
Distributed Processor Allocation For Discrete Event Simulation and Digital
Signal Processing Using a Multiobjective Evolutionary Algorithm

David J. Caswell & Gary B. Lamont
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology
Wright Patterson Air Force Base, Dayton, OH 45433

Abstract- The use of large scale distributed systems for
multiple perhaps heterogenous applications is becoming
more commonplace. The organizations that are utilizing
these resources must ensure that the applications are ex-
ecuted in a timely manner without unnecessary wasting
the resources available on the distributed system. Char-
acteristics of two distributed computing applications are
presented; large scale discrete event simulation and a
real-time digital signal processing activity. A stochastic
processor allocation algorithm is developed for assigning
processes to processors in an effective and efficient man-
ner based upon application characteristics. In particu-
lar, a multiobjective evolutionary algorithm (MOEA) is
created in order to examine Pareto results for such di-
verse processor allocation. The results indicate that the
focus of the two distinct applications and the associated
respective optimal regions have distinct differences.

1 Introduction

A distributed system offers researchers the ability to exe-
cute applications across several processors. Any given High
Performance Computing (HPC) system can have multiple
processors working on a single program, or have a variety
of programs running simultaneously across the processors.
The efficiency and effectiveness of the distributed system is
dependent on it’s ability to balance the load across all of the
processors and communication links. In order to ensure that
the HPC system is working effectively for it’s intended pur-
pose each application must be examined with regards to the
tradeoffs required by the load balancing objectives.

The premise of this paper is to present a multiobjective
evolutionary algorithm(MOEA) approach to processor allo-
cation which in general is a NPC problem. Then, using the
Pareto multiobjective formulation examine the comparative
optimal regions for two different applications. The two sys-
tems proposed for this research are: a monolithic discrete
event simulation, and a group of multiprocessor signal pro-
cessing applications. The goal of this research is to allow
researchers to understand the Pareto front for these prob-
lem classes. With this knowledge allocation systems can be
designed such that the a posteriori Pareto front selection re-
gions can be coded into the a priori aggregate coefficients.
This in turn would allow the algorithm to be automated for
more practical real-world use.

This document consists of four primary sections. Sec-
tion 2 explains the two applications that are the focus of
this document. Specifically, Section 2.1 describes the sig-
nal processing applications and Section 2.2 describes the

discrete event simulation with it’s potential distributed de-
ployment. Moving to the algorithm that is applied, an ex-
planation of the load balancing model used for this research
is provided in Section 3. The specific algorithm and experi-
ments are then described in Section 4 and Section 5 with the
multiobjective result comparison between the two applica-
tions given in Section 6.

2 Load Balancing Applications

The two algorithms selected for examining the tradeoffs of
processor allocation objectives are both Department of De-
fense based projects that could potentially utilize the load
balancing algorithm for improving their overall system per-
formance. The first application that is examined is the dig-
ital signal processing work done by the Air Force Research
Laboratory (AFRL). It utilizes multiple multiprocessor ap-
plications for analyzing signal information. The other ap-
plication is a large scale simulator used for educating Air
Force personnel on doctrine.

2.1 Digital Signal Processing

The analysis of data collected from antenna and sensor ar-
rays is a complex task that must be done extremely fast in
order to support the real-time applications that use the data.
One project that has been designed to help further the de-
velopment of HPC antenna/sensor analysis applications is
that being done by the Common High Performance Com-
puting Software Support Initiative (CHSSI) with their digi-
tal Signal and Image Processing (SIP) efforts. This project
examines the use of HPC systems for large scale real-time
calculations of the following scalable digital signal process-
ing algorithms:

• Space-Time Adaptive Processing (STAP)

• Multi-Target Tracking/Tracking Toolbox

• 2-D Fast Fourier Transform(FFT)

• M-to-N Data Redistribution

The SIP effort is based on the collection of data from a
variety of sensor data including radar, sonar, images, and
others. This work supports U.S. military applications in-
cluding surveillance, reconnaissance, intelligence, commu-
nications, avionics, etc. Each of these algorithms have been
ported to a parallel environment in order to support the
tremendous computational efficiency that real-time process-
ing requires.

