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Preprint: Multi-objective Evolutionary Algorithm
for the Optimization of Noisy Combustion
Processes

Dirk Buche, Peter Stoll, Rolf Dornberger, and Petros Koumoutsakos

Abstract—Evolutionary Algorithms have been applied to single and mul- - Sions. On the other hand, the liberalization of the electric power
tiple objectives optimization problems, with a strong emphasis on problems, market puts pressure on overall production costs.

solved through numerical simulations. However in several engineering .
problems, there is limited availability of suitable models and there is need In recent years the use of gas turbines among new power plants

for optimization of realistic or experimental configurations. The multi- has significantly increased due to a number of appealing prop-
objective optimization of an experimental set-up is addressed in this work. erties: Using natural gas instead of coal or oil leads to a cleaner

Experimental setups present a number of challenges to any optimization 5y stion, while moderate installation and operating costs and
technique including: availability only of pointwise information, experimen-

tal noise in the objective function, uncontrolled changing of environmental & high thermodynamically efﬁCienCy reduce overall energy pro-
conditions and measurement failure. duction costs. Moreover, using the exhaust heat for a steam tur-

This work introduces a multi-objective evolutionary algorithm capable pine in a combined Cycle is one way to increase power output
of handling noisy problems with a particular emphasis on robustness . .
and efficiency of the plant.

against unexpected measurements (outliers). The algorithm is based on the ) . . .
Strength Pareto Evolutionary Algorithm (SPEA) of Zitzler and Thieleand A central component in the design of a gas turbine is the de-
includes the new concepts of domination dependent lifetime, re-evaluation sign of the burners in the combustion chamber. The burners mix
of solutions and modifications in the update of the archive population. Sev- _: : - :
eral tests on prototypical functions underline the improvements in conver- air a_nd fuel a_nd Comt?USt them Contlnuous!y' This is different
gence speed and robustness of the extended algorithm. to Diesel engines, which combust in a cyclic manner. The de-
The proposed algorithm is implemented to the Pareto optimization of the sign of a burner addresses two main objectives: First, the burner
combustion process of a stationary gas turbine in an industrial setup. The should mix air and fuel uniformly for low emissions. since the
Pareto front is constructed for the objectives of minimization of NO, emis- f f rich . Its in i '
sions and reduction of the pressure fluctuations (pulsation) of the flame. pre_sence of areas of rich combustion results in m_cre_ase_,d NO
Both objectives are conflicting affecting the environment and the lifetime emissions and a non-homogeneous temperature distribution may
of the turbine, respectively. The optimization leads a Pareto front corre- damage the turbine blades. Second, the burner should produce a
sponding to reduced emissions and pulsation of the burner. The physical . ‘e . . )
implications of the solutions are discussed and the algorithm is evaluated. S_table combustion flame, av0|_d|ng undeSIr_Gd DUIsatl_ons' PUIsa
Keywords—evolutionary algorithms, multi-objective optimization, noisy ~ IONS are dueto th_ermo acoustic waves, which occur in part'_C_U|ar
objective functions, gas turbine combustion, emission reduction, combus- for lean combustion when operating under part load condition.
tion instabilities They reduce the lifetime of the turbine by fatigue and by de-
stroying the film cooling along the blades surface. These two
I. INTRODUCTION objectives are conflicting, thus motivating the requirement for a
UTOMATED optimization is an important aspect of techyfamaty of de§|gns as manifested on a Pgreto front. The lack of
Viable analytical models and the limited information about the

nical product design. In an engineering environment it us derlvi hvsical ivolved K busti
ally implies the development of an optimization algorithm inte2NA€rlying physical processes Invoived, makes combustion pro-
ses a suitable candidate for the optimization using stochastic

grated in an automated setup for the modification of parametgf'?. o ; . o
of the design. For complex problems such as the combust tlmlgatlon techm_ques such as evqlunonary a_Igorl_th-r]Ls[ .
process, numerical simulations are not widely used as a pre -a/plu'tlonary Algorlth_ms(EAs) are biologically inspired Opt".
tive tool due to the complexity of the physical phenomena uno‘gpzatlor.] algorlthms,.mcorporatlng opergtors such as mutation,
investigation. Although intensive research efforts are underws ombination and fitness based selection of parameters. EAs

on this front, experimental setups are widely used for the stug €a set of solutions .(populat|0n), to converge to the Op“”?a'
and optimization of combustion processes. ] S|gn(s)_. The pqpulatlon—based search allows easy paralleliza-
The optimization of the combustion process of a stationary gté%n and |nformat|on can be accumulated SO as .to generate ac-
celerated algorithmsif]. EAs are robust optimization methods,

turbine is a challenging real-world application with conflict-"". hd " . dients of the obiective funci d
ing objectives. New governmental laws on emission taxes aWB'C o notrequire gradients ot the objective funcltion and may
t

global agreements on emission reduction such as the Kyoto oid termination at local minima. . .
olution on greenhouse-gases (1997, 2001) demand expenives operate so as to continuously obtain an improvement of

: : ey : ._the’objective function by exploiting progressively acquired in-
highly thermodynamically efficient power plants with low emis: d . S .
gnly y y P P formation. While EAs have found several applications for sin-
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of nondominated solutions is referred to the Pareto set of swous outliers, characterized by nonphysical objective values.
lutions, after the work of the engineer and economist Vilfred8tandard multi-objective evolutionary algorithms cannot handle
Pareto [L8] and represents the best solutions to the problem. these difficulties, and there is a need to extend their basic com-
A classical and still widely employed approach to handle mubonents to overcome these difficulties.

tiple objectives is the aggregationd of all objectives into a While for single objective optimization, several studies of noisy
single, a priori defined figure of merit. Objectives are usuallybjective functions have already been performed [17], for
aggregated by a weighted-sum or a constraint approach. Timiglti-objective optimization, limited results are available in lit-
weighting behavior implies prior knowledge about the probleerature. Averaging the parent population, a remedy for noisy
and is dependent on the a priori unknown shape of the Parsilogle objective problems, is not useful in this case since a
front. While point-to-point search methods converge to ortiverse population is desired to converge towards the Pareto
Pareto solution at a time, evolutionary algorithms can exploit tfi®nt. Two recent publications?P] [ 14] adapt the Pareto rank-
population-based feature and converge to the Pareto-set in agig-scheme [(] to noisy solutions by defining probabilities of
gle optimization run. Therefore much effort has been spent owdaminance between them. Both methods assume either a uni-
the past twenty years on the development and application of ef@m or normal distribution of the noise and can benefit from a
lutionary algorithms for Pareto optimization. Promising methpriori knowledge of its magnitude.

ods have been proposed and compared by several researdneitsis paper we introduce three new principles in order to im-
[26] [25] [3]. An exhaustive list of references can be found oprove robustness against noise. First, a dominance-dependent
the web page of Coelle/]. The various multi-objective evo- lifetime is assigned to each individual. The lifetime is inversely
lutionary algorithms are usually distinguished by their fitheggoportional to the number of solutions it dominates. This limits
assignment operators, while the mutation, and the crossover thg impact of a solution in the overall population. In addition,
erators are usually adopted from standard single-objective &k enable nondominated solutions to be re-evaluated after their
gorithms. Pareto optimization methods, which use the dontifetime expires and define an extended update mechanism for
nance criterion for the fitness assignment are widely usedths archive.

