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Abstract

We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization
can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve
the current solution is a way of leading to a better allocation. The goal is to reduce the delay in an existing solution and to
obtain better scheduling at the end of the planning.

We propose an original solution based on genetic algorithms which allows to determine a set of good heuristics for a given
benchmark. From these results, we propose a dynamic model based on the contract-net protocol. This model describes a way
to obtain new schedulings with agent negotiations. We implement the agent paradigm on parallel machines.

After a description of the problem and the genetic method we used, we present the benchmark calculations that have been
performed on an SGI Origin 2000. The interpretation of these is a way to refine heuristics given by our evolution process
and a way to constrain our agents based on the contract-net protocol. This dynamic model using agents is a way to simulate
the behavior of entities that are going to collaborate to improve the Gantt diagram. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In the job-shop scheduling problem (JSSP), Gantt
diagram’s optimization can be considered as an
NP-difficult problem [10]. Determining an optimal
solution is almost impossible, but trying to improve
the current solution is a way of leading to a better
allocation. Multi-agent systems [15] are often used
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for such problems, where a solution exists but is not
easily calculable [52–55]. We expect some solution
to emerge from such situations, that is the reason why
we use them. We use them to simulate the behavior
of entities that are going to collaborate to accom-
plish actions on the Gantt diagram so as to solve a
given economic function. The ideal solution to such
a problem is a point where each objective function
corresponds to the best (minimum) possible value.

We present our JSSP, which is a simplified version
of FISIAS [41]. We present some results based on ge-
netic algorithms [50], then we present an agent model
based on the contract-net protocol to improve a solu-
tion corresponding to a Gantt diagram.

0921-8890/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
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1.1. Job-shop scheduling problem

Scheduling is an essential function in production
management. It is a difficult problem depending on the
number of calculations required to obtain a schedul-
ing that optimizes the chosen criterion [37]. In addi-
tion, there are many scheduling problems and various
approach methods have been proposed to solve some
parts of them. We are going to define our scheduling
problem and describe some existing problems as well
as the constraints that we considered.

Among various definitions of the scheduling prob-
lem, we can highlight a common denominator: it is the
task allocation with a minimum cost and in a reason-
able time. We are in the field of discontinuous produc-
tion with the processing of small and average series.

A scheduling problem exists:
• when a set of tasks (jobs) is to be processed;
• when this problem can be broken up into tasks

(operations);
• when the problem consists in the definition of the

temporal task location and/or the manner to allocate
them to the necessary resources.

Lamy [34] defines the scheduling problem of discon-
tinuous production: “The scheduling problem of the
production consists in manufacturing at the same time,
with the same resources, a set of different products.”

Scheduling determines what is going to be made,
when, where and with what resources; given a set of

Fig. 1. Graphical interface used for our JSSP.

tasks to accomplish, the scheduling problem consists
in determining what operations have to be executed
and in giving dates and resources for these operations.

1.2. Our job-shop scheduling problem

Scheduling and planning are difficult problems
[34,37] with a long and varied history in the areas
of operational research and artificial intelligence,
and they continue to be active research areas. The
scheduling problem, which is subject to precedence
and resource constraints, is an NP-difficult problem
[13]. It is thus impossible to obtain an optimal solu-
tion satisfying the real time constraint.

So, heuristic algorithms are usually implemented to
obtain a “good” solution instead of an optimal one
[34,50]. Due to the number of varieties of production
processes and the increasing rate of change in oper-
ational parameters characterizing the data to be pro-
cessed (capacities of the resources, demands, etc.), it
is becoming more and more difficult for management
boards to make decisions.

The reason that we have chosen the JSSP withM

machines andN jobs is because it is the most com-
plex and the most often considered [10]. To determine
the quality of the solution, a graphical interface has
been developed (Fig. 1). For our problem, the goal is
the minimization of delays and advances for all jobs
according to the “due dates” given by the manager
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according to their objectives. This objective has been
chosen to obtain solutions very rapidly because cal-
culations are very numerous with genetic algorithms.
Also because it is sufficient to compare these algo-
rithms with other methods such as the gradient, the
simulated annealing, etc. Genetic algorithms enable us
to obtain a good quality solution quickly and easily
compared to other research techniques [20,26].