2.1.1 Space-Time Adaptive Processing (STAP)

STAP is a method that uses both spatial and temporal infor-
mation to identify potential targets using statistical analysis.
It uses a 2-dimensional FFT filter analysis for detection of
targets amongst ground clutter and other types of interfer-
ence. STAP requires an extensive number of computations
in a real-time manner using a data cube[7].

2.1.2 Multi-Target Tracking/Tracking Toolbox

Multi-target tracking system applications are responsible
for tracking and differentiating between multiple targets
based on the sensor data. Involved in this work is the eval-
uation for which targets are producing which features from
the sensor data. In order to do this analysis multiple filters
and sensor data inputs are used with statistical hypothesis
generation and testing in order to differentiate between ob-
jects [10].

2.1.3 2-D Fast Fourier Transform (FFT)

A fast fourier transform is used to locate signals amongst a
large number of interference. It is used not only in sensor
analysis but also in quantum physics, linear systems anal-
ysis, probability theory and others [13]. Since there are
so many applications that take advantage of Fourier trans-
forms a lot of research has been done towards the devel-
opment of more efficient algorithms. Implementing a 2-D
FFT is even more difficult however as each FFT is calcu-
lated first in one dimension, then a shift or matrix transpose
is performed with the FFT being recalculated in the second
dimension. This produces a great deal of both communica-
tions and computations making the parallelization difficult
an the distribution across processors important for overall
efficiency.

2.1.4 M-to-N Data Redistribution

M-to-N Data redistribution attempts to optimize signal pro-
cessing applications by limiting the number of remote mem-
ory accesses needed by each processor. At each phase of
the analysis the data are redistributed so that the each pro-
cessor has the optimal number of data for processing locally
[11]. This algorithm works by transforming a cyclically dis-
tributed pattern over some initial amount number of proces-
sors (M) to a different cyclic on a potentially different (N)
number of processors.

All of these applications require a great deal of comput-
ing resources provided in a real-time fashion. An effective
load balancing algorithm must therefore be able to handle
the constantly changing processing requests, allowing for
new requests to be quickly inserted into the HPC system
without damaging the workload of the processors that are
already active.

2.2 Discrete Event Simulation

Discrete event simulations provide users with the ability to
imitate a real-world system over a set period of time. By

being discrete the system changes only at and for regu-
lar time intervals [2]. By using a simulation approach the
users are able to, relatively inexpensively, examine the real-
world system. This approach also gives users the ability
to compress or expand time as needed for analysis. There
are a variety of DES systems that model many different
real-world applications in everything from computer sys-
tem networks through restaurant traffic analysis[2]. For the
purposes of this paper we singled out a specific training
simulation called the Air Force Command Exercise Sys-
tem (ACES). ACES is a synchronized conservative discrete
event simulation. It currently is a serial program used for
planning with the objectives of aiding users in their under-
standing and appreciation of a generic simulation:

• Air Force doctrine in a theater exercise.

• The concepts of planning.

• The synergistic effect of integrated air, land, and sea
component plans.

• The command and staff relationships involved in
combined operations.

The ACES model simulates scenarios for which the users
can apply their strategies. In one of the ACES simulations,
called Pegasus, seven different simultaneous simulations are
performed that involve 90 or more participants. In each of
the seven simulations the participants are further subdivided
into red and blue teams. These teams then compete against
each other using the ACES application.

The simulation moves with simulated 24 hour incre-
ments where each team develops a theater campaign plan
that they intend to be deployed against their opponents. The
simulation itself provides theater maps and status reports
while the players determine strategy, logistics and plans.

Once the campaign plan is decided, it is input into the
ACES engine. The inputs include the air, land, and sea or-
ders of the units that are resident within the campaign envi-
ronment. Each of these units is assigned missions that they
act during the event step. ACES then proceeds to compute
the movements of the forces and the effects thereof for the
next 24 hour increment.

Using a distributed model, the ACES system can be ex-
panded into a much larger simulation. Currently, in the
serial version all of the players must be decomposed into
small subgroups such that each must work autonomously
from the other groups. With a distributed version a larger
model could be simulated, requiring multiple processors
computing scenario regions with events communicated be-
tween systems. Thus instead of a small localized region that
is independent of anything neighboring, a more real-world
model could be implemented. This larger system would
provide a better simulation of real-world multi-theater en-
gagements where the regions must contend for the same re-
sources, and actions by one commander could affect the re-
gion of another.

