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Abstract. This work introduces a new recombination and a new mu-
tation operator for an accelerated evolutionary algorithm in the context
of Pareto optimization. Both operators are based on a self-organizing
map, which is actively learning from the evolution in order to adapt the
mutation step size and improve convergence speed. Standard selection
operators can be used in conjunction with these operators.

The new operators are applied to the Pareto optimization of an airfoil for
minimizing the aerodynamic profile losses at the design operating point
and maximizing the operating range. The profile performance is ana-
lyzed with a quasi 3D computational fluid dynamics (Q3D CFD) solver
for the design condition and two off-design conditions (one positive and
one negative incidence).

The new concept is to define a free scaling factor, which is multiplied
to the off-design incidences. The scaling factor is considered as an ad-
ditional design variable and at the same time as objective function for
indexing the operating range, which has to be maximized. We show that
2 off-design incidences are sufficient for the Pareto optimization and that
the computation of a complete loss polar is not necessary. In addition,
this approach answers the question of how to set the incidence values by
defining them as design variables of the optimization.

1 Introduction

Real-world application often include multiple and conflicting objectives. A so-
lution to such a problem represents always a compromise between the different
objectives. The set of the best compromise solutions is referred as the Pareto
set, characterized that starting from a Pareto solution, one objective can only
be improved at the expense of at least one other objective.

Evolutionary Algorithms (EAs) are a standard tool for Pareto optimization. EAs
perform a population-based search, which allows approximating the Pareto front
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in a single optimization run by evolving the population in a cooperative search
towards the Pareto front.

In Pareto optimization, work has been performed in the development of selection
operators and especially fitness assignment techniques for Pareto optimization,
while the recombination and mutation operators are often copied from simple
single-objective algorithms and are non-adaptive over the optimization run.

In single objective optimization, however, the key component is the mutation op-
erator. The operator exploits knowledge from the evolution to adapt a mutation
distribution in order to focus on areas of promising solutions. The Covariance
Matrix Adaptation (CMA) [5] embeds information about the path of successful
mutations (evolution path) in a covariance matrix. This leads to a significant
performance gain, compared to non-adaptive EAs.

The evolution path for multi-objective optimization is far more unclear than for
single objective optimization, since the population converges in a cooperative
search towards the Pareto front and not to a single optimum. Since different
solutions in the population converge towards different locations on the Pareto
front, the mutation distribution can not be described by one covariance matrix
and has to differ between the solutions.

Thus, we introduce a new adaptation method for the mutation step size in Pareto
optimization using the self-organizing maps (SOM) of Kohonen [6]. The method
is inspired by the work of Milano et al. [8], who develop the first SOM for single
objective optimization. The SOM is continuously trained on the current best so-
lutions and thus is tracking the evolution path in a learning process. The SOM
adapts the mutation step size such that it focuses on areas of promising solutions
in order to generate an accelerated convergence.

The aerodynamic design of modern aircraft wings as well as rotor blades from
various areas as turbo machinery, helicopters, and wind energy plants relies sig-
nificantly on the design of 2D cuts (profiles), which are then stacked to a 3D wing
or blade. This simplification omits 3D flow effects but is adequate for the design
due to the large aspect ratios between span and chord. Real 3D calculations are
often performed for the design assessment, after the actual design process. The
profiles can be designed individually or can be taken from a profile family.

The aerodynamic performance of a profile is mainly characterized by the ther-
modynamic losses at the design operating condition and by the operating range.
The operating range can be described by the possible variation of the inlet flow
angle from the design condition (incidence variation) until separation or stall
occurs. These two characteristics are conflicting, thus requiring a set of profile
designs for different compromises manifested on a Pareto front.

This paper is organized as follows: First, the principles of EAs for Pareto op-
timization are introduced, followed by a description of the SOM and the mod-
ifications for the learning in an EA. The new algorithm is illustrated on a test
problem. Finally, an automated loop for the Pareto optimization of an aero-
dynamic profile concerning losses and operating range is described. The loop
comprises the new optimization algorithm, a profile generation tool and a CFD
analysis tool. The properties of the resulting profiles are discussed.
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2 Multi-Objective Evolutionary Algorithms

The selection operator is often considered as a key operator for multi-objective
evolutionary algorithms (MOEASs). It consists of the fitness assignment and the
selection mechanism itself. The dominance criterion in combination with niching
techniques is most popular for the fitness assignment [11], in order to select on
average the less dominated solutions and preserve diversity in the population,
respectively. Another key element is elitism [11], a technique of storing always
the current best solutions in an archive. For a multi-objective problem, the elite
solutions are the current nondominated solutions. The archive is then partici-
pating in the selection process.

