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ABSTRACT 
 
Several recent proposed techniques for multiobjective 
optimisation use the dominance relation to establish 
preference among solutions. In this paper, the Pareto 
archived evolutionary strategy and a population-based 
annealing algorithm are applied to test instances of a 
highly constrained combinatorial optimisation problem: 
academic space allocation. It is shown that the 
performance of both algorithms is improved by using a 
relaxed dominance relation and it appears that there is a 
correlation between this and the existence of constraints in 
the problem. This paper also discusses why more flexible 
selection methods may produce better results than the 
dominance relation in some algorithms and some problem 
domains. 

 

1. INTRODUCTION 
 
In Pareto optimisation the aim is to find a set of non-
dominated solutions that represent a tradeoff among the 
various conflicting criteria. A number of metaheuristic 
techniques for Pareto optimisation have been proposed 
over the years, several of them are extensions of single-
objective and single-solution techniques [3,6,8,15]. 
Recently, the interest for developing multiobjective 
evolutionary algorithms has increased dramatically [5]. 
Research in the area has flourished and the number of 
publications in journals, proceedings (including special 
sessions and workshops) particularly during the last three 
years, reflects the growing interest on investigating 
techniques for effective evolutionary Pareto optimisation, 
see for example [17]. In addition to developing new 
approaches, researchers have also reported on extensive 
experiments for assessing and comparing the performance 
of Pareto optimisation algorithms [16]. The suitability of 
evolutionary algorithms for Pareto optimisation has been 
examined by applying multiobjective evolutionary 
algorithms to a range of benchmark problems. This has 
triggered the trend for extending many single-objective 

methods to create multiobjective variants. On building a 
much-needed theoretical basis for Pareto optimisation, 
metrics for assessing the quality of the obtained fronts 
have also been put forward [12]. It has been noted that 
since multiobjective evolutionary algorithms have proven 
to be very successful, it is now interesting to test them in 
real-world applications including domains such as 
scheduling and related problems [see 5, page 418]. 

In this paper we report on our experiments when 
applying the Pareto archived evolutionary strategy and a 
population-based annealing algorithm to instances of the 
space allocation problem. This is a highly constrained 
combinatorial optimisation problem that can be formulated 
as a variant of a knapsack problem. These two algorithms 
are alike in the sense that the evolution of solutions is 
based solely on self-adaptation with no recombination. 
The performance of both methods is improved 
considerably when the dominance relation that measures 
the attractiveness of candidate solutions is relaxed as 
proposed by Kokolo et.al. [14]. Moreover, it appears to be 
a correlation between the above and the existence of 
constraints in the problem. 

Section 2 describes the problem domain and test 
instances used in our experiments. The two algorithms 
investigated are outlined in section 3. Section 4 describes 
the relaxed dominance relation and its use in this paper. 
Section 5 contains details of our experiments and results 
while final remarks are presented in section 6. 

2. ACADEMIC SPACE ALLOCATION 

2.1. Problem Formulation 

The space allocation problem in academic institutions 
refers to the distribution of office space among various 
resources (staff, postgraduate students, computer rooms, 
lecture rooms, etc.). Each resource demands a certain 
amount of space and each room has a limited capacity. 
There are additional requirements and constraints that 
restrict the feasibility of solutions. For example, some 
resources can only be allocated to certain rooms (eg. 



lecture rooms where aids are available), or resources may 
need to be grouped (eg. members of a research group), or 
resources may need to be adjacent to other resources (eg. 
secretaries to senior members of staff). Some of those 
constraints are hard (must be satisfied) while others are 
soft (desirable to satisfy). The problem is to allocate all 
resources into the available rooms satisfying all hard 
constraints and as many soft constraints as possible. In this 
problem the room space can be wasted or overused but 
this misuse is penalised. Two objectives can be identified: 
 

1) minimise the misuse of room space and, 
2) minimise the violation of soft constraints. 

In the real instances of this problem more objectives 
may exist, for example maximising the functionality of the 
academic institution, minimising the operation costs, etc. 
Moreover, constraints can be treated as different 
objectives since they vary according to the institution and 
sometimes are conflicting. The problem formulation 
employs the following notation: 

m = number of available rooms. 
n = number of resources to allocate. 
h = number of hard constraints of the form Z = true. 
s = number of soft constraints of the form Z = true. 
ci  = capacity of the room i,  i = 1,2,…,m. 
wj = size of resource j,  j = 1,2,…,n. 
xij = 1 if resource j is assigned to room i, 0 otherwise. 
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SCPr expresses the penalty due to the violation of the rth 
soft constraint. The constraints types (soft and hard) and 
associated penalties are given in the next section. Note that 
some information regarding proximity between rooms is 
also needed. In this paper, this is implemented by 
maintaining (for each room) a list containing those rooms 
that are adjacent or near to each room. 