The distributed ACES system would require communi-
cation between multiple processors as well as the graphical
user interface (GUI). This requires a great deal of control by

the processors with a variety of computations and commu-
nications being necessary at different times throughout the
scenario. With the goal being to distribute the system such
that each regionalized area can be processed as quickly as
possible with transparency between regions a load balanc-
ing algorithm must try to ensure that the processors are uti-
lized to their fullest throughout the engines execution.

3 HPC Load Balancing

The goal of processor allocation is to create the mapping in
such a way so as to get better performance and better uti-
lization of the processors available than would have been
possible otherwise[4]. This problem is an NP-complete op-
timization problem [15], yet is one of such practical appli-
cation that numerous researchers have examined the effec-
tiveness of a variety of heuristics for solving the problem
including neural networks [15], Recursive Spectral Bisec-
tion [19], diffusion method[12], [6], Evolutionary Strategies
[14], and a variety of others way too numerous to cite.

For this analysis we define specific objectives so that
the problem may be represented as a minimization problem
with an assumed homogenous HPC cluster running p pro-
cessors and n processes. For this algorithm we have chosen
one logical constraint based on the number of processors
allocated to each process and four innovative objectives.
The four objectives selected are: request cost (Crequest),
preemption cost (Cpreempt), communication linkage cost
(Clink), and rollover cost (Crollover)[4].

3.1 Constraints

Since some processes require upper and lower limits on the
number of processors that they can support we must define
the linear constraints binding them to these limits. If we
allow Required(i) and Requested(i) to define the number
of processors that process i must have to execute and the
maximum allowed to execute respectively. Then to bound
the number of processors that can be used we must ensure
that no more than Requested(i) are used, and that no less
than Required(i) are used, i.e.

Required(i) ≤| Sn(Ni) |≤ Requested(i) ∀i ∈ {1 . . . n}
(1)

3.2 Request Cost

The first objective that is to be dealt with is the request cost,
Crequest. Each process has some upper and lower limit on
the number of processors that it can support and that it needs
to operate respectively. These upper and lower limits create
bounded constraints on the number of processors that can be
allocated to each process. As shown in Equation 1 this con-
straint does not allow for any advantage for the process for
using any more than the lower bound of processors. Thus
the request cost objective exists in order to try to provide
some benefit for using more than the lower bound of proces-
sors. For any given process the number of extra processors
used is found using Equation 2.

Crequesti
=| Sn(Ni) | −Required(i) (2)

3.3 Preemption Cost

For the cost of preemption, Cpreempt we want to minimize
the overall cost of preempting a process. There are two
manners of preemption examined: the true preemption, that
which occurs when a process is stopped so another pro-
cess can use that processor, and the preemption that occurs
when a process is moved to a different processor. Since not
all processes can be preempted the feasibility of a solution
based on it’s being preemptive or not is dealt with as a feasi-
bility constraint. For those processes that can be preempted
we decided to examine the two types of preemption from
the perspective of new processors added to a preexisting
processor, and old processors being removed from a preex-
isting process. In this manner we can examine not only the
preempted processors, but also include in it any additional
cost that occurs from adding extra processors to an already
ongoing process.

For the first type of preemption, where processes are
added to a preexisting processor, we use the cost function
as given by Equation 3.

Cpreempt+i
=| Sn(Ni) − So(Ni) | (3)

This equation enumerates, for some preemptible process i,
the number of processors that exists in the potential next-
state of the system that did not exist in the previous-state of
the system.

Using the same logic, Equation 4 calculates the number
of processors that existed in the old-state of the system that
are not present in the potential next-state of the system for
process i. In other words they determine the number of pro-
cessors given to and removed from task i respectively.