The Nondominating Sorting Genetic Algorithm (NSGA-II) [2] and the Strength
Pareto Evolutionary Algorithm (SPEA2) [12] are two common representatives
of MOEAs and implement all of the previously stated techniques.

These algorithms, however, do not describe a mutation or recombination opera-
tor. To compare the performance on continuous problems, the authors of SPEA2
and NSGA-IT use the polynomial distributed mutation and the simulated binary
crossover of Deb et al. [1]. Both methods do not implement any learning process,
so they do not exploit any knowledge from the evolution path.

2.1 Self-Organizing Maps

Self-organizing maps (SOM) [6] define a mapping of a highly dimensional input
space R" onto a regular lattice of s reference vectors (neurons). The lattice con-
tains a fixed m-dimensional connectivity between the neurons, which is usually
of lower dimension than the input space. Figure 1 illustrates a SOM with 25
neurons and a two-dimensional quadrilateral lattice, i.e. n = 2, s = 25, and
m = 2. A reference vector w; € R” is associated to each neuron i.
The response of the network to an input z; € R" is defined as the best matching
neuron c¢:

¢(z5) = arg min{{|a; — wil|} (1)

The SOM can be trained on a set of input data z;. To each z; the response c is
computed and all SOM neurons are updated so as to become closer to the input
z; by the update rule:

wie = w + h(ed) (25 —wi), i=1.s, )

where h(c,i) is the so-called neighborhood kernel, defined so as h(c,c¢) = 1,
h(c,i) > 0V w;. We use a kernel, which is known as bubble kernel, defined
by:
N Jaifr(ei) <ro

hie,i) = {0 , otherwise ’ (3)
where « is the learning rate, r(c,i) is the Euclidean distance between node ¢
and ¢ in the lattice and r¢ defines the bubble size. The neighborhood function
allows approximating a given distribution in an ordered fashion, by preserving
neighborhood relationships. One update with all input dates is referred to as one
training epoch.
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2.2 Self-Organizing Maps for Multi-objective Evolutionary
Algorithms

Here we use the SOM for the approximation of the Pareto front. To this aim we
set connectivity m of the lattice to one dimension less than the objective space,
that is the same dimension as the Pareto front; also, since the SOM is defined
in design space, the dimension n of its reference vectors is equal to the number
of design variables. The SOM is trained on the current parent population of
the optimization process in order to approximate the parent population in an
ordered fashion. Any selection operator like SPEA2 or NSGA-II can select the
parent population.

We define a recombination operator by using the SOM. The SOM is trained on
the design variables of the parent population. Thus, choosing a random point
within the area that is covered by the SOM represents an intermediate recombi-
nation of the parent population. The recombination procedure chooses randomly
a simplex of adjacent neurons in the lattice, and generates a recombined point
u from a uniform probability distribution within the simplex (Figure 1).

In addition, a mutation operator is defined in order to generate points outside
the area covered by the SOM. Normally distributed random numbers are added
to the new point u by:

ug — up + %N(o, 1), k=1.n, (4)
where o is the step size and is set equal to the Euclidean length of a randomly
chosen edge of the simplex. This leads to an adaptive step size over the opti-
mization process, since the SOM is adapting from a random initialization to an
ordered approximation of the Pareto front. The step size differs for all possible
simplexes of the SOM.

