 � . Consider a Ci
� C and

imagine Ci � � t0 � t1 � ����� � tki
 . If xi � s1 � �� xi � s2 � , i.e. xi � s1 � � xi � s2 � , we must have
the following situation:

p � s1 � t � 1 1 ����� 1 1 ����� 1 0 ����� 0
Ci t0 � t1 � ����� � t j2 � 1 � t j2 � ����� � t j1 � 1 � t j1 � ����� � tki

p � s2 � t � 1 1 ����� 1 0 ����� 0 0 ����� 0
Ci t0 � t1 � ����� � t j2 � 1 � t j2 � ����� � t j1 � 1 � t j1 � ����� � tki

where xi � s1 � � t j1 and xi � s2 � � t j2 . However, then p � s1 � ti2 � � p � s2 � ti2 � , which con-
tradicts the assumption that s1

�
s2. Thus, xi � s1 ��� xi � s2 � . This argument holds for any

Ci and any s1 � s2
�

S; therefore we have our result.
(�) Assume � i

�
I � xi � s1 � � xi � s2 � . We have the following for each Ci

� C :

p � s1 � t � 1 1 ����� 1 0 ����� 0 0 ����� 0
Ci t0 � t1 � ����� � t j1 � 1 � t j1 � ����� � t j2 � 1 � t j2 � ����� � tki

p � s2 � t � 1 1 ����� 1 1 ����� 1 0 ����� 0
Ci t0 � t1 � ����� � t j1 � 1 � t j1 � ����� � t j2 � 1 � t j2 � ����� � tki

where xi � s1 ��� t j1 and xi � s2 ��� t j2 . It is clear from the diagram that for all t
�

Ci � p � s1 � t � � p � s2 � t � . This fact holds for anyCi. That is, we have for all t ���
i � I

Ci � p � s1 � t � �
p � s2 � t � . However, �

i � I
Ci � T , meaning we have s1

�
s2.

Combining the above two implications, we have shown that s1
�

s2 if and only if
� i
�

I � xi � s1 � � xi � s2 � , for any s1 � s2
�

S. Hence, C is a coordinate system for S, as we
set out to show.

��

3 Dimension-Extraction Algorithm

In this section we give a polynomial-time algorithm that finds a weakly-independent
coordinate system for a set of candidates. The algorithm accepts as input a set of can-
didates, a set of tests, and the outcome of each candidate for each test. Given this input,
the goal is to construct a coordinate system such that (i) the position of a candidate

in the constructed space uniquely identifies which tests it passes and fails, and (ii) the
dimension of this coordinate system is minimal. Since an efficient optimal algorithm
is not available, an algorithm will be presented that satisfies (i) but uses heuristics to
minimize the dimension, and is therefore not guaranteed to satisfy (ii).

The main idea of the algorithm is as follows. We start out with an empty coordinate
system, containing no axes. Next, tests are placed in the coordinate system one by one,
constructing new axes where necessary. A new axis is required when no axis is present
yet, or when a test is inconsistent with tests on all existing axes. Two tests t � u are
inconsistent if Vt and Vu are incomparable. We now discuss two aspects of coordinate
systems that inform our algorithm.

In a valid coordinate system, the tests on each axis are ordered by strictness; any test
must at least fail the candidates failed by its predecessors on the axis. This knowledge
informs our heuristic for choosing the order in which to consider tests: the first step of
the algorithm is to sort the tests based on the number of candidates they fail.

A second aspect of coordinate systems is that a test whose set of failed candidates is
the union of the sets of candidates failed by two other tests can be viewed as the combi-
nation of those tests. For example, if a test A on the first axis fails candidates 1 and 3 and
a test B on the second axis fails candidates 2 and 5, then a test located at position (A,B)
in the coordinate system must fail the union of the candidate sets: candidates 1,2,3, and
5. Since such a composite test provides no additional information about which tests a
candidate will pass of fail, it can be safely discarded. Therefore, the second step of the
algorithm is to remove any tests that can be written as the combination of two other
tests.