Cpreempt−i
=| So(Ni) − Sn(Ni) | (4)

When combining these two objectives we have to un-
derstand that they are opposing objectives. In other words
we want to maximize Cpreempt+ and minimize Cpreempt−.
Also, we must ensure that the objective value of adding new
processors to the current state (Cpreempt+) is not nearly
good enough to cover removing processors from the orig-
inal state (Cpreempt−). This is because of the overhead cost
that either adding or removing processors to a currently ex-
ecuting process would incur. By adding new processors we
ensure that executing program have to send out the appro-
priate commands, communicate whatever variables might
be present, as well as potentially having to redistribute it-
self. While this is all detrimental to the run time, overall
the addition of an extra processor should be able to bene-
fit the executing task (assuming of course appropriate dis-
tributed system utilization in the process). On the other
hand Cpreempt− forces the processor to do all the redistribu-
tion of load, but does not have the benefit of allowing for ex-
tra processor utilization. Thus Cpreempt− must be weighted
more than Cpreempt+. We arbitrarily chose a ratio of 1

10
for a weight to distinguish between the two, giving us the
equation:

Cpreempt = Cpreempt− −
1

10
Cpreempt+ (5)

3.4 Link Cost

The link cost, Clink is a measure of the overall commu-
nication overhead experienced by each process. By using a
normalized communication matrix, calculated a priori to the
GA execution, we are able to take into account all commu-
nication costs that would be associated due to the relative
node speeds, the backplane structure, etc. Thus for each
process:

Clinki
=

(|Sn(Ni)|−1)
∑

j=1

(|Sn(Ni)|)
∑

k=j

l(Sn(Ni))jk (6)

as the summation of all possible communication occur-
rences that could occur for process i.

3.5 Rollover Cost

The final cost chosen for examination is that of the rollover
cost Crollover. This is the cost associated with not includ-
ing available processes for execution in the next-state of the
system. The number of rolled-over processes is found from
Equation 7. This is a critical element of the algorithm in that
we want to ensure that as few processes are not executed as
can be contained within the constraints as explained in sec-
tion 3.1.

Crollover = m − n (7)

3.6 Normalization

Now that we have identified the objectives that are incorpo-
rated into the load balancing system we must adapt them so
that they can be reasonably compared with each other. As
can be seen by Table 1 the domains are too diversified to be
able to be used directly in the objective function. Also, most
of the objectives only take into account a single process and
its relative configuration. Thus in order to find a unifying
objective function we expand the cost functions to be able to
incorporate the entire system in a normalized manner. The
normalization approach taken for each of the objectives is
based off of the standard statistical normalization equation.
The normalized multiobjective symbolic metrics are given
in Table 1.

4 MOPs and MOEA Design

A multiobjective optimization problem (MOP) consists
of decision variables, two or more objective functions,
and constraints. Standard MOP and MOEA definitions
and nomenclature can be found in [8]. Such sym-
bolic formulation includes feasible regions in objective
space, feasible solutions, solution dominance and non-
dominance, true and approximate Pareto optimal solutions
and Pareto Front (P*/PF*), current computational values
(Pknown/PFknown), fitness sharing, niche count, sharing
function, mating restrictions, ranking and the required evo-
lutionary algorithm characteristics. The goal of a Pareto-
based MOEA is convergence of PFknown towards PF*.
MOEAs generally operate on a population of candidate
solutions (chromosomes) as opposed to a single solution;

therefore, the strength of a MOEA is its ability to find mul-
tiple non-dominated solutions (Pknown) that are close to P*.

Evolutionary algorithms (EA) consist of a class of al-
gorithms that use the concepts of genetics to enable them
to explore the search space landscape for a specific opti-
mization problem domain. The class includes genetic al-
gorithms (GA), evolution strategies (ES), and evolutionary
programming (EP). EA’s have been used for a wide variety
of stochastic search applications, including processor allo-
cation problems [14] [9] [3]. In an evolutionary algorithm,
a collection or group of individuals is initially defined; each
individual is known as chromosomes; and a group is de-
fined as a population. The population moves through gen-
erations by using genetic operators such as mutation and
recombination. Mutation works by inserting new genetic
material into the population by modifying individuals, re-
combination by transferring preexisting genetic material be-
tween two or more individuals of the population. There are
many varieties of genetic operators each with a different set
of operational parameters that may be modified [1].

For our MOEA development, the GENOCOP III GA
software was selected as a foundation because of its generic
breath of application. The GENOCOP III algorithm is a
well known GA package that uses a variety of arithmetic
operators for optimizing real-valued alleles [17]. In the III
version of this GA software, a collection of constraint han-
dling operations have also been implemented[18]. We have
extended this GENOCOP software by integrating a multi-
objective Pareto optimization capability [5]. Thus, the ex-
tended GENOCOP III is a general multiobjective optimiza-
tion algorithm and is labelled as MOCOP.