Fig. 1. SOM with 25 neurons [circles] and 2D quadrilateral lattice [thin lines]. A ran-
dom simplex of adjacent neurons is created [bold line]. Within the simplex a uniformly
distributed random point [plus symbol] is generated.
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2.3 Experimental Results

The performance of the SOM-MOEA is analyzed for the two-objective test func-
tion of Fonseca and Fleming [4]:

n

fij2=1—exp (—Z(xki\/l/—n)2> )

i=1

with 21, € [-1,1]. The exact Pareto front is obtained for 1., = ¢, —/1/n <
t < 4/1/n. The number of design variables is set to n = 10. An optimization
run is started with the SOM-MOEA and a population size of 60 individuals. A
simple selection operator is used, which selects only the current nondominated
solutions in an elitistic fashion. In order to keep diversity within the selected set,
the clustering algorithm of SPEA2 is used, allowing a maximum number of 30
nondominated solutions.

A one-dimensional SOM is initialized with s = 20 neurons, a learning rate o =
0.05 and random values for the reference vectors w;. After each generation, the
SOM is trained with 30 training epochs on the selected set. The initial population
is randomly generated. Figure 2 shows the initial population and SOM for two
dimensions of the design space and for the objective space. Consider that a
simplex for this SOM is a straight line.

The optimization run is started computing in total 3.000 solutions. The final
population is shown in Figure 3. The figure shows that the SOM is aligned
along the analytical Pareto front in design space, and the objective values of the
final population are well distributed along the Pareto front. The step size o of
the mutation in Equ. 4 is related to the length of a simplex, i.e. for this one-
dimensional network it is equal to the distance between two adjacent neurons.
The ratio of the initial and final step size is equal to the distance between
adjacent neurons of the SOM in Figure 2 and Figure 3.

3 Automated Design of Aerodynamic Profiles

We consider the automated profile design in the context of a constraint Pareto
optimization. An optimization loop is implemented comprising the SOM-MOEA
a profile generation tool and a computational fluid dynamics (CFD) analysis tool.
The profile generator describes the profile by a set of Bezier splines. The spline
parameters are coded in a set of engineering parameters, specifying e.g. the
profile length, the nose and trailing edge radius, the curvature distribution, etc.
Subdividing the profile in several splines is common in profile design [7] [10]. The
transformation of the spline parameters to engineering parameters simplifies the
comparison and illustration of different profile parameter sets.

The flow analysis is performed with MISES [3], a quasi 3D computational fluid
dynamics (Q3D CFD) solver, which solves the Euler equation with an integral,
viscous boundary layer formulation. It takes into account the change in the
streamline thickness along the profile (quasi 3D).
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Fig. 2. Initialization of the SOM-MOEA for the two-objective problem of Fonseca and
Fleming with 10 design variables: Random population [crosses], random 1-dim. SOM
[connected circles] and analytical Pareto front [line] in a 2-dim subspace of the design
space and in the objective space.
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Fig. 3. SOM-MOEA after 50 generations (3000 evaluated solutions). The SOM alignes
in the design space along the Pareto front.

3.1 Objective Functions

An aerodynamic profile should be optimal concerning its performance at design
condition as well as for off-design conditions. This can be achieved by different
approaches.
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One approach is to follow a design philosophy, which can be specified by e.g.
a Mach number or pressure distribution, maybe in conjunction with a non-
dimensional shape factor of the boundary layer like Hi,. Since the behavior of
the design philosophy for certain profiles under off-design conditions is known,
it is assumed to be sufficient to match the philosophy at design condition. This
approach is used in the manual design process, the inverse design process (see
e.g. [7], [10]) or in a direct optimization process (see e.g. [9]) and the quality of
the result relies directly on the quality of the considered philosophy.

A second approach is the calculation of various incidences in order to approxi-
mate the loss polar of the profile as given in Fig. 4, which specifies the behavior
of the profile over the complete operating range. A disadvantage is the large
number of flow calculations, which are needed to specify the polar as in the
optimization of [7]. Furthermore, there is the problem of how many incidences
should be computed and for which values.