The problem described above can be seen as a variant 
of the knapsack problem. Specifically, this is a constrained 
variant of the bin-packing problem with varying bin 
capacities. Other constrained variants of knapsack type 
problems have also been investigated [4,9].  

2.2. Test Instances 

Test instances of the problem described above have been 
prepared from real data supplied by three British 
universities. The three test problems used in this paper are 
summarised in table 1 below. 
 

 nott1 nott2 trent 
n , m 55 , 55 115 ,115 151 ,73 

constraints hard soft hard soft hard soft 
allocated 3 7 12 25 6 13 
adjacent 5 4 9 14 -- -- 
together -- -- -- -- 21 15 

not sharing -- 10 10 21 42 103 
grouped 1 5 2 5 4 1 

total 9 26 33 65 73 132 
 

Constraint Penalty Description 
allocated 20 resource allocated in a specific room 
adjacent 10 resource adjacent to other resource 
together 10 resources allocated in same room  

not sharing 50 resource not to share a room 
grouped 5 resources allocated close each other 

 
Table 1. Characteristics of the test problems used and description 
of the types of constraints considered in this paper. 

3. THE ALGORITHMS 

The two algorithms used in the experiments in this paper 
evolve solutions based on self-adaptation, i.e. the current 
solution is modified by mutation or local search and no 
recombination is used. In that sense, algorithms like these 
are often referred to as trajectory-based methods because 
the candidate solution is somehow similar to the current 
one. A description of each algorithm and the justification 
for using them in this paper are presented next. 

3.1. The Pareto Archived Evolutionary Strategy 

Several variants of the Pareto Archived Evolutionary 
Strategy have been proposed but this paper refers to the 
(1+1)-Pareto archived evolutionary strategy [11]. This 
algorithm starts with one randomly initialised solution and 
in each iteration, one candidate solution is generated by 
means of mutations. An external archive (of limited size) 
is maintained to collect non-dominated solutions. An 
adaptive grid that divides the objective space is used to 
evaluate how crowded the region in which each solution 
lies is. The candidate solution is discarded if it is 
dominated by the current solution or any other solution in 
the external archive. The candidate solution is added to the 
archive and becomes the current solution if it dominates 
the current solution. If none of them dominates the other, 
the decision on which solution becomes the current 
solution and whether to add or not the candidate solution 
to the archive is done based on the crowding mechanism. 



3.2. Population-Based Annealing Algorithm 

The second algorithm is based on the simulated annealing 
metaheuristic [1]. This algorithm is a population-based 
annealing method using a common cooling schedule for 
the whole population. The pseudocode is shown in Fig. 1. 
Each individual is modified by a local search heuristic HLS 
that employs three neighbourhood structures and keeps a 
list of attractive moves and a list of tabu moves. These two 
lists of moves are shared within the population. Previous 
experiments with the space allocation problem showed 
that the efficiency of the local search heuristic is improved 
when using these lists. An archive is used to maintain a 
population of non-dominated solutions PND. 
 
Step 1. Randomly initialise the current population PC. 
Step 2. Copy PC to the population of best solutions PB. 
Step 3. Initialise PND with the non-dominated solutions from PB. 
Step 4. Set the acceptance probability, p ← 0, the cooling factor 

0<λ<1, the decrement step η (a number of iterations), and 
the re-heating step ϕ (a number of iterations). 

Step 5. For η iterations, apply the local search heuristic HLS to each 
individual in PC. 

Step 6. Set γ ← 1.  
Step 7. For each solution XC in PC an its corresponding XB in PB. 

Step 7.1. Generate a candidate solution XC’ using HLS. 
Step 7.2. If XC’ dominates XC, then XC ← XC’. 

a) If XC’ dominates XB, then XB ← XC’. 
Step 7.3. If XC  is non-dominated with respect to XC’. 

a) if p > 0 and a random generated number in the 
normal distribution [0,1] is smaller than p, then 
make XC ← XC’. 
b) if p = 0, increment re-heat iterations and if (re-
heat iterations mod  ϕ) = zero, p← 1. 