Note that GENOCOP III is a real-valued EA and the re-
sulting choices in our applications are supposed to be in-
teger solutions. For the obvious reason that we would not
desire a fractional computing system for the specified appli-
cations, we truncate all of the chromosome elements (alle-
les) so that they can easily represent any computer system
set of processors. This is not a problem because of the fact
that we constrained the domain of the alleles to be between
0 and n + 1 in the implementation; therefore, our possi-
ble genotype solutions are appropriate. Other integer-based
software was considered, but the breath of GENOCOP III
and ease of implementation indicated to the authors that it
was the better choice.

There exists multiple implementations for storing the
secondary population of Pknown(t) as originally defined in
the GENOCOP real-valued genetic algorithm. One com-
mon approach is to simply add the current population at
each step (ie- Pknown(t) := Pcurrent(t)

⋃

Pknown(t − 1)
and periodically removing any dominated chromosomes
from the population. This removal process is done through
the use of what is termed Pareto Ranking. In general, the
size of the non-dominated population or set is a concern in
a given application. In order to restrict the population size
within memory limitations, a number of techniques can be
applied. For example, in order to attempt a uniform distri-
bution of solutions across the Pareto Front, an operator to
ensure Fitness Sharing can be used. Many varieties of the

Standard Function Normalized Function

Crequesti
=| Sn(Ni) | −Required(i) Crequest =

∑

nn

i=1
(|Sn(Ni)|−Required(i))
∑

nn

i=1
|Sn(Ni)|

Cpreempt+i
=| Sn(Ni) − So(Ni) | Cpreempt =

∑

no

i=1
|Sn(Ni)−So(Ni)

1+
∑

no

i=1
|Sn(Ni)|

Cpreempt−i
=| So(Ni) − Sn(Ni) | Cpreempt− =

∑

no

i=1
|So(Ni)−Sn(Ni)

1+
∑

no

i=1
|Sn(Ni)|

Clinki
=

∑|Sn(Ni)|−1
j=1

∑|Sn(Ni)|l(Sn(Ni))jk

k=j Clink = 1 −

(

∑

nn

i=1

(

∑(|Sn(Ni)|−1)

j=1

∑(|Sn(Ni)|)

k=j
l(Sn(Ni))jk

)

∑

p−1

j=1

∑

P

k=j
l(Sn)jk

)

Crollover = m − n Crollover = m−n
m

Table 1: Standardized Objective Functions for the Allocation EA

ranking and fitness sharing operators exist and an examina-
tion of these operators can be found in [20].

Once the Pareto Front has been found, the job of the DM
is to select which point would be best for the needs of the
specific project. Thus making Pareto Optimization an a pos-
teriori technique. With proper operators this formulation
can find fully enumerated optimal surfaces for which dy-
namic selection at run time is available, depending on the
problem, of equally non-dominated solutions.

A Pareto ranking scheme was incorporated into MOCOP
using Fonseca and Fleming’s Ranking function:

rank(~x, t) = r(t)
u (8)

where r
(t)
u is the amount of the population at generation t

that dominates xu. In this manner the fitness value of each
chromosome are measured according to its Pareto rank as
opposed to the weighted sum of the aggregate approach.

The original GENOCOP III chromosome consisted of
a vector ~x where ~x(0) = f(~x). Because Pareto fitness is
based off of not one but multiple objective values this is
modified such that

~x(0), t = rank(~x, t) (9)

where the ranking is based on the fitness values returned by
each of the objectives. Once again the values are mapped to
the interval [0, 1].

MOCOP functionality provides for the ranking of the
entire population added as well as a member comparison
function. This function takes two members of the popula-
tion and ranks them against the whole population compar-
ing their resulting rank and returning which rank is greater.
The populations are expanded to store the objectives, thus
all routines that copy the population members are modified
as well to incorporate the objective values.

Regarding our load balancing application, the chromo-
some representation implemented assigns each element of
the chromosome as a processor on the high performance
computing system. Thus the value at the allele represents
the process ID number that is assigned to the processor that
is mapped to that allele.

