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ABSTRACT 
 

 The purpose of this paper is to present an approach to optimization in which every target 
is considered as a separate objective to be optimized. For an efficient search through the 
solution space we use a multiobjective genetic algorithm which allows us to identify a set of 
Pareto optimal solutions providing the decision maker with the complete spectrum of optimal 
solutions with respect to the various targets.  An application is illustrated regarding the 
choice of the time intervals for the periodic testing of the components of the High Pressure 
Injection System (HPIS) of a Pressurized Water Reactor (PWR).  
 

1. INTRODUCTION 
 

When attempting to optimize the design of engineered systems, the analyst is 
frequently faced with the demand of achieving several targets (e.g. low costs, high revenues, 
high reliability, low accident risks), some of which may very well be in conflict. At the same 
time, several requirements (e.g. maximum allowable weight, volume etc.) should also be 
satisfied. This kind of problem is usually tackled by focusing the optimization on a single 
objective which may be a weighed combination of some of the targets of the design problem 
and imposing some constraints to satisfy the other targets and requirements [1-2]. This 
approach, however, introduces a strong arbitrariness in the definition of the weights and 
constraints levels and a criticizable  homogenization of physically different targets, usually all 
translated in monetary terms. 

The complexity of industrial systems and the non- linearity of their behavior is such that 
explicit functions modeling the system evolution are not readily available. These difficulties 
pose severe limitations to the application of classical analytical and semi-analytical 
optimization methods such as those based on an evaluation of the gradient of the system 
function with respect to the solution variables [3]. Thus, thanks to the ever increasing 
computing power available, new numerical search algorithms are becoming popular. In 
particular here we focus the attention on the Genetic Algorithms (GAs). These are numerical 
search tools which function according to procedures that resemble the principles of natural 
selection and genetics [4-5]. Because of their flexibility, ease of operation, minimal 
requirements and global perspective, GAs have been successfully used in a wide variety of 
problems in several areas of engineering and life science [6-9]. In recent years an increasing 
number of GAs applications to single-objective optimizations have been observed in the field 
of reliability, maintainability and availability analysis [1,2,10-14]. In these applications, the 



performance of any candidate system design solution is measured through the value of a 
single objective function, called fitness. 

A more informative approach is one which considers all individual targets separately, 
aiming at identifying a set of solutions better than others with respect to all targets, but  
'comparatively good' among themselves. Each member of this set is better or equal to the 
others of the set with respect to some, but not all, of the targets. The set thereby identified 
provides a spectrum of 'good' solutions which the decision maker can subjectively handle 
according to which targets he believes to be more or less important. For example, between 
two solutions a decision maker could prefer the one with highest reliability although obtained 
at higher costs or vice versa he might privilege low costs, thus giving up some reliability. 

       In this paper we present the genetic algorithms' approach to multiobjective 
optimization and apply it within the reliability/availability analysis framework. In the next 
Section we present the basic principles behind the genetic algorithm here adopted, formulate 
the multiobjective optimization problem within the frame of Pareto optimality and  provide 
the details of the extension of the adopted genetic algorithm within a dominance scheme for 
multiobjective optimization. A general Fortran computer code called MOGA (MultiObjective 
Genetic Algorithm) has been developed by the authors and an application is presented in 
Section 3 with regards to the choice of the time intervals for the periodic testing of the 
components of the High Pressure Injection System (HPIS) of a Pressurized Water Reactor 
(PWR). The paper ends with a Section devoted to some conclusions and discussions. 

2. MULTIOBJECTIVE GENETIC ALGORITHMS 
In this Section we present the extension of  the genetic algorithm approach to 

multiobjective problems [15-16]. In order to treat simultaneously several objective functions, 
it is necessary to substitute the single-fitness based  procedure employed in the single-
objective GA for comparing two proposals of solution. The comparison of two chromosome-
coded solutions with respect to several objectives may be achieved through the introduction 
of the concepts of Pareto optimality and dominance which enable solutions to be compared 
and ranked without imposing any a priori measure as to the relative importance of individual 
objectives, neither in the form of subjective weights nor arbitrary constraints. 