Once the tests have been sorted and superfluous tests removed, the procedure is
straightforward; tests are processed in order and are either placed on an existing axis if
possible, or on a new axis if necessary. The pseudocode of the algorithm is as follows:

4 Experiments

As a validation of the ideas presented in the previous sections, we applied our dimension-
extraction algorithm to the populations of a coevolutionary simulation. Here we report
the procedure we used and the results of the experiments.

Naturally, the question arises whether this algorithm will really extract useful co-
ordinate systems from a problem. This question clearly bears much further empirical
study. Here we are content to address the simpler question of whether the dimension
extraction algorithm will give meaningful answers for particular problems in which we
know what the underlying objectives are.

4.1 Method

The algorithm of fig. 2 was applied to the populations in a variant of the Population
Pareto Hill Climber (P-PHC) algorithm presented in [7]. Briefly, a population of can-
didates and a separate population of tests is maintained by the algorithm. At each time
step, the tests are treated as objectives that the candidates are trying to maximize. Each

Input:
List candidates � tests
boolean play

�
cand � test �

boolean consistentWith
�
test1 � test2 �

Test and
�
test1 � test2 �

Output:
Tree dimensions

Algorithm:
sort tests by number o f f ails
for each test1 � test2 � test3 � tests

�
with test1 �� test2 �� test3 �

if test3 � and
�
test1 � test2 �

remove test3 f rom tests
end

end

for each test � tests
for each lea f � dimensions

if consistentWith
�
test � lea f �

add test as child to lea f
end
if test was not added to a lea f

add test as new lea f to root o f dimensions
end

end
end

Fig. 2. Algorithm for coordinate system construction. The algorithm accepts sets of candidates
and tests and their outcomes, and constructs a coordinate system that reflects the structure of the
problem. Axes in this coordinate system consist of tests, and the location of a candidate in this
induced space uniquely identifies which tests it will fail or pass.

candidate is given a single offspring, and the parent is replaced if the offspring does at
least as well as the parent on each test.

Tests are incented to find distinctions between candidates. If a and b are two can-
didates, a test t makes a distinction between them t � a � �� t � b � . Each test is given one
offspring; an offspring replaces its parent if it makes a distinction the parent does not
make. It is possible for an offspring to lose distinctions which the parent also makes;
we are not concerned with this possibility in this algorithm. Except for this variation in
test selection, all other algorithm details are the same as those reported in [7].

Two numbers games were used as test problems [8]. The first domain was the
COMPARE-ON-ONE game presented in [2]. In this game, candidates and tests are both
n-tuples of numbers. c and t are compared on the single coordinate where t is maximal.
c “wins” the game if it is larger than t on that coordinate. This game has been shown
to induce a pathology known as “focusing” or “overspecialization;” in conventional
coevolutionary algorithms; see [7] or [2] for details.

The second domain was the TRANSITIVE game. Again, candidates and tests are n-
tuples of numbers. This time, when a candidate c interacts with a test t, c wins if it is at
least as large as t on all dimensions.

Observe that the coevolutionary algorithm does not have access to the fact that in-
dividuals are tuples of numbers. The games are given as black boxes to the P-PHC
algorithm and it must make best use of this win/loss information. Consequently, when
we run our dimension-extraction algorithm on the P-PHC populations, we are hoping
to see the algorithm discover the number n which is the true dimension of the game.

We used the following procedure to estimate the number of dimensions. 10 indepen-
dent copies of P-PHC were run for 2,000 time steps. At each time step, the estimated
number of dimensions in the current population was output according to the dimension-
extraction algorithm. This value was averaged across the 10 runs to obtain a single “av-
erage run.” Then the following statistics were calculated across all 2,000 time steps: the
10th and 90th percentiles; the upper and lower quantiles; and the median. The number
of true dimensions of the underlying problem was varied from 1 to 16 and statistics
were gathered for each number of dimensions.

4.2 Results

Our results are presented in figure 3. These figures are box plots of the estimated num-
ber of dimensions versus the true number of dimensions. The boxes span the lower and
upper quartiles of the dimension estimates; the whiskers give the 10th and 90th per-
centiles. The plus marks the median of the dimension estimates. The dotted line gives
the expected answer.