5 Design of Experiments

For analysis, the experiment is executed on two different
problems that reflect essential characteristics of the two ap-
plications. Both problems are based on a 16 processor sys-
tem, with four processes trying to execute and an assumed
mesh backplane where process communication costs be-
tween processors is directly proportional to their distances.
In the first problem (Problem 1) none of the processors are
initially allocated. The second problem (Problem 2) has all
of the processors initially allocated uniformly except for one
empty processor.

Each experiment is run ten times on a Pentium 4 1.7Ghz
system using the initialization parameters as given in Table
2. Given this data, computational results are statistically cal-
culated using the metrics of Overall Non-dominated Vector
Generation(ONVG) and Spacing. Results are depicted in
Table 3. These metrics were selected because of the un-
known PF* and thus, relative metrics were desired. Selec-
tion of other possible metrics is possible depending upon
the desired evaluation criteria [8].

6 Comparative Pareto Fronts

An example of the phenotypic results of a solution of non-
dominated vectors is given in Figure 1. Figure 2 depicts the
specific tradeoffs between combinations of objectives. The
rollover cost are embedded into each of the charts. Each
shape represents the number of processes that were not in-
cluded as part of the generated solution.

In order to select a load balancing configuration for a
distributed system an examination of the tradeoffs between
each of the objectives is necessary. This examination is
done based on the priorities of the intended application suite
to be executed on the HPC system. Regardless of the in-
tended application, if a process is to be executed it should be
started as soon as possible. For this reason the first objective
that is analyzed is the rollover cost. This allows the decision
maker to ensure that the system avoids rollovers whenever
possible. However, this is not to suggest that an aggregated
single objective method be employed instead. As can be
seen from Figure 2, chart C, there is clear relationship be-
tween the number of requests able to be satisfied and the
rollover cost. This is also rationally correct, for as less pro-

Parameter Setting
Reference Population Size 50
Search Population Size 50
Total Number of Evaluations 10000
Reference Population Evolution Period 20
Number of Offspring for Ref. Population 50
Search Point Replacement Ratio 0.4
Reference Point Initialization Method 1 (Multiple)
Search Point Initialization Method 1 (Multiple)
Frequency of Operators 10 (For All)

Table 2: GENOCOP III Parameters From Generic Experiments

Mean ONVG Variance ONVG Mean Spacing Variance Spacing Mean Time Variance Time
Problem 1 34.8 3.7 0.379 0.0022 80.75s 1.5833
Problem 2 11.6 42.8 0.2404 0.0036 79.2 2.7

Table 3: Multiobjective Results for the Allocation Problems on a 16 Processor, 4 Process System

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Link Cost

16 Processors, 4 Processes with 1 empty Processor

Request Cost

P
re

em
pt

io
n

C
os

t

Figure 1: PFknown for a 16 Processor, 4 Process load bal-
ancing problem. The stars represent allocations that allo-
cated all processes to processors, squares allocate all but
one, and triangles allocated all but two processes. The cir-
cles represent those solutions that utilize every processor.

cesses are executed more processors are available for the
remaining processes to utilize.

Comparing the cost of communication to the number of
processes not included, it can be seen that as less processes
are included the higher the communication cost. Since
fewer processes means more processors per process the
communication being higher between these processors is
understandable.

When examining the request costs with respect to the
other objectives it appears that the request cost is inversely
proportional to link cost (Figure 2,chart A) and directly
proportional to preemption cost (Figure 2,chart C). As the
number of processors allocated to each process is increased
Crequest lowered (see Equation 2), but with the increase in
processors per process an increase in communication over-
head occurs and hence Clink increases as shown by Equa-
tion 6. Due to the stochastic nature of the MOEA, the al-

0 0.1 0.2 0.3 0.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Link Cost

R
eq

ue
st

 C
os

t

chart A

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

Link Cost

P
re

em
pt

io
n

C
os

t

chart B

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Preemption Cost

R
eq

ue
st

 C
os

t

chart C

Figure 2: Comparison of specific objective tradeoffs.

location that is input to the system as the initial state does
not imply that the result is the same, unless the processes
specifically state that they are not preemptible. Since for
this experiment all processes are assumed to be preemptible,
processes are allowed to roam from their initial configura-
tion. From Figure 2, chart C, we see that most of the re-
quests and preemptions lie in lower region of the objectives.
Those solutions that are in the higher area of the objective
space do so for the communication cost, trading preemption
and request costs for lower link costs, as shown in Figure 1
and Figure 2, chart B.