Step 7.4. If (iterations mod η) = 0, then p ← λ⋅p. 
Step 7.5. If XC’ is non-dominated with respect to PND then 
update PND. 

Step 8. Go to Step 9 if no individual has achieved further 
improvement for η iterations, otherwise go to Step 7. 

Step 9. Apply the mutation operator to each individual in PC. 
Step 10. If stopping criterion has not been satisfied, go to Step 7. 
 

Figure 1. The population-based annealing algorithm. 

3.3. Implementation 

In this paper each solution for the problem formulated in 
section 2.1 is represented by a vector x = [π1,π2,…,πn] 
where πn∈{1,2,…,m}. The infeasibility of solutions in this 
problem was tackled as follows. In the (1+1)-Pareto 
archived evolutionary strategy, when a mutated solution is 
infeasible successive mutations are tried until a feasible 
solution is generated. This is a very fast operation and it 
worked well in our experiments. The local search heuristic 
HLS used in the population-based annealing algorithm also 
searches until a feasible solution is found. Again, previous 
work in this problem showed that using various 
neighbourhood structures works well [2]. Parameters for 

the population-based annealing algorithm were set as 
follows: |PC| = |PB|= 20, λ = 0.8, η = n, ϕ = 10n. The 
number of non-dominated solutions in the external archive 
was limited to 20 in both algorithms. 

3.4. Justification 

The hybrid metaheuristic described in section 3.2 has been 
developed as a result of the previous research carried out 
by the authors on the application of metaheuristics to the 
space allocation problem [2]. Subsequent experiments 
showed that the approach was capable of producing good 
non-dominated fronts in this problem. An interesting 
observation was that better non-dominated fronts were 
produced when the relaxed concept of dominance was 
used instead of the dominance relation  (see section 4). For 
investigating whether this behaviour was due to the 
algorithm or the problem domain, a well-studied approach 
had to be implemented. 

The (1+1)-Pareto archived evolutionary strategy is a 
recent technique that is simple to implement, it has been 
tested across a range of problems and it is considered to be 
competitive with other modern multiobjective evolutionary 
algorithms [10]. Multiobjective genetic algorithms have 
not yet been tested in this problem mainly because 
previous experience showed that recombination of 
solutions in this highly constrained problem almost always 
produces infeasible solutions. Of course that only means 
that good crossover operators or repairing heuristics would 
need to be designed and therefore the applicability of such 
multiobjective evolutionary algorithms to this problem 
could be considered in the future. 

4. DOMINANCE AND αααα-DOMINANCE 

Given the current and the candidate solution(s), any 
algorithm needs a criterion to assign solution fitness and 
decide which solution(s) will survive and which ones are 
to be replaced. Combining all the objectives into a single 
scalar value is an option for assigning fitness. There are 
several ways to do this, for example linear weighted 
aggregation and Tchebycheff functions [5]. 

When using the dominance relation, a solution x’ is 
preferred over solution x only if x’ is at least as good as x 
in all the objectives and better in at least one of them 
(x � x’). A relaxed form of the dominance relation (called 
α-dominance) that establishes lower and upper bounds of 
tradeoffs between the objectives was proposed by Kokolo 
et.al. [14]. The idea behind α-dominance is that a small 
detriment in one or perhaps several of the objectives is 
permitted if an attractive improvement in the other 
objective(s) is achieved. Note that in some sense, this is 
similar to establishing preferences among the objectives 
using weights in an aggregating function (see below).  



The common philosophy between α-domination and a 
simple aggregation of objectives is to allow worsening 
objective(s) in an attempt to widen the search by accepting 
not only dominating solutions. This is illustrated in Fig. 2 
for a two-objective minimisation problem. Using an 
aggregated value draws a line that splits the objective 
space in two regions. Above the line lie the solutions 
considered worse than x and those solutions that are 
considered to be better are below the line. A line at 45 
degrees of inclination is used here for simplicity but 
different slopes will reflect different preferences. Solutions 
in B dominate solution x. Solutions in B, C and D α-
dominate solution x. Then in region C for example, βuv 
represents the maximum detriment permitted in objective 
u given the minimum improvement γvu in objective v. In 
region D, βvu and γuv are defined in a similar way.  

 

Fig. 2. Aggregating function, dominance and α-dominance. 
 
The different perspectives of “seeing” candidate solutions 
affects the way in which surviving solutions are selected. 
An algorithm may find it difficult to discover feasible 
solutions that dominate the current one(s). This is 
particularly true in highly constrained combinatorial 
optimisation problems like the one presented here. Then 
by accepting α-dominating solutions, it is possible to 
provide the algorithm with a wider “view” of the potential 
ways to approach the Pareto optimal front.  