Pareto dominance is key issue in determining, if one solutidiis paper is organized as follows: First, the principles of multi-
performs better than the othe#][ Two of the most prominent objective optimization are described and the SPEA algorithm is
multi-objective evolutionary algorithms are the Nondominategresented. Then we present an overview on modifications for
Sorting Genetic Algorithm (NSGA) of Srinivas and Debl], SPEA in order to handle noise and introduce a new approach
and the Strength Pareto Evolutionary Algorithm (SPEA) of Ziealled the noise-tolerant SPEA (NT-SPEA). All algorithms are
zler and Thiele 74]. analyzed on noisy and noise-free test functions. The analyzed
NSGA assigns fitness by nondominated sorting of the populaise reflects the characteristics of the intended application. Fi-
tion as described by Goldberd(]. The nondominated solu- nally the application of NT-SPEA to the optimization of a gas
tions of the population are assigned the highest fitness and tambine burner is presented, showing the capabilities of the new
removed from the population. Then, the nondominated solapproach. The optimization leads a Pareto front corresponding
tions of the remaining population are assigned a lower fitness.reduced emissions and pulsation of the burner. The physical
This is repeated until all solutions are sorted. Within each layenplications of the solutions are discussed.

of nondominated solutions phenotypic fithess sharing is used in
order to preserve diversity.

SPEA uses the nondominated solutions for the fitness assign—”-
ment. The nondominated solutions are assigned the highestAit-Definition of Multi-Objective Optimization

ness. The fitness of a dominated solution decays with the numy multi-objective optimization problem can be described by

ber of nondominated solutions by which it is dominated. A maip, objective vectof and a corresponding set of design variables

difference of SPEA to NSGA is the use of elitism, a techmqueﬂ Without loss of generality we can consider the minimization

of preserving always the best solutions obtained so far. In mu 3

M ULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

objective optimization, elitism is performed by preserving the 1. Formally:

nondominated solutions in an archiv&s]. The parents of the min f(z) = (fi(z), fo(x),..., fm(x)) € F

next generation are selected out of the current population and wherex = (z1,22,...,2,) € X, (1)
the archive.

Although the number of applications in the field of muli\WhereX & R™ is the n-dimensional design spade,c R™

objective (Pareto) optimization is increasing, problems witf the m-dimensional objective space. Here both the design and
noisy objective functions are rarely considered, even thougRIECtive space are real spaces, as they correspond to continuous
noise is present in almost every real-world application. As ev§2'iables and measured objectives for the proposed application.
lutionary algorithms do not require gradient information, the@ partial ordering can be apP“e,d to solqups In the_ objgctlve
are already inherently robust to small amounts of noise, a feRaCcel’ by the dominance criterion. A solutionin X is said

ture which is sufficient for many problems. In several expefi® dominate a solutiohin X' (a - b), if it is superior or equal
ments however, large-amplitude noise is induced from variolik@ll objectives and at least superior in one objective. This is
sources, such as unsteady operating conditions, limited mgPressed as:

surement precision, and time averaging in restricted sampling ¢ - b, if Vie{1,2,...,m}: fi(a) < fi(b) A

time. In addition, measurements may fail, leading to erro- Jje{l,2,....m}: fia)<f;(0) ()
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The solutiona is said to be indifferent to a solutian if neither Elitism is a technique of preserving always the best solutions
solution is dominating the other one. When no a priori prefeobtained so far. In multi-objective optimization, elitism is per-
ence is defined among the objectives, dominance is the only wagmed by storing the nondominated solutions in an archive
to determine, if one solution performs better than the otéler [[25]. In the selection process individuals of the current popu-
The complete set of Pareto ideal solutions represents the Bagon P and of the archived are competing in a binary tour-
solutions to a problem. In other words, starting from a Paretament where contrary to the standard tournament selection the
solution, one objective can only be improved at the expense ofatution with the lower fithness wins.
least one other objective. From the Pareto definition, two targétsorder to preserve diversity in the archive and to keep its size
have to be considered by the formulation of an evolutionary olmited, a clustering algorithm is used. Clustering removes solu-
timization algorithm for Pareto optimization. On one hand, th#ns in areas of high density as measured in the objective space.
algorithm must be able to converge sufficiently fast towards tide studies of Zitzler and Thiele2§] have illustrated that
Pareto front, while on the other, it must preserve diversity amosiitism improves the performance of multi-objective evolution-
its population in order to be able to spread over the whole Pareny algorithms on noise-free test problems. Elitism is inserting
front. A common difficulty is the focusing of the population omondominated solutions in the selection process, and thus in-
a certain part of the Pareto front, which is known as genetic drifteasing the selection pressure. An increasing number of multi-
[11]. In single objective optimization the latter issue is unimpowbjective algorithms followed this observation. For example,
tant, since convergence to a single (global) optimum is desirddSGA was updated by its inventors to NSGA-II, which con-
tains “controlled elitism” f]. Some researchers state elitism as
B. Basic Elements of a Multi-objective Evolutionary Algorithm necessity for multi-objective optimization], since informa-

Evolutionary Algorithms are optimization algorithms, incortion may be lost by the stochastic selection operator. However,
porating concepts such as fitness based selection, recombindiidhadvantage is debatable for noisy objective functions.
and mutation. EAs start with a set dfrandomly generated so-Selection is performed by a binary tournament. All solutions of
lutions, which are referred to as the populati®n For a multi- the population” and the archivel are put in one pot. Then, al-
objective problem, aelection operatoselects in average theWays two solutions are taken from the pot without replacement.
less dominated solutions frolR and p|aces them in a parentThese two solutions participate in a tournament. The winner is
popu]a‘[ionpp of size L. A selection operator is described ”fhe solution with the lower fitneSS, which is Copied into the par-
Sectionll-C. ent populationP,. If the pot is empty, it gets refilled until the
Therecombination operatothooses randomly individuals fromdesired sizg of P, is reached. _
the parent populatioR, and recombines them into a child. WithWith the SPEA algorithm, a multi-objective evolutionary algo-
50% probability each, uniform recombination with two parentdthm can be written as:
or no recombination is chosen for all performed optimizations .
in this paper. Algorithm 1
For themutation operatorthe variables of a child are mutatedL. begin
by adding normally distributed random numbers with a standa2d Generate an initial populatioR of random individuals
deviationo of 0.1, relative to the interval size in which the vari-  and an empty archivd.
able is defined, and a mutation probability; of 20%. This 3. Evaluate the objectives of the individualsih
normally distributed mutation reflects the natural principle thdt while termination criterion is not fulfilledlo

small mutations occur more often than large ones. 5. Update archived: Add a copy of the current
A termination criterion for the evolution may be the maximal populationP to A and remove the dominated
allowed number of generations. from A. Limit the size ofA by clustering.
6. Fitness assignment: Assign fitness to the

C. Strength Pareto Evolutionary Algorithm individuals inP and A.

The Strength Pareto Evolutionary Algorithm (SPEA) of zit7-  Selection: Use tournament selection for selecting
zler and Thiele [4] is a well-established Pareto-optimization ~ the parent populatiof, from P U A.
algorithm. The advantages and drawbacks of the method h&ve Recombination: Generate a new populatioby
been extensively discussed’] [26]. SPEA describes a selec- ~ fecombination of the individuals if¥,.