Another important factor that should be examined that is
not reflected in the objectives is the number of unutilized
processors in the system. The addition of extra proces-
sors to a process is not always beneficial, and thus should
not be forced upon applications [16]. As such the addi-
tion of an extra objective for minimizing the number of un-
used processors was not included. The average number of
unused processors for a Pareto Front with 38 solutions is
3.94 ± 0.318 with a min of 0 and a max of 10. For the ex-
periment presented in Figures 1 and 2, the solutions marked

Figure 3: Genotypic results (Pknown) of the fully utilized
processors, the top row shows the results that had all four
processes being included, the bottom has three processes
being included. Each block of the graph represents a pro-
cessor with the number and shading representing a process
assigned to that processor.

Priority ACES CHSSI
1 Rollover Cost Rollover Cost
2 Request Cost Preemption Cost
3 Preemption Cost Link Cost
4 Link Cost Request Cost

Table 4: Objective Prioritization Based on Application

with a circle represent those that utilize all available proces-
sors. As can be seen, for this experiment, there are four
solutions that utilize all available processors. Two of these
solutions allocate all of the processes, two allocate all but
one. All four points have a relatively higher request cost,
which is again explainable based on the fact that there are
less processors available since they are all being utilized.
The genotypic results are shown in Figure 3 where it is evi-
dent that the processes are beginning to cluster into groups
for minimizing communications.

6.1 Application Specific Regions

In order to apply a load balancing solution to a specific
problem the Pareto front must be examined with regards
to the objective tradeoffs deemed important for the appli-
cation. As shown in Table 4 each of the applications dis-
cussed in Section II have different prioritization based on
the requirements of the application. This prioritization de-
fines the region of the Pareto Front that should be examined
to best benefit the application. Also, observe that the non-
dominated population size was quite small in the two exam-
ple discrete problems in part because of the constraints.

For the discrete event simulation algorithm, ev-
ery process must be included with every set of
calculations(Crollover). This is the primary goal be-
cause for any missed time frame of calculations we would
upset the balance created by the overall system. The next
most important objective would be to allow requested

processors to execute as provided by Crequest.
DES systems in general have a variable number of com-

putations that must be executed throughout the computation
time. By allowing additional processors to support the avail-
able applications, as emphasized by the Crequest objective,
we are able to diffuse the processing done by the system as
a whole. This helps to ensure a quick runtime for next state
of the DES system.

As with any distributed system the communication over-
head and preemption policies are important, for a DES sys-
tem they are not as important as the other two objectives.
The preemption of processes (assuming it is allowed for the
given application with given process priorities) would allow
for different parts of the system taking and losing processors
as needed and thus help to increase the number of proces-
sors given to requesting processes at different time steps. As
for Clink, this is the least important of the four since by the
very nature of the Pareto front the communication choices
provided are those that dominate other communication lay-
outs of the search space.

When examining the Pareto front with respect to Real
Time Digital Signal Processing we again want to ensure
that we are executing every process available so that the
real-time data can be quickly analyzed. As opposed to the
DES system which has rapidly changing processor require-
ments, the input from the signal collectors produces data at
a steady rate. Thus Crequest would have the lowest priority
of the four objectives to be examined. For this application
Cpreempt would be one of the more prominent objectives.
Since the processes act in a predictable fashion based on
a steady amount of data that they receive, and the fact that
this data is being received in a real-time fashion, it would be
cost prohibitive to preempt the processes. Thus, minimizing
preemption should be high priority. This leaves communi-
cation link cost (Clink) as the third most important objec-
tive. This is more important than the Crequest objective due
to the large number of intra-processor communication that
must be done in order to do the mathematical calculations
that are necessary.

7 Conclusions

We have shown the relative tradeoffs of four load balanc-
ing objectives with respect to the general characteristics of
two real-world applications ACES discrete event simulation
and CHSSI/SIP DSP analysis. Further, the MOCOP algo-
rithm, as an extension of the GENOCOP III EA software,
can provide an effective Pareto front mapping for the load
balancing of these or possibly any generic or specific ap-
plication. Specific engineering and architectural parameter
values for distributed processor allocation would be input
to MOCOP. The specific region of the Pareto front must be
selected by the decision maker only after an examination of
the tradeoffs of the objectives. Then using a prioritization
based on the requirements of the application an effective so-
lution region can be determined and implemented.