Let us consider N different objective functions ( ) N,...,1iXf i =    where X  represents the 
vector of independent variables identifying a generic proposal of solution. We say that 
solution X  dominates solution Y  if X  is better on all objectives, i.e. if 

( ) ( ) Ni   for   Yf  Xf ii ,...,1=> . If a solution is not dominated by any other in the population, it 
is said to be a nondominated solution. Using this definition, a ranking of the population can be 
readily performed. All nondominated individuals in the current population are identified. 
These solutions are considered the best solutions, and assigned the rank 1. Then, these 
solutions are virtually removed from the population and the next set of nondominated 
individuals are identified and assigned rank 2. This process continues until every solution in 
the population has been ranked. The selection and replacement procedures of the 
multiobjective genetic algorithms are based on this ranking: every solution belonging to the 
same rank class has to be considered equivalent to any other of the class, i.e. it has the same 
probability of the others to be selected as a parent and to survive the replacement.  

During the optimization search, an archive of a given number of nondominated solutions 
representing the dynamic Pareto optimality surface is recorded and updated. At the end of 
each generation, nondominated solutions in the current population are compared with those 
already stored in the archive and the following archival rules are implemented: 



1. If the new solution dominates existing members of the archive, those are removed and 
the new solution is added; 
2. if the new solution is dominated by any member of the archive, it is not stored; 
3. if the new solution neither dominates nor is dominated by any member of the archive 
then: 

− if the archive is not full, the new solution is stored. 
− if the archive is full, the new solution replaces the most similar one in the archive. (an 
appropriate concept of distance being introduced to measure the similarity between two 
solutions: in this paper we shall adopt a euclidean distance based on the values of the 
fitnesses of the chromosomes); 

The setup of an archive of nondominated solutions can also be exploited by introducing 
an elitist parents’ selection procedure which should in principle be more efficient. Every 
solution in the archive (or a pre-established fraction of the population size Np, typically Np/4, 
if the archive's size is too large) is chosen once as a parent in each generation. This should 
guarantee a better propagation of the genetic code of nondominated solutions, and thus a more 
efficient evolution of the population towards Pareto optimality.   

At the end of the search procedure the result of the optimization is constituted by the 
archive itself which gives the Pareto optimality region. 

 

3. MULTIOBJECTIVE OPTIMIZATION OF THE INSPECTION TIMES OF A 
SAFETY SYSTEM 

 
Let us consider the high pressure injection system (HPIS) of a pressurized water reactor 

(PWR) [1,17]. Figure 1 shows a simplified schematics of a specific HPIS design. The system 
consists of three pumps and seven valves. During normal reactor operation, one of the three 
charging pumps draws water from the volume control tank (VCT) in order to maintain the 
normal level of water in the primary reactor cooling system (RCS) and to provide a small 
high-pressure flow to the seals of the RCS pumps. Following a small loss of coolant accident 

(LOCA), the HPIS is required to supply a high pressure flow to the RCS. Moreover, the HPIS 
can be used to remove heat from the reactor core if the steam generators were completely 
unavailable. Under normal conditions the HPIS function is performed by injection through the 
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                                                   Figure 1: The simplified HPIS system                                                              

 



valves V3 and V5 but, for redundancy, crossover valves V4,  V6 and V7 provide alternative 
flow paths if some failure were to occur in one of the nominal paths. 

This stand-by safety system has to be inspected periodically to test its availability. The 
test interval (TI) specified by the technical specifications (TS) both for the pumps, and the 
valves is 2190 h. In this study the system components have been divided in three groups 
characterized by different test strategies. All the components belonging to a same group 
undergo testing with the same periodicity. The groups identified through the test period Ti, 
i=1,2,3, are : T1 = (V1, V2) ; T2 = (PA, PB, PC, V3, V5); T3 = (V4, V6, V7). Assuming a mission 
time of one year, the range of variability of the three TIs is [0,8760] hours. Therefore, any 
solution to the optimization problem can be encoded using the following array of decision 
variables: x = {T1, T2, T3}. 