tion operator, while the recombination and mutation operat8r Mutation: Mutate the individuals i®.

can be used from a single objective algorithm or e.g. from Sekd- P is the population of the next generation.
tion 11-B. 11. Evaluate the objectives of the individuals/h
The algorithm entails a fitness assignment and selection meché- €nd while

nism based on the concept of elitism. SPEA uses the nondok3- end

inated solutions for the fithess assignment. First, the fitness of
each nondominated solution is computed as the fraction of tHé M ULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS FOR
population, which it dominates. The fithess of a dominated in- NOISY APPLICATIONS

dividual is equal to one plus the fithess of each nhondominated~or optimization noisy applications like real-world problems
solution by which it is dominated. This fithess assignment guamnd experimental setups, modifications are needed to the stan-
antees that the fitness of nondominated solutions is always lowlard multi-objective evolutionary algorithms in order increase
than the fitness of the dominated. their robustness. This section starts with the definition of noise,
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and then different modifications for SPEA in order to be moie. Estimate Strength Pareto Evolutionary Algorithm

robust to noise are presented. The Estimate Strength Pareto Evolutionary Algorithm (ES-

PEA) of Teich PZ] modifies the SPEA algorithm in order to be
A. Definition of Noise in Applications more robust to noise by introducingoeobability of dominance

It is assumed that each objective valficannot be computed

In experiments and industrial configurations we can alwaggactly, but can be bounded withirpeoperty interval f =, V],

detect different results for repeated measurements of the sg@gre f- and fU are the lower and upper bound of the interval,
operating point. The differences are attributed to noise and ygspectively. In addition, the probability of the function value
observed factors in the setup. _ _ is assumed to be uniform within the interval. These assump-
Noise may occurs in various areas in the experiment: The S@ns lead to the new definition of a probability of dominance. If
ting of the operating conditions is within a limited precision. Ifyo solutions with overlapping property intervals are compared,
the realization, the operating condition may vary over time aRfle dominance has to be assigned by a probability. Teich com-
finally measurement errors occur. Itis up to the careful setup Byted the probability for minimizing an arbitrary numberrof

the experimenter to keep the noise within a limited range. Vgjectives. If two solutions andb with the property intervals
define this noise, which is present in all measured experiments; U] and[bL,bY],i = 1,...,m, respectively, are compared,
asexperimental noise It is often modeled by a normal distri-the probability that: dominates is given by

bution with defined mean and standard deviation, which define

a priori knowledge of the processes involved. Pla>=b) =

In addition, during an automated optimization cycle, an exper- . U
imental measurement may fail completely, produaindliers, 0 ' !f a;] > biLv

i.e. arbitrary nonphysical results. This occurs very rarely, but m 1 . Jifa; <o,

may have large impact on the automated process optimization ﬁ :;mm{wL bE) dy 3)

if not recognized by a supervisor or captured by some penalty  i=1 " min{al bV} 7b§]fy )

function. Outliers cannot be described by a statistical model +fy:max{a5,bg} gprdy  otherwise.

with given mean and deviation, but are best modeled by a prob-

ability of occurrence. Noise and outliers influence the multthree different cases can be distinguished from the equation.
objective optimization process by misleading the selection opbe solutiona does not dominatedi (P (a = b) = 0) if at least
eration. Hence unrealistic inferior solutions may dominate s@oe lower bound of the property intervai$ is larger than the
perior ones, thus delaying or completely misleading the convégrresponding the upper boubid. Second, the solutiomdom-

gence to an unrealistic Pareto front. inatesb (P(a > b) = 1), if the upper bound of all the property
interval ¥ are smaller than the lower bountis for all objec-

tives. In the third case; dominated with a certain probability
P(a = b) €]0,1], if for all objectivesi the lower bound:’ is

The presence of noise affects the fitness assigned to an iraller tharby” and at least one bound’ is larger tharb}
vidual. This may cause inferior solutions to occasionally win ifSSUMing that the values farandb, obtained by test functions
the selection process. Multi-objective evolutionary algorithm8 real applications, are in the middle of the property intervals
which implement elitism, would then select these solutions inf'd Poth intervals are of siz8, the interval bounds can be com-
the archive, thus misleading the entire optimization run by pd¥téd asy =a;—0, a7 =a;+0,bf =b;—dandb] =b;+9
ticipating in the selection process. More important, these <§d EQ.3 can be rewritten as
lutions may dominate other solutions in the archive and in the
worst case all other solutions in the archive are then removed?’(a = b) =
In order to avoid this, a first and simple modificationasfgi- 0 Lif a; > (b + 26),
nal SPEAof Zitzler and Thiele 6] is proposed. We definea - 1 Jif a; < (b — 26),
non-elitistic SPEA algorithm. In each generation, the archive H 715 (b; —a; +0)
is filled with the nondominated solutions of the current popula- *=! +8%Sgr(ai —b;) (a; — bi)2 . otherwise,
tion. Nondominated solutions from previous generations are not (4)
considered.

B. Non-Elitistic Strength Pareto Evolutionary Algorithm

where sgn is the signum function. With the probability of dom-
C. Statistical Strength Pareto Evolutionary Algorithm inance, solutions are nondominated with a certain probability,
making modifications of the archive update necessary. For each
Re-evaluating a solution several times and taking the mearsatutiona(:), the mean probability? of being dominated by a
a statistical estimate can decrease the level of noise in an obf@utiona () is computed by:
tive function. Implementing this approach into SPEA is simple
and is in the following referred to asatistical SPEAThe dis- R(i) = 1 Z P(a(j) = a(i)), (5)
advantage of this concept is the increased evaluation cost per N-1 je{PUA}:j#i '
solution. A lower limit for a statistical estimate is 7 evaluations. ' '
This number is used for the performance comparison in the netereN is the number of solutions of the unification of the pop-
section. ulation P and the archived.
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Here, a simplification of Teich’s update of the archive is usedut their objective values will change due to the noise in the
First, the current populatioR is added to the archivd. Then, re-evaluation.

all solutions withR(i) > « are removed from the archive. For3. Extended update of the archivethe SPEA algorithm up-
increasing the parameter, more solutions are added to thelates the archive always by adding the current population to
archive and the archive changes from the nondominated froi¢ archive and removing the dominated solutions. We extend
to a fuzzy nondominated front. This approach corresponds witle update tall solutions with non-expired lifetime. This hin-
the results of Arnold and Beyet]. They computed the progressders loss of information, since solutions which were removed by
rates of the £, \) evolution strategy for noisy single objectiveclustering or domination may reenter the archive.

problems and found that selecting a setuoparents out of\  With these features NT-SPEA uses the advantage of an archive
individuals leads to a higher convergence speed than just selestconvergence accelerator, but it reduces the risk induced by
ing the best individual. This observation is in contrast to thautliers.

noise-free case, where selecting the best solution leads to The dominance-dependent lifetime of an individual is assigned
highest convergence speed. TheX) strategy harmonizes with according to Fig1. The lifetime is measured in generations. For
the fuzzy nondominated front. dominating less than a fractien of the archived4, the maximal

For better comparison, we use the standard clustering algorithif@time s = k4. iS assigned to the individual. For dominat-

of SPEA. This is valid, since the core aspect of the ESPEAIisg more than a fraction, of A, the minimal lifetime ofx = 1

the concept of a dominance probability and not the clusteririg.assigned. In-between these two fractions, the lifetime is in-
The fitness is assigned in two steps. First, the fitrfesd the terpolated in discrete steps of one generation. The dominance-

archive solutions is computed as: dependent lifetime reduces the impact of a solution. An indi-
vidual that dominates a large fraction of the archive has a high
S(i) = ﬁ Z P(a(i) > a(5)) (6) chance of bei_ng.selected in the selection process, but is assigned
t1icron the shortest lifetime.