In α-dominance, given an optimisation problem with k 
objectives, αuv represents the relation between βvu and γuv 
for each pair of objectives u ≠ v. For example, with respect 
to Fig. 2 above, αuv expresses the relation between the 
detriment permitted in the objective v and the 
improvement obtained in the objective u. For the formal 
definition  of α-dominance see [14]. 

5. EXPERIMENTS AND RESULTS 

5.1. Experiments 

Ten repetitions of the experiments as described next were 
carried out. Feasible solutions were generated and used as 

the initial solutions for both algorithms. Each algorithm 
was executed twice, one run using the standard dominance 
and one run using the α-dominance. The value αuv = ½ 
was used for u ≠ v. The stopping criterion used was a 
maximum of 10000 candidate solutions visited. Both the 
offline and online performances of the algorithms were 
compared. The offline non-dominated sets found by each 
algorithm when using the α-dominance and standard 
dominance were collected after 10 repetitions of the 
above. The online non-dominated sets obtained in each 
pair of runs with the α-dominance and standard dominance 
were compared using the following coverage metric 
introduced by Zitzler et.al. [16]: 

T
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where P and T are non-dominated sets. C(P,T) = 1 means 
that all solutions in T are dominated by at least one 
solution in P and C(P,T) = 0 means that no solution in T is 
dominated by a solution in P. Then for each algorithm 10 
values of C(dominance,α-dominance) and 10 values of 
C(α-dominance, dominance) were calculated. These 
metrics are denoted C(d,α-d) and C(α-d,d) respectively in 
tables 2 and 3 below. 

5.2. Results 

For reasons of space only the results for the test instance 
trent are presented here but similar observations were 
made for the other instances. The offline non-dominated 
sets found by the algorithms are shown in Fig.3. Table 2 
shows the results obtained with respect to the online 
performance. 
 
  
 
 
 
 
 
 
 
 
Fig. 3. For test problem trent, on the left, offline performance of 
(1+1)-Pareto archived evolutionary strategy and on the right, 
offline performance of the population-based annealing 
algorithm. 
 
Observe that the sets of non-dominated solutions obtained 
when using the relaxed dominance contain solutions that 
in general cover the non-dominated sets produced when 
using the standard dominance relation. The same 
experiments described above were carried out considering 
only the soft constraints in the test problems. Of course 
this eases the restrictions for solutions to be feasible. 
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Results of the online performance of both algorithms on 
the trent problem are presented in table 3. Note that the α-
dominance does not appear to improve the performance of 
the algorithms when the hard constraints are not taken into 
account. 
 

 (1+1)-PAES PBAA 
 C(d,α-d) C(α-d,d) C(d,α-d) C(α-d,d) 

minimum 0 0.82 0 1 
average 0.05 0.96 0.01 1 

maximum 0.22 1 0.17 1 

Table 2. Online performance of the algorithms on problem trent. 

 
 (1+1)-PAES PBAA 
 C(d,α-d) C(α-d,d) C(d,α-d) C(α-d,d) 

minimum 0.43 0.21 0.36 0.31 
average 0.65 0.24 0.47 0.37 

maximum 0.66 0.33 0.53 0.44 

Table 3. Online performance of the algorithms when only the 
soft constraints are considered on problem trent. 

6. FINAL REMARKS 

The use of the dominance relation to establish preference 
of solutions in multiobjective optimisation deserves 
attention. According to Knowles et.al., the dominance 
relation can be beneficial even in single objective 
optimisation problems [13]. On the other hand, 
Jaszkiewicz claims that Pareto ranking is not well suited if 
local search is used [7, page 54]. Kokolo et.al. identified a 
class of problems that are likely to present serious 
difficulties to techniques based on dominance selection 
[14]. The two algorithms implemented here produced 
better non-dominated fronts when the relaxed dominance 
was used and this appears to be a consequence of the 
existence of hard constraints in the problem. Certainly, 
non-dominated solutions are sought in Pareto optimisation, 
but under what circumstances (problem domain and 
algorithms) should the dominance relation be used to 
identify improvement during the search? When is it more 
adequate to use the combination of objectives or perhaps a 
relaxed definition of dominance? The results presented in 
this paper suggest that it is worthwhile to consider 
alternative ways for assessing solutions during the search 
in Pareto optimisation. 
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