The goal of the work is to optimize the effectiveness of the TIs of the HPIS with respect 
to three different criteria: i) mean availability, ii) cost and iii) workers’ time of exposure to 
radiation. The TIs then represent the decision variables of the optimization problem and 
different choices of their values will lead to different performances with respect to the three 
above mentioned objectives. 
       To compute the system unavailability we have developed the fault tree for the top event 
“no flow out of both injection paths A and B” (here not reported for brevity). The boolean 
reduction of the corresponding structure function has allowed us to determine the system 
minimal cut sets (MCS) and from these we can compute the mean system unavailability U  as 
a function of the elementary unavailabilities of the components in the MCS. As for the mean 

unavailability iu  of a generic individual component i, several models have been proposed in 
the literature to account for the different contributions coming from failure on demand, human 
errors, maintenance etc. In this study the following model is assumed [1,18]: 
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where: ρi= probability of failure on demand; λi = failure rate for i-th component; τi= test 
interval for i- th component; ti = mean downtime due to testing; di = mean downtime due to 
corrective maintenance; γ0 = probability of human error. Equation 1 is valid for 0.1 <ρ  and 

0.1 <λτ  which are reasonable assumptions when considering safety systems. The relevant 
parameters’ values are taken from [1] and [18]. 

For the cost objective C, we assume that it is the sum of two major contributions: i) CS&M 
=costs associated with surveillance and maintenance (S&M); ii) Caccident=costs associated with 
consequences related to accidents possibly occurring at the plant. For a given component i the 
S&M costs are computed on the basis of given yearly inspection (Cht,i) and corrective 
maintenance (Chc,i) costs. 

For a given mission time, TM, the number of inspections performed on component i are 
TM/τi; of these, on average, a fraction equal to )( iii τλ+ρ  demands also a corrective 
maintenance action. Thus the surveillance and maintenance costs amount to: 
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As for what concerns the accident costs contribution, Caccident, this is intended to measure the 
costs associated to damages of accidents which are not mitigated due to the HPIS failing to 
intervene. A proper analysis of such costs implies that we account for the probability of the 



corresponding accident sequences. To this aim we have referred to a small LOCA event tree 
found in literature [10]. Actually, the HPIS plays an important role in many other accident 
sequences generating from other initiators such as intermediate LOCA, station blackout, 
turbine trip etc. In our example, for simplicity we consider only the contribution due to small 
LOCAs, recognizing that by so doing we significantly underestimate the accident cost 
contribution related to the HPIS. The characteristics of the plant damages states (PDS) 
resulting from the various small LOCA accident sequences and the economic damages of the 
associated consequences were also taken from [10]. The accident sequences considered for 
the quantification of the accident costs are those which involve the failure of the HPIS. These 
costs obviously depend on the initiating event frequency and on the unavailability values of 
the safety systems which ought to intervene along the various sequences: these values are 
taken from the literature [10,19] for all systems except for the SDC and MSHR, which were 
not available and were arbitrarily assumed of the same order of magnitude of the other safety 
systems, and for the HPIS for which the unavailability is calculated as above explained and 
which depends on the test intervals of the components. Finally, for the accident costs 
associated to the relevant plant damage states we adopted the mean value of the uniform 
ditributions given in Ref. [10]. Table 1 summarizes the input data. 

 

Frequency of small LOCA (y-1) [13] 2.43 × 10-5 

Frequency of Reactor Trip failure (y-1) [23] 3.6 × 10-5 

Frequency of LPIS failure (y-1) [23] 9 × 10-3 

Frequency of SDC failure (y-1) 5 × 10-3 

Frequency of MSHR failure (y-1) 5 × 10-3 

Mission time (h) 8760 

Cost associated to PDS 1 ($ × event-1)  = CPDS1   2.1765 × 109 

Cost associated to PDS 3 ($ × event-1)  = CPDS3   1.375 × 108 

Table 1: Safety systems failure frequencies and  PDSs costs for sequences involving the HPIS failure 
 
During testing operations, the technicians may be subjected to radiation exposure. With 

reference to the ICRP recommendation n° 60 [20], based on the well known ALARA (As 
Low As Reasonably Achievable) and limit-dose principles, the dose received by workers 
should be minimized. Assuming a constant exposure rate, the minimization of the dose is 
equivalent to that of the exposure time, so that the third objective function of our optimization 
problem can be assumed to be 
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with the same meaning of the symbols explained in the previous subsections. 
Expression (3) is similar to that of Eq. (3) for the surveillance and maintenance costs, CS&M. 
However, the presence of the accident contribution in the cost objective function is such that 
exposure time and cost are generally two distinct objectives to be optimized separately. 