While the principle of limited lifetime is a key element to re-
The fitness of a solution in the population is equal to one plus thwve outliers, the re-evaluation allows good solutions to stay
fitness of the archive solutions, by which it is dominated withia the selection process by re-entering the archive. In the case
probability larger than a thresholdd ESPEA contains severalof an outlier, it is not likely, that the re-evaluated copy is again
strategy parameters, which are the thresholaind the size of an outlier with good objective values and hence it would not re-
the property intervals. A drawback is the necessary knowledgeter the archive. On the other hand, solutions with good design
of the interval sizes a priori of the optimization, such that theariable settings are likely be nondominated again, if the effect
intervals reflect the size of the noise in the objective functionsof noise is limited.

The extended update considers the nondominated solutions
E. Noise-tolerant Strength Pareto Evolutionary Algorithm  among all solutions with non-expired lifetime for the update of

We propose new modifications for SPEA and define this rthe archive. Since the assigned lifetime differs between the so-
sulting algorithm as the Noise-tolerant Strength Pareto Evol4fions, the set of nondominated solutions changes. Dominated
tionary Algorithm (NT-SPEA). In Sectiofil-B, we described a soluuons becomg nondomlna.ted, if the I}fetlmg of thelr'domma-
non-elitistic SPEA in order to avoid the risk of getting stuck i#0r expires. This is especially important if a noisy solution or an
outliers of the optimization process. One disadvantage of tifdtlier dominates a large fraction of the archive. The dominated
algorithm is that noise reduces the selection pressife $ug- solutlolns are thgn removed fr(_)m Fhe archive. Th.e noisy solgtlon
gesting that elitism, which is increasing the selection preSSlp(léoutller is assigned a short Ilfetlme. After the lifetime expires
by conserving nondominated solutions, should be used to cdfe removed nondominated solutions may be re-selected to the
pensate. To successfully use elitism in a noisy environment, f@fchive. With the original update of SPEA, their information is
ther modifications are needed to ensure fast convergence wiiil: After the update of the archive, the clustering algorithm

maintaining robustness to noise. of SPEA is used in order to get a limited number of uniformly
We propose three modifications for an extended multi-objectigéstributed archive solutions. Solutions of the population and
algorithm for noisy environments: archive participate in the selection process.

1. Domination dependent lifetimén contrast to elitism, which With these three modifications, the noise-tolerant SPEA is given

may preserve elite (hondominated) solutions for an infinite tim@,’:

a lifetime x is assigned to each individual. For evolution strateA-I thm 2
gies, algorithms with implemented lifetimeare referred to as gorithm
(u, &, \) algorithms PJ]. In this work this concept is extended tol. begin

multiple objectives such that the lifetime is variable and relat&d Generate an initial populatioR of random individuals

to the dominance of a solution. The lifetime is shortened, if the and an empty archivd.

solution dominates a major part of the archive. This limits tH& Define a maximal lifetime,,,,.. for individuals (in genera-
impact of a solution and safeguards against outliers. tions).

2. Re-evaluation of solutiondt is common to delete solutions4. Evaluate the objectives of the individualsih

with expired lifetime. We propose to re-evaluate archive s&- while termination criterion is not fulfilledio

lutions with expired lifetime and add them to the populatiors.  Assign lifetime: Compute for each individual ia

This enables good solutions to stay in the evolutionary process, the fraction of the archive that it dominates.
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The lifetimex of the individual is inverse
proportional to the fraction (see Fi).

7. UpdateA: Remove all solutions from and refill
it with all solutions, whose lifetime is not expired.
Then remove all dominated solutions.

Limit the size ofA by clustering.

8. Fitness assignment: Assign fitness to the
individuals in P and A.

9. Selection: Use tournament selection for selecting
the parent populatiof, from P U A.

10. Recombination: Generate a new populatidby
recombination of the individuals iR,.

11. Mutation: Mutate the individuals i .

12. Re-evaluation: Select the solutions frofn
with expiring lifetime and add a copy
for re-evaluation to the populatiaf

13. P isthe population of the next generation.

14. Evaluate the objectives of the individuals/fh

15. end while

16. end

K A
Kmax|
1 4
- >
C c 1 c
Fig. 1

DEPENDENCE OF THE LIFETIMEK OF AN INDIVIDUAL ON THE FRACTION ¢
OF THE ARCHIVE, WHICH IT DOMINATES. K DECREASES FROM A MAXIMAL
VALUE Kmaz, |F THE INDIVIDUAL DOMINATES MORE THAN THE FRACTION

c1 UNTIL IT REACHES A LIFETIME OF Kk = 1 AT c2 .

IV. PERFORMANCECOMPARISON

A. Generation of Test Functions

settooy = 0.8 and the random number is computed separately
for each objective and individual in the evolution.

A second type of noise was introduced in SectidA as the
random occurrence afutliers For the modeling in a test func-
tion, we define a probability, for the occurrence. Since we
consider the minimization of positive functions, reducing the
objective value has a stronger influence on the optimization pro-
cess by giving a solution a higher chance to survive. Therefore
we divide the objective value by a factor of 10, if an outlier oc-
curs. The large factor is chosen in order to produce a significant
change in the objective value. In mathematical form, we define
test function 3as:

7= {

where U (0, 1) is a uniform distribution of random numbers
within the intervall0, 1]. The probability of an outliner is small
and set tg, = 0.01.

For analyzing the scaling of the optimization algorithms over the
number of objectives, a three-objective test function is defined
astest function 4, which is a generalization of the sphere model
to multiple objectivesq]:

L if p < po, p € U(0,1)

Ci=1,2, (9
f otherwise ®)

FY=0—w)+ 3 4} i=1,23
j=1,j#i

(10)

with z1 ., € [-2.0;2]. Analog to the generation of test func-
tion 2 and 3, we add thexperimental noisandoutliersto test
function 4 and obtaitest function 5:

FO0 = 4 N(0,0%), i=1,2,3 (11)
andtest function 6:
L i p < po,pe U0, 1)
f(671) _ 1%4)1 ’ o ’ , 1 =1,2,3.
f; , otherwise
(12)

B. Performance Measures

A wide variety of noise-free test problems for multi-objective | order to compare different optimization algorithms on the
Optimization can be found in the literature. A number of rEView test functions, performance measures are needed. In multi-
articles have been listed by van Veldhuizen and Lamoitdnd  gpjective optimization, the definition of the quality of an opti-
Deb [5]. From Deb, a two-objective minimization problem foryization usually considers two different aspects. The quality

an arbitrary number of design variables ., is chosen and js dependent on the convergence speed of the optimization as
implemented as the first noise-frisst function 1.

dard deviatiorry. A noisy test function is generated by addi

£

o = [ f2(1)

[ Feema | o

.....

this noise to test function 1, leadingtiest function 2

fi(Z) _ fi(l) + N(O,UJZV)7 1=1,2, (8)

well as on the wide and uniform distribution of the solutions
along the Pareto front. This is different from single objective
optimization where convergence is sufficient, since there exists
a single global optimum.