The figure on the left gives the results for COMPARE-ON-ONE. There is good agree-
ment between the estimated value of the number of dimensions and theoretical value
for dimension ranging from 1 to 16. Further, the variance in the estimates is generally
quite small.

The figure on the right gives the results for TRANSITIVE. In this case the algorithm
consistently overestimates the number of dimensions of the problem. There is a larger
amount of variance in the estimate as well when compared with COMPARE-ON-ONE.
We only display up to 10 dimensions in the figure, enough to see the trend.

5 Conclusions

A notion of problem structure with application to a broad class of problems in artificial
intelligence, including learning and search, has been proposed. Problem structure here
takes the form of a coordinate system whose axes consist of tests, and knowledge of the
position of a test uniquely specifies the behavior of that test.

The structure of a problem is an intrinsic property. Thus, any existing problems for
which candidates are evaluated using tests must have an associated coordinate system
of the kind defined in this paper. For most problems, the question of what the underly-
ing objectives are is new, and it is given a precise meaning by the definition of problem
structure presented here. The definition, and the preliminary algorithm for extracting

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

E
st

im
at

ed
 n

um
be

r
of

 d
im

en
si

on
s

Number of dimensions

Estimated vs. actual number of dimensions, COMPARE-ON-ONE

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

E
st

im
at

ed
 n

um
be

r
of

 d
im

en
si

on
s

Number of dimensions

Estimated vs. actual number of dimensions, TRANSITIVE

Fig. 3. Estimated number of dimensions in two numbers games, applying the algorithm in fig.
2 to the populations of a coevolutionary algorithm; see text for details. The left figure is the
estimate for the COMPARE-ON-ONE game; note the tight correspondence with the theoretical
number of dimensions. On the right is the estimate for the TRANSITIVE game; here the algorithm
consistently overestimates.

problem structure, may therefore yield new insight into existing problems. While com-
putationally challenging, this permits asking intriguing questions such as: what is the
dimension of chess, and what are the underlying dimensions of chess?

The formal definition of problem structure that has been presented directly suggests
ways of extracting problem structure automatically. A preliminary algorithm for coor-
dinate system construction has been provided, and demonstrated on example problems.
It is our hope that the notion of problem structure that has been proposed may incite the
study of problem structure as a general property of problems; if efficient algorithms for
problem structure extraction can be identified, it may become possible to better under-
stand existing problems of interest by the algorithmic analysis of their structure, thereby
providing new insight into existing problems in an automatic manner.

References

1. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective opti-
mization. Evolutionary Computation 3 (1995) 1–16

2. De Jong, E.D., Pollack, J.B.: Ideal evaluation from coevolution. Evolutionary Computation
12 (2004)

3. Bucci, A., Pollack, J.B.: A mathematical framework for the study of coevolution. In De Jong,
K., Poli, R., Rowe, J., eds.: FOGA 7: Proceedings of the Foundations of Genetic Algorithms
Workshop, San Francisco, CA, Morgan Kaufmann Publishers (2003) 221–235

4. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development 3 (1959) 210–229 Reprinted in E. A. Feigenbaum and J. Feldman
(Eds.) 1963, Computers and Thought, McGraw-Hill, New York.

5. Epstein, S.L.: Toward an ideal trainer. Machine Learning 15 (1994) 251–277
6. Scheinerman, E.R.: Mathematics: A Discrete Introduction. 1st edn. Brooks/Cole, Pacific

Grove, CA (2000)

7. Bucci, A., Pollack, J.B.: Focusing versus intransitivity: Geometrical aspects of coevolution. In
Erick Cantú-Paz et al., ed.: Genetic and Evolutionary Computation - GECCO 2003. Volume
2723 of Lecture Notes in Computer Science., Springer (2003) 250–261

8. Watson, R., Pollack, J.B.: Coevolutionary dynamics in a minimal substrate. In L. Spector
et al., ed.: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-
2001, San Francisco, CA, Morgan Kaufmann Publishers (2001)