An analysis of the three objective functions hereby defined shows that they all share some 
common contributions but present some conflicting ones as well. For example, the cost 
function has a contribution relating to the unavailability of the HPIS due to economic 
damages of occurring accidents and a contribution associated to the time of surveillance and 
maintenance (and thus of exposition) due to the costs of such operations. On the other hand, 
the surveillance and maintenance time influences also the mean system unavailability, 
through the downtimes of the inspected components. 

The goal of the work is that of utilizing the multiobjective genetic algorithm optimization 
procedure to determine the optimal values of inspection intervals,  Ti, i=1, 2, 3 for the three 
groups of components identified in the HPIS, which maximize separately the three objective 

functions: average availability ( UA −=1 ), reciprocal of the cost (
C
1

) and reciprocal of the 

exposure time ( )
1

expT
. The decision variables of the optimization are then the three test 

intervals Ti, i=1, 2, 3. Such test intervals are assumed to vary in the range [1, 8760]h so that at 
least one inspection  on each component is carried out in one year. Each of the variables is 
coded by one 10-bit gene in the chromosome. The data relevant for the multiobjective genetic 
algorithm procedure contained in Table 2 have been selected after appropriate tuning and 
constitute the input to the MOGA code. 
 

Number of chromosomes 
(population size, Np) 
 

100 

Number of generations  
(termination criterion) 500 

Selection 
Standard 
Roulette 

Replacement Weakest 

Mutation probability 0.005 

Crossover probability 1 

Number of non-dominated 
chromosomes in the archive 

400 

Table 2: Genetic Algorithm parameters and rules 

 
Figure 2 shows the results obtained through the genetic algorithm procedure for 

maximizing the three objective functions of mean unavailability, reciprocal of costs and 
reciprocal of exposure time, simultaneously. In the Figure, we report the values of the 
objective functions in correspondence of all the nondominated solutions (triplets of TIs) 
contained in the archive at convergence. These results certainly constitute a more informative 
set which the designer can handle for a more informed decision, free of a priori constraints or 
arbitrary weights. 
 
 
 
 
 
 



 
It is clear that there exists a linear relationship between cost and exposure time. This is 

due to the fact that the safety systems failure frequencies and accidental costs are such that the 
contribution to cost due to accidents is negligible compared to that of surveillance and 
maintenance, which, in turn, is proportional to the surveillance and maintenance time and, 
thus, to exposure time. Finally, the test intervals in the genetic algorithm’s archive (here not 
reported for brevity) give an indication that the HPIS can indeed be made more available, on 
average, by increasing the frequency of the inspections but, as reasonable, this leads to large 
inspectors’ exposure times and also renders the system more expensive. A thorough analysis 
of the results in the archive also shows that T1 is somewhat dominant, as expected since it 
governs the inspections on the two valves V1 and V2 which constitute the most critical MCS 
of the system. 
 

4. CONCLUSIONS 
 

In this paper we proposed to perform a multiobjective optimization by means of genetic 
algorithms. The genetic algorithm adopted considers a population of chromosomes, each one 
encoding a different solution to the optimization problem. For a given solution, there are more 
than one objective to be evaluated so that the performance of any given candidate solution is 
evaluated introducing the concepts of Pareto optimality and dominance.  

The proposed multiobjective genetic algorithm approach has been applied for 
determining the optimal test intervals of the components of a safety system in a nuclear power 
plant. The optimization performed with respect to availability, economic and workers’ safety 
objectives has shown the potentials of the approach and the benefits which can derive from a 
more informative multiobjective framework. 

As a final remark we underline the fact that although more informative, Pareto optimality 
does not solve the decision problem. The decision maker is provided the whole spectrum of 
nondominated alternatives, and their performances with respect to the objectives, and he or 
she must ultimately select the preferred one according to his or her preference values. Thus, 

Figure 2: Multiobjective optimization results 



the closure of the problem must still rely on techniques of decision making such as utility 
theory, multi-attribute value theory or fuzzy decision making, to name a few.  
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