In literature several performance measures are proposed. Van
Veldhuizen and Lamont’[/] present an overview with perfor-

ance measures in the design and objective space. Since the
Nest functions contain noise in their objective functions, measur-

ing the performance in objective space is difficult. Instead the
performance of the optimizer is measured in design space. Here,
the performance measufeis defined as the distance in design

whereN (0, 0%;) is a normally distributed random number withspace of evaluated solutions to the analytical Pareto front.
zero mean and standard deviatioq. The standard deviation is To evaluate this performance measure, 10 poitité), k =
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1,...,10 are distributed uniformly in design space along thiéhe end of the run. The optimization levels off, since a lim-
analytical Pareto front. To each poirt k) the closest of all so- ited population and archive size cannot exactly approximate the
lutionsz(j) of an optimization run is searched and the distan¢®areto front, thus the distance to the uniform distributed Pareto
is computed. The mean of the resulting 10 distances is takerpaits stagnates at a certain level.
performance measure: The performance of the different algorithms varies significantly.
0 The slowest convergence is observed for the statistical SPEA.
1 . ) , Evaluating a solution is 7 times more expensive than for the
P=1 > nin (l(7) — 2" (R)I) (13)  other algorithm, since the mean of 7 function evaluations is com-
k=1 puted (Seclll-C). Within the same number of computed solu-

For the test functions 1, 2 and 3 the analytical Pareto frontti@n the statistical SPEA proceeds just by of the number of

given byz; € [0.5;2] andzs,_,, = 0 [5]. The 10 uniformly POSSsible generations. -
distributed points are: The second slowest is the non-elitistic SPEA, due to the lack

of an archive for storing the nondominated solutions. ES-
/ _ L L / _ PEA shows better performance since the algorithm contains an
nk) =3 +5k=1), 22 (k) =0, (14) archive. In addition to the original SPEA, the archive can con-

2 6
The analytical Pareto front of test functions 4 is convex. Thus,tﬁm a frgcnon of Fjommated ;olutlons. Increasungand' the
?perty interval size raises this fraction and the selection pres-

: . Copr
can b_e cc_Jmpu_ted by performmg awelgh_ted_- sum aggregatprrg%re decreases. The best performance can be found for NT-
all objectives into one function. The derivation of this functio

with respect to all variables. leads ton equations. An elimi- 'SPEA and the original SPEA. In contrast to the ESPEA, for
: P S €35 - C which the archive can contain dominated solutions, the archive
nation of the_ weighting factors_from this set of equations Iea(dﬁ NT-SPEA and the original SPEA contain just nondominated
to the analytical Pareto front, given by solutions and thus a higher selection pressure. According to the
theoretical analysis of Arnold and Beyét [high selection pres-

sure is an advantage on noise-free and unimodal functions.

10 approximately uniform distributed points on the Pareto front'e NT-SPEA re-evaluates solutions, although this is not nec-

of test function 4, 5 and 6 are obtained by computing all comtissary for a noise-free test function. Since the fraction of re-
nations ofz’ , 5 € [0,1/3,2/3, 1], such that Eq15is fulfilled. evaluated solutions is small, however, this disadvantage is small

and the algorithm performs well even on noise-free test prob-
C. Performance Analysis of Original and Modified Algorithmdem.
Test function 2 includes normally distributed noise. The stan-

1 1

T+ a0+ a3 =1, T4,..n = 0, with T1,2,3 2> 0. (15)

In the following, the performance of the algorithms intro-
duced in Sectiofil are numerically analyzed on the 6 test func-
tions. For all optimization algorithms, a parent and child pop-
ulation of x = A = 60 is used, with an archive size of 20 for b
the two-objective test function 1, 2 and 3 and a size of 50 for the
three-objective test functions 4, 5 and 6.

The recombination and mutation operators of Sectigh are
used. The number of design variabless set ton = 7. This 1t
number is equal to the number of design variables of the burnera
optimization problem, which is addressed in the next section. 0.5}
Since evolutionary algorithms are stochastic algorithms, the re-
sult of 100 optimization runs is averaged for each test function.
Some of the analyzed algorithms contain heuristic parame-
ters. No heuristic parameters have to be set for SPEA, the
non-elitistic SPEA and the statistical SPEA. For NT-SPEA, 4| . . . .
the fractionsc; and ¢, are set to 0.1 and 0.3, respectively 0 2000 4000 6000 8000 10000
and a maximal lifetimex,,,, = 4 is used. A discus- N

sion of these settings is introduced in the next section. For
ESPEA, a performance analysis is made for all combina-
tions of &« € [0.008,0.01,0.015,0.02,0.04,0.07,0.1,0.2,0.5]
and a property interval size ofay — af) = 2§
[0,0.2,0.4,1.0,2.0,3.0,4.0]. In average, the best results of ES-
PEA on all test problems is obtained with= 0.04 andé = 0.2.
For the two-objective and noise-free test function 1, the results

are given in Fig.2. The performance measureis plotted in

a logarithmic scale over the number of evaluated solutivns dard deviation is set toy = 0.8 and is about the same magni-
The measuré reflects distance of the optimization to uniformlytude as the objective values of the analytical Pareto front, which
distributed points along the analytical Pareto front. In the begiare within 0.5 and 2. The convergence behavior of the differ-
ning of the optimization runp drops rapidly and levels off at ent algorithms is illustrated in Fig3. The convergence speed

0.3f

Fig. 2
CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON THE
NOISE-FREE TEST FUNCTIONL, COMPARED WITH THE ORIGINALSPEA
[crROSS sYMBOL, THE NON-ELITISTIC SPEA [PLUS SYMBOL], THE
STATISTICAL SPEA [DIAMOND] AND ESPEA [TRIANGLE].
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for the noisy test function is drastically reduced compared to  5gx
the noise-free test function 1 and the convergence levels off at a
higher value ofP. Excluding the statistical SPEA, the difference
in performance between the algorithms is smaller compared to
test function 1. Here, elitism in form of the original SPEA is
a disadvantage. The non-elitistic SPEA performs superior to 4}
the original SPEA. ESPEA converges about equally to the non-
elitistic SPEA. NT-SPEA converges best, due to the compromise
between using an archive and limiting the risk of getting stuck in
noisy solutions by a limited and dominance-dependent lifetime ¢ 3}
of solutions.