2. The selection function

We cannot use the classic selection function like a
method of the roulette wheel, for it is proportional.
Indeed, we would take an agent as a specific entity
but without taking into account some exterior pres-
sures on the agent: its environment and the system’s
emergence phenomena. Therefore, the selection func-
tion should not only consider the actions of the agent,
whether these actions are good or bad, but also the
communications between agents. We talk about senses
(semantic or link). By senses, we mean:
• the sense of communication with the other agents

(network links);
• the semantics of the communication between two

individuals.
Therefore, our crossover process has to take into

account the semantics of communication. But an
agent, seen as a structure is a compound entity made
of the following elements: functions of communica-
tion, functions of action, functions of behavior along
with a local genetic patrimony. Just as evolutionary
algorithms simulate a Darwinian process, MAS can
simulate the evolution of a nucleus or a group and by
extension of an organization. A social organization
may not diversify and evolve by cloning: in all social
organizations (human or animal), we have a crossover
process that tends to preserve the natural inheritance
but also to make it more powerful. Therefore, our
multi-agent system, by integrating this new concept
of reproduction with crossing, will have to take into
account these parameters. To achieve this, we can
use a genetic algorithm switchboard, as defined by
Holland [26] or an evolutionary strategy as defined
by Bäck [2]. By doing that, each agent (individual)
will be characterized by a chain of bits whose length
will correspond to a multiple of the number of param-
eters. This chain will correspond to a chromosome

[54] that will represent the structure of the agent.
Each character (action, behavior and communication)
composing the agent will correspond to numerical
data referring to rules database.Ai , Bj and Ck will
refer to an address database. Since knowledge is an
“infinite dimension”, due to the fact that an agent
only has limited knowledge of its environment, the
former only has, a priori, finite knowledge. By finite
knowledge, we suppose that it has a finished number
of actions or knowledge available. Especially, at the
level of rules of action, if one takes the set of place-
ment rules described by Pécuchet et al. [41], we have
at mostn rules, therefore by using assignment tech-
niques commonly used in electronic and especially
in the assignment memory, we can reserve a certain
number of addresses corresponding to rules. There-
fore, for a binary rule coding, we can use a coding on
10 bits; in this way, it is always possible to increase
the knowledge to the level of our database. Neverthe-
less, the size of our chromosome is important in order
to reduce the memory space. We use the coding of
Gray. Thus, we can use genetic algorithms on MAS.

3. The mutation function

The mutation will correspond to the change of a
bit, thus, we can use switchboard operators [17,22].
Our constraint at the mutation level, consists in hav-
ing a correspondence between the bits string and the
database. Thus, by changing the value of one bit,
we can introduce a new character. This will have a
repercussion on the environment, but especially on
its membership to a group. The communications it
has been able to have with other elements of the
group will, incontestably, be changed. For example,
consider that the mutation introduces a certain ag-
gressiveness at the agent level, then communications
with the group are going to change and the group
consequently, will probably lose some of its social
cohesion. Therefore in order to avoid the too abrupt
upset of the social balance that can exist between in-
dividuals composing a group and the organization it-
self, the mutation interventions by genetic algorithms
will need to be weak. Nevertheless, we can consider
that at the beginning of the simulation of the organi-
zation, as at the beginning of a civilization, progress
was rapid enough. Therefore, at the beginning, we
can introduce an important number of mutations. We
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will use as distribution for the number of mutation by
generation, a curve of parameters(α, β)

f : x → β

xα
with β ∈ R+ and α ∈ R+∗. (1)

Thus, by using this type of distribution, we introduce a
lot of mutations at the beginning of the simulation and
few at the end in order to avoid disrupting the process
of evolution by deeply modifying characteristics of
chromosomes, and therefore of individuals. Too many
mutations in the systems would inexorably sow the
seeds of chaos. We have previously seen a possible
distribution. Nevertheless, by using a Gaussian distri-
bution to determine the probability of mutation, we
keep the switchboard of the genetic algorithm [39].

4. The crossover operator

From an historical point of view, genetic algorithms
[27] correspond to a random phenomenon, but the
main difference compared to a classic random method
is that here, we converge, step by step to an optimum
(local or global) in the space of solutions [3]. Thus, we
are not subject to chance as we are in the former, totally
random method. A first crossing approach would be
to consider an agent as a “pie chart” where each slice
corresponds to a character. By randomly choosing two
cut points in our agent compared to a referential, we
would exchange two parts to form new individuals.
However, a problem arises, as to how do we set our
referential? We cannot set a permanent referential, be-
cause in this case, it supposes to consider an adjustable
individual. So, an agent is an entity that has no facets.
An agent is comparable to an individual part of an or-
ganization. Nevertheless, it is not possible to describe
it as a physical individual (a man). Therefore this first
approach is interesting but does not give satisfaction.
Knowing that not all agents have the same genetic
patrimony, that is to say that they have no equal chro-
mosome lengths, and knowing that an agent has no
facets, we can represent it as a toroïdal chain of bits:
• This representation does not suppose the interven-

tion of the notion of facets of an agent.
• We can cross individuals of different lengths [20].