Our preference is on the second approach, since the first does not allow discover-
ing new design philosophies and is difficult to apply to transonic or 3D flows. In
addition, we present two modifications in order to improve the second approach.
First, we formulate a Pareto optimization problem in order to obtain a family
of profiles and not one single compromise solutions. The family represents all
compromises between the conflicting objectives of minimizing the losses at the
design condition and increasing the operating range. Second, we do not compute
the complete loss polar and show that it is sufficient to compute 3 different inci-
dences in order to assess a profile. The 3 calculations are performed for the design
condition, i.e. 0° incidence and for one positive incidence I; and one negative
I>. The key concept is to define I; and I, variable by a free multiplier 6:

I, =10-6 (6)
L, =-08-6 (7)

This definition takes into account that the positive incidence I; is more critical
for stall than I». The incidence multiplier € is an additional design variable.
The profile losses for the 3 incidences are summed to the first objective function
f1- For small values of 6, the losses are computed at small incidences. An op-
timization for small values of 8 leads profiles which have minimal losses in the
vicinity of the design condition, while for large values of 8, profiles are optimized
for a large incidence range. Thus, 8 is not only used as free design variable, but
also as second objective function f,. To both objectives penalties are added for
violated constraints and the exact objective functions are given by:

max(fi), fi=0-p (8)
3

min(fs), fo=_ (i) +p1+p2+ps + pa, (9)
i=1

where [; is the profile loss for the incidence i and p; to ps are 4 penalties, which
are non-zero, if the corresponding constraint is violated.
p1 is a penalty for the convergence of the CFD solver and is equal to the number
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of failed incidence calculations. Especially for large incidences, the convergence
may fail due to flow separation. ps is a linear penalty on the deviation of the
exit flow angle 8 to the design exit flow angle Bgcsi9n at design condition, if the
deviation exceeds an absolute value of |8 — Bgesign| > 083. p3 is a linear penalty
on the profile area A, if A is smaller than the minimal area A,,;,,. The minimal
area is defined by the mechanical forces on the profile and the stress limit.

The free design variables are the parameters from the profile generator and the
incidence multiplier 6. In total there are 15 design variables.

3.2 Optimization Results

An optimization run is performed for a profile design at an inlet Mach number
of 0.67, a desired flow turning of 12° and d8 = 0.1°. The SOM-MOEA of Sec.
2.3 is used, except the maximal size of the selected set is increased to 50. In total
10.000 solutions are evaluated. Among all evaluated solutions, 5.461 solutions do
not violate any constraints and generate a Pareto front of 283 solutions (Fig. 4).
Consider that the incidence multiplier is to be maximized and the losses are to
be minimized. The Pareto front underlines the conflict in optimizing the two ob-
jectives. For small incidence multipliers, the losses are low, since all 3 incidences
are computed almost at the design point. For large incidence multipliers, the loss
increases for two reasons. First, the flow is computed at larger incidences leading
to higher losses and second, the profile losses are higher at the design condition,
since the design has to be more robust for converging at the high incidences.
Two Pareto solutions are marked in the figure and their loss polar is given in
Fig. 4. The minimal losses are at about 1.4%. The attainable operating range
is considered to be bounded by the double of the minimal losses [7]. Solution A
contains the smaller incidence multiplier and the loss polar shows lower losses
close to the design incidence than solution B, but comprises a smaller operating
range. For solutions A and B, the operating range is about 14.4° and 15.5°,
respectively. Both polars are characterized by a smooth and continuous increase
of losses over the absolute incidence. This indicates a soft stall behavior. Fig. 5
contains the profile shape. Solution A shows the smaller nose radius as well as
the smaller maximal thickness.

4 Conclusions

A self-organizing map (SOM) is introduced as mutation and recombination op-
erator for Pareto optimization. The network is actively learning from the current
nondominated solutions. The SOM comprises the principle of cooperative search
by interpolating the current nondominated front, thus it is sharing information
about successful design variables values along the Pareto front. The mutation
step size is related to the distance of neighboring neurons in the SOM. It varies
within the network and is adaptive over the optimization run. The SOM rep-
resents a first step in the direction of developing mutation and recombination
operators which are especially designed for Pareto optimization and which are
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Fig. 4. Pareto front [left] for the profile optimization, and loss polar [right] for two
selected Pareto solutions.
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Fig. 5. Profile shape for the two selected Pareto solutions.

able to learn from the evolution in order accelerate the convergence.

The second part describes a formulation for the Pareto optimization of compres-
sor profiles for minimal losses and maximal operating range, which operates with
a minimal number of incidence calculations. The key feature is the definition of
a multiplier for the incidences, which is used at the same time as design variable
and objective function. This optimization introduces the concept of generating
profile families in a single cooperative optimization run by using a Pareto opti-
mization algorithm.
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