For the test function 3, an error probability pof = 1% per

01 3 . . . . 4
0 2000 4000 6000 8000 10000
N

Fig. 4
CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON TEST
FUNCTION 3 WITH OUTLIERS, COMPARED WITH THE ORIGINAL SPEA
[crROSS sYMBOU, THE NON-ELITISTIC SPEA [PLUS SYMBOL], THE

o
osh STATISTICAL SPEA [DIAMOND] AND ESPEA [TRIANGLE].
0.3}
ing a solution of the same quality as for the two-objective test
o1k functions 1, 2 and 3 in terms of the performance meagtre

0 2000 2000 5000 8000 10000 needs noticeable more iterations. The convergence tendencies
between the different algorithms are still comparable to the two-
objective test functions. Especially the relative convergence of
the different algorithms on the noise-free test function 4 @ig
is similar test function 1. SPEA and NT-SPEA perform demon-
stratively best on this function.
ORIGINAL SPEA [CROSS SYMBOL], THE NON-ELITISTIC SPEA [PLUS NT-SPEA, ESPEA and the non-elitistic SPEA show equal con-
SYMBOL], THE STATISTICAL SPEA PIAMOND] AND ESPEATRIANGLE]. |\ 0ance on the noisy test function 5, as illustrated in Eighe
differences are within the sampling tolerance. Slightly inferior
convergence is obtained with the original SPEA, demonstrating
objective is defined. For this two-objective problem, the prolgain the disadvantage of elitism in form of an archive of non-
ability that at least one objective contains an error is therefadleminated solutions with infinite lifetime.
about2%. In other words about one individual in the populationTest function 6 contains similar to test function 3, an error prob-
of 60 individuals contains an error and is thus an outlier. ability of 1% per objective. For the three-objective problem,
The results of the numerical analysis are given in BigAgain, the probability that an individual contains an error in at least on
NT-SPEA performs best and the non-elitistic SPEA perfornabjective is about 3%, thus about 2 of the 60 individuals in a
better than the original SPEA. Analysis of the convergence pépulation are outliers. The convergence of the different algo-
the original SPEA shows that the algorithm gets stuck in the ougthms is plotted in Fig.7. Similar to test function 3, NT-SPEA
liers. Outliers occur with a small probability and it is unlikelyperforms best, but here the original SPEA performs slightly su-
that they are removed from the archive. This explains why tiperior than the non-elitistic SPEA.
non-elitistic SPEA performs significantly better than the origi-
nal one. ESPEA shows no advantage for this test function, comSumming the results from the 6 test functions, we found that
pared to the original SPEA. elitism, implemented by the archive of the original SPEA is
The performance of the NT-SPEA is superior to all other alga- convergence accelerator for noise-free problems. For noisy
rithms. It avoids getting stuck in outliers. The shortest lifetimproblems it is a disadvantage and the non-elitistic SPEA per-
is assigned to outliers, which dominate a large part of the Parétoms in average better.
front. Since they are re-evaluated after their lifetime has expir&tie relative behavior of the different algorithms shows similar
and the probability that an error occurs again is low, they wilkndencies for 2 and 3 objectives. For 3 objectives, however, the
be removed from the archive. This allows solutions with largeifferences are smaller.
lifetime than the outliers to reenter the archive after the outlighe statistical SPEA includes the drawback of multiple func-
is removed. tion evaluation per solution and is except for test function 3 and
The test functions 4, 5 and 6 contain 3 objectives. Obtaii-slower than all other implementation in the considered num-

Fig. 3
CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON TEST
FUNCTION 2 WITH NORMALLY DISTRIBUTED NOISE, COMPARED WITH THE
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0.1t . . . . ] 0.1t . . , , ]
0 4000 8000 \ 12000 16000 20000 0 4000 8000 \ 12000 16000 20000
Fig. 5 Fig. 6
CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON THE CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON TEST
NOISE-FREE TEST FUNCTION4, COMPARED WITH THE ORIGINALSPEA FUNCTION 5 WITH NORMALLY DISTRIBUTED NOISE, COMPARED WITH THE
[cROSS SYMBOL, THE NON-ELITISTIC SPEA [PLUS SYMBOL], THE ORIGINAL SPEA [CROSS SYMBOL], THE NON-ELITISTIC SPEA [PLUS
STATISTICAL SPEA [DIAMOND] AND ESPEA [TRIANGLE]. SYMBOL], THE STATISTICAL SPEA DIAMOND] AND ESPEA [TRIANGLE].

D. Discussion of the Heuristic Parameters c; andk,,,q.

ber of function evaluation/, but will perform better for larger = The NT-SPEA algorithm, which is described in Seitl-E
valuesN as indicated by the largest slope infor larger N, includes the heuristic parametess co andk,,,.... Such param-
especially for test function 3 and 6. Again, the differences aeters are often set by experimental analysis of various settings
smaller for 3 objectives. on different test functions. We proposed to set the parameters
The settings of ESPEA fax andd are very problem dependentasc; = 0.1, ¢ = 0.3 andk,,.., = 4. The guiding concepts
and lead to large performance differences. The best convergeekind the settings are the following: The value for the maximal
for the noise-free test function 1 is obtained foe= 0.008 and lifetime k,,,,.. is a trade-off between noise-free and noisy test
0 = 0, a setting which leads to an algorithm and convergen@enctions. For noise-free functions, re-evaluating does not lead
similar to the original SPEA. For test function 2, increasintp to new information, since the re-evaluated solution equals the
0.04, but keeping a property interval= 0 leads to the best re- original. Thus, a larger maximal lifetime (and increased values
sult. Increasing introduces dominated solutions to the archivdor ¢; andc) is preferable avoiding the re-evaluation of solu-
A positive effect of a property interval > 0 for the noisy func- tions.
tion could not be found. Test function 3 contains outliers ard contrast, for noisy problems, it is reasonable to limit the life-
the ideal settings are = 0.2 andd = 1.5. These settings differ time of a solution in the archive, in order to avoid a misleading
tremendously from the previous two settings, especially in tlog the entire optimization process by noisy archive solutions.
property interval, but the performance on this function is stiflere, we store a solution in the archive for at most 4 genera-
poor. In addition, compared to the other algorithms, ESPEBNns. The time has to be short enough to avoid that the op-
performs better for 2 objectives than for 3 objectives. timization is misled by very noisy archive solutions (outliers).
In contrast, a marginal problem dependence is found the pardmaddition the time has to be larger than one generation, since
eterscy, co and k... of NT-SPEA. This is analyzed in moresolutions should be able to re-enter the archive after an outlier,
detail in the next section. which dominates these solutions, is removed after his shorter
Comparing the mean behavior of the algorithms over all tdffetime has expired. We assume that a solution, which domi-
functions, NT-SPEA performs clearly best. One possibility farates less than 10% of the archive ¢;), should be assigned
a mean performance analysis for all 6 test functions is obtainde maximal lifetimex = x,,,4., While a solution, which dom-
by summing the minimal value of P for each algorithm over aihates more than 30%-( c;) should be re-evaluated already in
test function. NT-SPEA clearly results in the smallest value withe next generation.
Zle P;(N = max = 1.75, where max= 10000 for test func- The following parameter analysis underlines that the parame-
tion 1, 2 and 3 and max 20000 for test function 4, 5 and ter settings are robust and their influence on the algorithm per-
6. NT-SPEA is followed by the original SPEA (1.97), ESPEAormance is minor over a large range. The performance anal-
(2.02) and the non-elitistic SPEA (2.17) and finally the statistysis of Sec. IV-C is repeated with all possible combinations
cal SPEA (3.21). of ¢1,c2 € [0.05,0.1,0.15,0.2,0.3,0.5] and k0 € [2,4, 8],
while the constraint; < c; is observed. For all combinations
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test result Heuristic Parameters
function cl Co kmax
1 min(P)=0.099 | 0.10| 0.20| 2
max(P)=0.113| 0.15| 0.30 8
2 min(P)=0.804 | 0.10| 0.20| 4
max(P)=0.835| 0.05| 0.10| 2
3 min(P)=0.346 | 0.10 | 0.20 4
max(P)=0.661| 0.20 | 0.50| 8
4 min(P)=0.174| 0.05| 0.15| 4
max(P)=0.218| 0.10 | 0.20| 2
5 min(P)=0.345| 0.10 | 0.20 4
max(P)=0.449| 0.10 | 0.15 2
6 min(P)=0.583 | 0.10| 0.30| 8
0.1t - - - - . max(P)=0.669| 0.10 | 0.15| 2
0 4000 8000 12000 16000 20000
N TABLE |
SENSITIVITY ANALYSIS OF NT-SPEAON THE HEURISTIC PARAMETERSC,
Fig. 7 ¢ AND kmaz. NT-SPEASHOWS SMALL PERFORMANCE VARIATION OVER
CONVERGENCE OF THENT-SPEA [CIRCULAR SYMBOL] ON TEST A WIDE RANGE OF PARAMETER SETTINGS