It is always necessary to define a starting point for
our chromosome in order to correctly exchange phe-
notypes. Which one do we choose? In our system, an
agent is composed of functions of action, knowledge

and behavior, that make a certain number of possi-
ble referentials. Therefore, the choice of a referential
would be a problem, except by randomly choosing it.
Among possible functions, what distribution we must
use? In theory, no distribution is ideal, nevertheless,
to continue with this circle scheme, we will use a cir-
cle distribution or Gaussian method according to the
probability. Thus, it is possible to set a referential for
the crossing. However, the use of a simple crossing
does not always give good results. Consequently, the
use of multiple crossings allows us to make a bigger
mix. We will use the uniform crossover to always have
viable individuals for our representation. However, it
is always possible to use the crossovers defined by
Goldberg [20] such as the CX, OX and the PMX [38],
that always give viable individuals.

5. The fitness function

In our case, it is necessary for us to optimize a
Gantt diagram [43]. Therefore, the last operation to
undertake will have to correspond to the due date mi-
nus completion time. It is necessary, therefore to min-
imize the delay and the advance of the set of jobs. The
objective with an advance and a null delay is nearly
impossible. In a general manner, we allow a certain
delay or advance. When we calculate the fitness of an
agent, we determine its impact on the Gantt [46]. Of
course for the set of jobs, we can have a delay or a
weak advance. Consequently, we no longer have a sin-
gle fitness function but many. We have as many objec-
tives as we have jobs. Consequently, we have a case of
“multi-objective genetic algorithms” [44,45]. For this
type of problem, we will use the basic concepts of the
multi-objective optimization problem (MOP) [42].

5.1. Basic concepts and definitions

The fundamental difference between an optimiza-
tion having simple or multiple objectives is in the idea
of the definition of an optimal solution. The idea of
optimality in the multi-objective case is a natural ex-
tension of what we have during an optimization for a
unique objective.

An MOP can be defined as follows:

MOP: min
x∈X

f (x),

where f (x) = (f1(x), . . . , fn(x)) (2)
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is a vector ofn real values coming from objective
functions,x is a vector ofn variables of decision and

X = {x| x ∈ Rm, gk(x) 6 0,

k = 1, . . . , m, and x ∈ S} (3)

is a set of possible solutions.gk is a real function value
representing thekth constraint andS is a subset of
R

m representing all the other forms of constraints. The
ideal solution to such a problem is a point where each
objective function corresponds to the best (minimum)
possible value. The ideal solution in most cases, does
not exist in view of contradictory objective functions
and hence compromises have to be made. A differ-
ent concept of optimality has to be introduced. Solv-
ing an MOP generally requires the identification of
Pareto optimal solutions [33], a concept introduced by
V. Pareto, a prominent Italian economist at the end of
the last century. A solution is said to be Pareto opti-
mal, or nondominated, if starting from that point in
the design space, the value of any of the objective
functions cannot be improved without deteriorating at
least one of the others. All potential solutions to the
MOP can thus be classified into dominated and non-
dominated (Pareto optimal) solutions, and the set of
nondominated solutions to an MOP is called Pareto
front. The first and most important step in solving an
MOP is to find this set or a representative subset. Af-
terwards the decision maker’s preference may be ap-
plied to choose the best compromise solution from
the generated set. The natural ordering of vector val-
ued quantities is basic for Pareto optimality. To define
the notion of domination, letf = (f1, . . . , fn) and
g = (g1, . . . , gm) be two real-valued vectors ofn ele-
ments:f is partially smaller thang if: ∀i ∈ 1, . . . , n

and∀k ∈ 1, . . . , m, fi ≤ gk and∃i|fi ≤ gk, we note
f <p g. If f <p g, we say thatf dominatesg. Con-
sequently, a feasible solutionx∗ is said to be a Pareto
optimal of the problem if and only if anotherx ∈ X

does not exist such thatf (x) <p f (x∗).