FUNCTION 6 WITH OUTLIERS, COMPARED WITH THE ORIGINALSPEA
[cROSS SYMBOL, THE NON-ELITISTIC SPEA [PLUS SYMBOL], THE
STATISTICAL SPEA [DIAMOND] AND ESPEA [TRIANGLE].
over a large range has minor effect on the performance. Beneath
the better performance, this is a major advantage to the ESPEA
algorithm, which is very sensitive on the settings of the heuristic

parameters.
and all test functions, the performance measbre&vas com-
puted as the mean of 100 independent runs. Tiable contains
the obtained performance measures(fipand maxP) for the V. OPTIMIZATION OF A BURNER IN A GAS TURBINE
best and worst parameter combination, respectively and the re- COMBUSTION TESTRIG

ferring heuristic parameters for all test functions. ] .
For the noise-free test functions 1 and 4, all settings perform@d Atmospheric combustor test-rig
almost identical and all settings performed better than the nongas turbines operate by compressing air in a compressor,
elitistic SPEA, the statistical SPEA and ESPEA. Re-evaluatigfhich then reacts with fuel in a combustion chamber and is fi-
is not necessary, since the original and re-evaluated solution gk@y expanded in a turbine. The difference in power between
identical. Thus re-evaluating many solutions will decrease the turbine output and the compressor input is the net power
performance. Beneath influencing the number of re-evalualgdyenerate electricity. The combustion chambers of Alstom’s
solutions, the maximal lifetime ., has a second effect. Sincaarger gas turbines, e.g. GT24 and GT26, are annular around the
the archive is updated with all solutions with non-expired lifey,rhine axis with a set of burners aligned in the annulus.
time, solutions may re-enter the archive after they were removgf consider the optimization of a single burner in an atmo-
by clustering. This seems to have a negative effect on the noiggneric test-rig as illustrated in Fig. Preheated air enters the
free function, since one setup wikly,,, = 8 performed worst. test.rig from the plenum chamber and is mixed with fuel in the
Differences in the performance are also small for the test fungy.emission burner by swirl. The burner stabilizes the com-
tions 2 and 5, which contain experimental noise. In generglstion flame in a predefined combustion area by a controlled
on these two test functions the differences between the differgitex breakdown. The fuel is natural gas or oil and is injected
implementations of SPEA are the smallest. through injection holes, which are uniformly distributed along
Test function 3 and 6 contain a small percentage of outliers. Thig purner. A detailed description is given by Jansehral.
seems to have a major effect on the performance of the differ
ent algorithms. Since SPEA performs poor on this problem, tEyﬁrious investigations have been made in order to reduce pulsa-
setting of the NT-SPEA algorithm, which is closest to SPEAjons and emissions of the burner by active and passive control
performs worst in this comparison. Due to the large maxima{echanisms. Pascherettal. [19] reduced the pulsations in the
lifetime k... = 8 together with the large values = 0.2, experimental test-rig by an acoustic actuation in a closed con-
¢z = 0.5, the algorithm is in danger of getting stuck in outliergro| |oop. We consider a passive control mechanism, choosing
with a long maximal lifetime, thus misleading the algorithm. - the fuel flow rates through the injection holes of the burner as
design variables of the setup, due to the low modification cost
Summarizing the results of for all test functions, the heuristfor the gas turbine compared to an active control system. 8 con-
parameters;, c; andk,,q, can be set general enough in ordetinuous valved’; ;—; . s are used to control the fuel rates. Each
to perform well on noise-free and noisy problems, as well aalveV; controls the mass flow:; through a set of adjacent in-
problems with a rare occurrence of outliers. Varying the settingtion holes along the burner axis.
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ENCODING OF THE FUEL FLOWrih; THROUGH THE8 VALVES V; OF THE
TESTRIG. SINCE THE TOTAL MASS FLOW1h¢ IS FIXED, THE 8 FUEL FLOWS
EE EE EE CAN BE ENCODED BY 7 VIRTUAL VALVES Vj’.
(AR\VARIVARNIVA
Vil Vgl Vgl vy
Fuel Control . ) .

-« \—J — J - J given standard burner configuration and between the best and

Plenum Chamber Burner Aircooled worst _dGSIQnS' . L. . .
Combustion Chamber The given standard burner configuration is marked in the figure
Fig. 8 and represents a setting with equal mass flow through all valves.

Some solutions found by the optimization process dominate the
standard configuration, i.e. are superior in both objectives. Thus
the optimization run is successful, delivering improved solutions
for both objectives. The occurrence of a wide nondominated
front underlines the conflict in minimizing both objectives and
just (Pareto) compromise solutions can be found.
In the figure, the objectives are noisy. Thus, drawing just the
nondominated front and picking one solution from the front is
risky from the point of view, that an inferior solution is picked,
In order to keep the operating conditions constant, the total fygich, is nondominated due to the noise in its objective values.
mass flowri, = ;_, 7, is fixed, reducing the number of freepjcking an area close to the nondominated front increases the
design variables for the optimization from 8 to 7. Figshows  ¢qnfigence in the front, especially if the valve settings are quite
the implemented encoding for the 8 valigsy 7 virtual valves  gimjjar for the solutions in the area. A second reason for not
Vi j=1,..,7- The totalmass flow is split by a first virtual valV§  grawing just the nondominated front is the possible shift of the
into two flows, with each of the flows feeding either the first ofont towards smaller objective values. The objectives contain
second half of the real valves. The next layer consists of two Vifpise and the selected nondominated solutions may improve due
tual valvesV; andVy and splits the two flow into four. Finally, 14 nojse leading to smaller objective values. In addition we are
the virtual valves/j, V5, V5, andV7 feed the real valve®; and  mqre interested in the valve settings than in the exact objective
determine the fuel flowsz;. While the evolutionary algorithm \5)yes; since the valve settings indicate the included physics.
operates with the seven virtual valves, the real valves are usegtiik greas along the nondominated front are picked and marked
the test-rig. A detailed description about the experimental setbtp boxes. For the solutions within the boxes, the valve set-
and the fuel control can be found if][ In the following, we tings are printed in Fig1l Fig. 8 shows the arrangement of
refer to the real valveg; and the real fuel flowsn;. the valves in the combustor. For better illustration, the settings
The NO, emissions and the pulsation of the burner are thge connected with a line and the dash-dotted line shows the
two objectives to be minimized in a Pareto optimization setugiandard burner configuration with equal mass flow through all
Pulsations are thermo-acoustic combustion instabilities, involysyes. Within each box, the settings of the different solutions
ing feedback cycles between pressure, velocity and heat relegsei, geed quite similar.
fluctuations. The NQemissions occur at high combustion temggy 1 and 5 are at the extreme ends of the Pareto front. Box
perature, which arise in centers of rich combustion due to inhpyepresents Pareto solutions with high Né@nissions, but low
mogeneous mixing of fuel and air. No constraints are imposgfisation. The corresponding valve settings show an increased
on the objective functions. fuel mass flow at valves 1, 2 and 4, while the flow at valves 5
and 6 is reduced. The fundamental mechanism corresponding
to these settings is the fact that the increased mass flow through
An optimization run is performed using NT-SPEA with a popvalves 1 and 2 leads to rich combustion in the center of the
ulation and archive size of 15 and evaluating a total of 326 difurner. The rich combustion zone stabilizes the combustion like
ferent burner settings within one working-day. All solutions ara pilot flame, but increases the l)N@missions. The lean zones
plotted in Fig.10in order to show the possible decrease in,NOare close to the middle of the burner at valves 5 and 6.
emissions and pulsations by the optimization compared to fBex 5 contains solutions with minimal NGemissions, but high

SKETCH OF THE ATMOSPHERIC COMBUSTION TESRIG WITH A
LOW-EMISSION SWIRL STABILIZED BURNER THE FUEL FLOW THROUGH
THE INJECTION HOLES ARE THE DESIGN VARIABLES OF THE SETUPTHE

NO, EMISSIONS AND THE PULSATION OF THE BURNER ARE THE

OBJECTIVES TO BE MINIMIZED.

B. Optimization results
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Fig. 10 MASS FLOWr THROUGH THE VALVESV; ;—1,... s FOR SOLUTIONS ALONG

THE NONDOMINATED FRONT, MARKED BY 5 BOXES OFFIG. 10.
ALL MEASURED SOLUTIONS OF THE BURNER OPTIMIZATION RUNPLUS

SYMBOL] AND GIVEN STANDARD BURNER CONFIGURATION[CIRCULAR
SYMBOL]. 5 BOXES MARK DIFFERENT AREAS ALONG THE NONDOMINATED
FRONT.
jectives. Therefore, changing the fuel injection in any of the
valves improves always one objective while the other is wors-
ened. Large coefficients indicate a strong correlation and occur

pulsation. The mass flow through each valve is about equftween valves 1, 2, 5, 6 and the two objective functions. For
generating no rich combustion zones. Compared to the stand2f§€2sing the mass flow through valve 1 and 2, the emissions
burner configuration, the small mass flow increase at valvedi§rease while the pulsation decreases. For valves 5 and 6, this

and 8 and decrease at 3 and 4 leads to lower, N@issions, 'S Vice versa. _
while the pulsation is unchanged. It has to be considered that these observations hold for the solu-

tions obtained through an optimization process. The distribution

of the solutions in the scatterplot in Fig2 illustrates that they

do not cover the whole design space. Hence, these solutions are

not uniformly distributed in the design space and may not be
One of the interesting features of the resulting nondominatgghresentative.

frontis the almost linear change in valve settings along the front.

At Box 1, five valves have either strongly increased or decreaged Noise analysis

mass flow and their amplitude is constantly decreasing from Bo . . -
1 to 5 until it reaches an almost equal mass flow for all valve_sXThe NT-SPEA algorithm that is used for the burner optimiza-

in Box 5. This indicates simple dependencies of the valves WHHR”. cgntgins the'special feature of re-evaluating solutipns after
the objective functions. Figl2 contains a scatterplot for thee’ lifetime expires. Among the 326 evaluated solutions, 40

valve settings and objective functions of all measured solutio (fafre re—evglul\?tec:)a;t least oncel t;y the og?rr]nlzer. Colmpiagng the
A scatterplot contains all possible 2D subspace plots for all de- erence in NQ between a solution and the re-evaluated one,

sign variables and objectives. The plot in column 9 and row iQe maximal difference is about 8% of the objective range and
X oo i X

contains the objective space with the nondominated front. mdRE me(?pr d|fferer}ce1§0/2 5. szg/the pulsatyor:, th_lc_ahmaxtlr:n al an d

interesting are the two last rows, containing the correlation an ditrerence 1S oan 0, FéSpectively. Thus, the noise

the valves with the objective functions. For example, the ho“ltt_heb thIsat'OtT] IS more C:‘I'[ICZJ to the d(_)ﬁpt|m|zat|_orc11._ Treﬂl]arge
zontal and vertical axis of the plot in row 9, column 1 represe 1o between the maximal and mean difierence indicate the rare

valve 1 and the NQ emission, respectively. Strong correlatioPecurrence of outliers and the presence of noise in the objective

is expressed by narrow stripes undet5° to the axis. An axi- measurement of all solutions.
ally symmetrical area of solutions implies no correlation. Strong
correlation can be observed between valves 1, 2, 5, 6 and the
two-objective functions. A novel noise-tolerant multi-objective evolutionary algorithm
The correlation coefficientsy, o, andry,. puisation fOr the (NT-SPEA) is introduced with increased robustness for applica-
design variables and objectives are given in Fif3. They tions prone to noise and outliers. The algorithm introduces the
complement the results from the scatterplot. For all valvesoncepts of domination-dependent lifetime, the re-evaluation of
the correlation coefficients have opposite signs for the two olendominated solutions and an extended update mechanism for

C. Statistical analysis

VI. CONCLUSIONS
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of nondominated solutions and an extended update. For the
noise-free test problems, NT-SPEA shows similar convergence
to the original SPEA, which converges best. This is a major ad-
vantage compared to a non-elitistic and a statistical implemen-
tation of SPEA and the ESPEA of Teich.
While NT-SPEA performs equal or superior to the best of the
other implementations for problems with normally distributed
noise, it clearly outperforms all algorithms for problems with
outliers. The discussion of the heuristic parameters shows that
they have minor influence on the performance over a wide pa-
rameter range. A further advantage, which is not discussed in
the paper, is that NT-SPEA can handle moving optima over
time or changing environmental conditions. The algorithm re-
evaluates solutions after a limited lifetime, therefore adapts the
objective values according to the changing values.

The algorithm is successfully applied to an automated optimiza-
%pulsation tion of gas turbine burners. The process produces in an auto-
mated fashion an experimental nondominated front for minimiz-

Fig. 12 ing pulsation and emissions of an industrial burner. Automated

SCATTERPLOT REPRESENTING ALL POSSIBLE COMBINATIONS ORD PLOTS ~ Optimization can be considered a supporting tool in the design
FOR THE VALVES V; i—1.... s AND THE OBJECTIVESNO,, AND PULSATION. ~ Process, complementing physical understanding as well as trial-
and-error design. Future work will focus on using larger num-
bers of valves, leading to more flexibility in the fuel distribution
and allowing axially asymmetric distribution. In addition, bi-
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1 - - - - - - - nary valves (on/off) will be used, reducing the modification cost
o5 ] for adapting a burner in a real machine according to the opti-
g . ] mization results. The present algorithm is under modification to
5 L1 . X .
| | account for these discrete configurations.
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