6. Development of Pareto optimal solutions

Two different strategies are effective in generating
Pareto optimal solutions [12,16]. In the first strategy,
an appropriate scalar optimization problem (SOP) [42]
is set-up in parametric form, so that the solution to the

SOP with given values of the parameters, under cer-
tain conditions, belongs to the Pareto front; changing
the parameters of the SOP leads the solution to move
on the front. In the second one, the MOP is solved
with a direct approach using the dominance criteria,
so that a set of Pareto optimal solutions is developed
simultaneously. The main advantage of the first strat-
egy is that SOPs are generally, very well-studied prob-
lems and many efficient methods are available to solve
them.

6.1. Equivalent SOP 1: The weighting approach

Following the weighting approach [16], the
MOP [42] is made to correspond to the following
parametrized SOP:

P(w) : min
x∈X

wTf (x) =
n∑

j=1

wjfj (x), (4)

where

w ∈ W =

w|w ∈ Rn, wj (x) > 0,

j = 1, . . . , n and
n∑

j=1

wj = 1


 ,

(5)

the correspondence between the MOP and the SOP is
subject to some rules. Ifx0 is an optimal solution of
P(w0), then it is also Pareto optimal if one of the two
following conditions is verified:
• x0 is the unique optimal solution toP(w0);
• w0 is strictly positive.

This implies that at least some Pareto optimal so-
lutions can be generated by solvingP(w) for some
properly chosenw, without any hypothesis on the con-
vexity of X and f (X). Instead, some convexity hy-
potheses are a necessity condition. Therefore, if both
X andf (X) are convex, then for any given Pareto op-
timal solution,x∗, it is possible to find a weight vector
w, not necessarily unique, such thatx∗ is a solution to
P(w). Therefore, when these convexity assumptions
are verified, all Pareto optimal solutions can, in the-
ory, be found by varyingw and solvingP(w), while
if they are not verified, some Pareto optimal solutions
may never be discovered by this procedure.
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6.2. Equivalent SOP 2: The constraint approach

The constraint approach [16,19] is based on the fol-
lowing parametrized minimum problem:

Pk(ε) : min
x∈X

fk(x), (6)

subject tofj (x) ≤ εj , j = 1, . . . , n andj 6= k, where
ε = (ε1, . . . , εn)

T ∈ Rn is the vector of parameters.
The main advantage of this approach is that convex-
ity assumptions are not required. Therefore all Pareto
optimal solutions can always be discovered by solv-
ing the constraint problemPk(ε) for anyk. The corre-
spondence between the MOP and the SOP is subject
to the following rules.

If x0 is an optimal solution ofPk(ε
0) with ε0 a vec-

tor for whichPk(ε
0) is feasible, thenx0 is a nondomi-

nated solution of the MOP, if one of the two following
conditions occurs:
• x0 is a unique solution ofPk(ε

0) for some givenk
between 1 andn.

• x0 is not unique, but solvesPk(ε
0) for each and

everyk = 1, . . . , n.
On the contrary, ifx∗ is a nondominated solution of
the MOP, anε∗ can always be found such thatx∗
is the optimal solution ofPk(ε

∗) for each and every
k = 1, . . . , n. In fact, this condition is verified when
εi = fi(x

∗) for all i = 1, . . . , n with i 6= k.

6.3. Results from the genetic algorithm

From our object modelization, a genetic algorithm
using the placing method has been developed [24,47].
This program uses the C++ language in order to use
it on an SGI Origin 2000. Here are some benchmarks
(see Table 1).

As the computational time depends on the com-
puter loading, this real time does not correspond to

Table 1
Benchmark results

Number of Number of Number of Calculation
jobs operations machines time

10 10 4 50 s
50 5 4 9 min, 53 s
50 10 4 14 min, 27 s

100 10 10 40 min, 58 s
500 100 50 2 h, 24 min, 7 s

Fig. 2. Data extraction software.

Fig. 3. Tardiness as a function of the number of generations.

the CPU time (Fig. 2). We can then determine heuris-
tics [8,9,24], to use with our dynamic model based
on the contract-net protocol [40,48]. Another result
coming from the simulation process is a set of graphs
giving the tardiness and the advance as a function of
the number of generations. We can see that the delay
decreases rapidly. But it is not necessary to increase
the number of generations to obtain a better result
(Fig. 3).

6.4. Problems encountered

In our problem, the first level of modelization was
a static model. It does not take into account the fact
that we have interactions between machines and jobs.
A job can be done only if the resource is free.
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On the other hand, the static model does not in-
clude the possible interaction between the workshop
and the environment such as a strike, a machine failure,
etc.

In the static model, the placing obtained gives a
solution corresponding to the schedule of all jobs.
But, by negotiations, the schedule can be built step by
step. For example, if a job arrives too soon, the delay
corresponding to the tardiness increases. Therefore,
if we can change the schedule during the calculation
process, we can improve the tardiness. It is one of our
economic functions.

7. Actions on the Gantt diagram

The JSSP does not admit a computable solution, so
the use of multi-agent systems for the solving of such
a problem seems reasonable [23]. Multi-agent system
research is concerned with the behavior of a set of
agents that cooperate in order to solve a problem [31].
In a multi-agent system (MAS) [11], the agents are
seen as little problem solvers that cooperatively work
in order to solve a problem [58] far beyond their in-
dividual abilities [13]. Here, we consider an agent as
an entity with goals, actions to accomplish and areas
of knowledge, which is situated in its environment
[56]. Therefore, because of the knowledge of agents,
rules of actions, etc., the MAS will have, for princi-
pal objective, to group agents having similar behavior
[49] to elaborate strategies to the jobs level, jobs of
jobs, machines, machines of machines, etc. Indeed,
the problem of conflicts between agents is a major
concern in MAS research [4,30–32]. The objective
of the MAS is to improve the Gantt diagram [35,36],
therefore it leads us to establish the notion of group
corresponding to elementary entities having com-
mon grinds and physical sameness (same capacity of
machine, etc.) or interdependence.

We will use the notion of zone for the roundup of
entities on the Gantt diagram, while we will speak
about the notion of group for the roundup of entities
of similar or close nature. Since agents have to in-
tervene on groups and elementary entities, the MAS
will then be composed of micro- and meta-agents. It
is therefore important for this evolution, to introduce
agents having an evolving character: the meta-agents
of evolution. These meta-agents’ function will be
to make this organization evolve by means of a

genetic algorithm establishing a sexual reproduction
of agents. It is interesting to note that, traditionally,
agents only clone themselves. But here, we use a ge-
netic algorithm for the physical evolution of the agents
[28,29]. In the course of the evolution, different agent
granularities appear. We have therefore micro and
meta-agents that are going to intervene, according to
their granularity, on an entity or a group, by passing
through intermediate levels. Thus, agents having a
meta-knowledge are going to be able to intervene on
the macro-entities (groups) as well as on some zones
of the Gantt diagram. Thus, there is a distributed agent
system being able to mutate and hosting agents able
to achieve a crossover based reproduction between
them.

8. A contract net based approach

The contract net is a protocol for the resolution of
distributed problem, defined by Smith [48]. The main
objective of this protocol being the negotiation, it pro-
ceeds by allocation of tasks to a set of problem solvers
and uses the concept of negotiation to grant contracts.
The basic architecture contains nodes having a chief
and carrying roles [7].

8.1. The contract-net procotol

Contract-net based systems represent a concept
that can be used to establish mechanisms of cooper-
ation between agents [6]. A contract net consists of
a number of nodes that are represented by individ-
ual agents. By analogy to a sale session, suspended
sub-tasks are openly proposed to auctions to which
each node can reply according to the interest that it
has for this sub-task. The stage of task attribution rep-
resents a process in which all the nodes (agents) are
associated. The idea is to use the available resources
and the existing knowledge of agents as efficiently
as possible [51]; that is to say by allocation of one
sub-task to the agent which is the most apt to operate
at a given moment. The contract-net protocol forms
the skeleton of our system. It is defined by a lan-
guage between the nodes that can be understood by
the set of agents. The communication between agents
is always based on the notion of an “acceptance
message”. This specificity defines the exact role of an
agent.
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8.2. The different types of agents

The local database contains the basic knowledge of
the associated nodes and also information on the pro-
gression state of the cooperative negotiation as well
as the state of the resolution process [57]. The task of
the communication manager is to establish commu-
nications with other agents. It is the unique compo-
nent of a node that is in direct relationship with the
system. Especially, it ensures the reception and sends
messages.

The contract manager’s job is to examine the
“auctioned” task, the compliance with the contract
and its ending. In other words, the contract manager
ensures the coordination of all agents [14]. The task
administrator is responsible for the progress made in
a process and the results of a task assigned to a given
agent. It receives the problem that needs to be solved
from the contract manager. It uses the local database
in order to find a solution and gives it back to the
contract manager.

The job of a contract-net based system often begins
with a problem division stage [15]. After that, the prob-
lem to be solved is divided into a set of sub-problems
[25]. A special agent, the manager, assigns tasks to a
sub-problem. The manager issues a public offer, called
a contract for each sub-problem to be solved accord-
ing to the scheme defined by Smith [48].

Because of the distributed nature of the problem,
we chose an agent based modelization, a simplified
version of FISIAS [41]. The different elements of the
environment (the universe) can be the machines (and
groups of machines), the jobs (and groups of jobs),
the Gantt diagram (an attribute) and distributor agent
of jobs (DAJ) (Fig. 4). Universe elements are the
“objects” that can receive or send data to agents.

Machines can be seen as agents whose task is to
perform the job operation at a given time. However,
the machine can also be seen as a purely reactive agent,
which, according to the job, can reply: “I can do it or
not” (Fig. 5).

Then, we can use the contract net (Fig. 6) defined
by Smith [48], whose manager, the DAJ, will propose
the allocation of a job to a machine through the use of
a negotiation agent delegated for this job (NA). Ac-
cording to the information given by a machine, the NA
will establish a contract between a machine Mi and
the DAJ [5]. But the DAJ can always propose a job to

Fig. 4. Representation of the universe.

several machines to create some competition between
machine agents. However, the DAJ can break this con-
tract at any time if the agent is unable to comply with
the contract.

Fig. 5. First representation of the contract net.
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Fig. 6. Representation of the contract-net protocol in an agent.

A machine can accept many contracts correspond-
ing to the same job, but negotiated by different NAs
which have different strategies. Then, the contract
ideology is “the strongest wins” since a contract can
be broken by both partners [21]. However, we can
propose two types of agents: a forward placing and
a backward placing agent. Moreover, there are some
workshop constraints since, we have generic ma-
chines, groups of machines and specialized machines.
We can consider that we have “group of machines”
agents which will propose the different jobs to the

Fig. 7. Contract-net structure between the different level represen-
tations.

machines they represent. At this level, we can operate
a parallel computation on the machines and so, on the
Gantt diagram (Fig. 7). Nevertheless, for the moment,
we consider that the DAJ can only process one job.
An intermediate agent in charge of choosing the num-
ber of jobs can be proposed. Results corresponding
to this approach are given in the following diagram
(Fig. 8) which gives the value of the economic func-
tion (minimization of the tardiness and the advance)
according to the number of agents and the number of
genetic operations used by agents.

9. Going deeply into the relationships of GA and
MAS

The use of GA in MAS is the beginning of what can
be an interesting research area. There are clearly two
kinds of approaches, the first is centralized, in other
words, some of the genetic is outside the agent. The
function of selection is a good example of such feature
out-of-the-agent [18,55].

However, we believe that if one wants to completely
merge the GA and MAS (Fig. 9), we must make the
agent a completely autonomous genetic entity. By this,
we mean that not only the genetic patrimony must
be “onboard” but also the functions of selection and
crossing. An agent must choose which other agent
it wants to reproduce with [55]. The location of the
function of mutation is not clearly known since it is
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Fig. 8. Evolution of the economic function according to the number of agents and the number of genetic operations.

Fig. 9. MAS and GA in the environment.

caused by the possible exposure to external events
originating in the environment and during the genetic
code replication phase.

If we also introduce the notion of motivated be-
havior for agents [5], we go deeply into artificial life
problematics. The genetic autonomy and the notion
of motivation for an agent may lead to a drastically
new kind of emergence phenomenon [1] (different so-
cial behavior, auto-referring evaluation process, etc.)
in self-organizing MASs. It is certainly a difficult task
but it may sow the seeds of a prolific approach con-
cerning artificial life.

10. Conclusion

Determining an optimal solution is almost impos-
sible, but trying to improve an existing solution is the
way to improve task allocation. During the simulation
process, agents granularity appears with the mutation
behavior introduced by GA [38]. At the end of the
simulation, communications between global and local
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agents, due to their actions, lead to the appearance of
agents of intermediate granularity and general opti-
mization in production scheduling. This communica-
tion reflects the genetic integration in an MAS. The
distributed vision of a scheduling problem of job-shop
enables us to reach a more realistic vision because
each agent has a vision of its environment. That is
to say that each is capable of reacting to a particular
problem just like a foreman in his workshop. He is
going to react immediately following the breakdown
of a machine. Similarly, he is going to take decisions,
as agents, that are going to have a repercussion on
the environment. Consequently, the representation by
an MAS using a contract net is a close vision of re-
ality that can be easily transferred to an industrial
organization.

Research corresponding to our original dynamic ap-
proach is in progress.
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