Whether using an a priori aggregate approach or an a
posteriori Pareto approach, analysis of the objective trade-
offs is important. By examining the objectives the decision

maker is able to select which region of the solution space is
most effective for the intended application. If the region is
stable then the decision maker might choose to use an aggre-
gate approach so that the selection can be automated. By ex-
amining the solution region using the a posteriori approach
the decision maker can more carefully tune the weights so
that they reflect the solution region that is most beneficial
for the application. While this requires more up-front anal-
ysis it allows for the system to be more automated when
deployed to an actual working environment.

Future investigation includes extension to much large di-
mensional problem domains, development of additional ob-
jectives and constraints for the processor scheduling prob-
lem, study and analysis of non-dominated population size
restrictions, and comparison to other integer-MOEA perfor-
mance.

8 Acknowledgements

The authors would like to thank Dr. Richard Linder-
man at the Air Force Laboratory, Information Directorate (
AFRL/IFTC - HPC CHSSI SIP project) and Mr. Jon DiLeo
at the Air Force Wargaming Institute (AFWI/WGT) for their
support of this research.

Bibliography

[1] Thomas Bäck. Evolutionary Algorithms in Theory and
Practice. Oxford University Press, New York, 1996.

[2] Jerry Banks, II John S. Carson, and Barry L. Nel-
son. Discrete-Event System Simulation. Prentice-Hall,
1995.

[3] Christopher A. Bohn and Gary B. Lamont. Load bal-
ancing for heterogeneous clusters of pcs. Future Gen-
eration Computer Systems, 1(18):389–400, 2002.

[4] David J Caswell. Active processor scheduling using
evolutionary algorithms. Master’s thesis, Department
of Electrical and Computer Engineering. Air Force In-
stitute of Technology, WPAFB, Ohio, Dec. 2002.

[5] David J. Caswell and Gary B. Lamont. Wire-antenna
geometry design with multiobjective genetic algo-
rithms. In Proceedings of the 2001 International Con-
ference on Evolutionary Computation, Piscataway,
New Jersey, 2001. IEEE.

[6] Y. Chan, S. Dandamudi, and S. Majumdar. Per-
formance comparison of processor scheduling strate-
gies in a distributed-memory multicomputer system.
In Proc. Int. Parallel Processing Symp (IPPS), pages
139–145, 1997.

[7] A. Choudhary, W.K. Liao, P. Varhney, D. Weiner,
R. Linderman, and M. Linderman. Design, implemen-
tation and evaluation of parallel pipelined stap on par-
allel computers. In 12th International Parallel Pro-
cessing Symposium, 1998.

[8] Carlos A. Coello Coello, David A. Van Veldhuizen,
and Gary B. Lamont. Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic
Publishers, New York, 2002.

[9] Diane Cook, Joey Baumgartner, and B. Shirazi. Ge-
netic solutions to the load balancing problem in par-
allel computers. In Proceedings of the 1995 Interna-
tional Conference on Parallel Processing, 1995.

[10] Ingemar J. Cox and Matt L. Miller. On finding ranked
assignments with application to multitarget tracking
and motion correspondence. Trans. Aerospace and
Electronic Systems, 31:486–489, 1995.

[11] F. Desprez, J. Dongarra, A. Petitet, C. Randriamaro,
and Y. Robert. Scheduling block-cyclic array redistri-
butions. In IEEE Transactions on Parallel and Dis-
tributed Systems, volume 9. IEEE, February 1998.

[12] Hluch’y Dobrovodsk’y Dobruck’y. Static mapping
methods for processor networks. In Centre for Par-
allel Computing, University of Westminster, London,
1997.

[13] Douglas F. Elliot and Ramamohan K. Rao. Fast Trans-
forms Algorithms, Analyses, Applications. Academic
Press, Inc., New York, 1982.

[14] G. Greenwood, A. Gupta, and K. McSweeney.
Scheduling tasks in multiprocessor systems using evo-
lutionary strategies. In Proc. 1st IEEE Conf. on Evo-
lutionary Computation, pages 345–349, 1994.

[15] Tracy Braun Howard, Jay Siegel, and Noah Beck. A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous dis-
tributed computing systems. Journal of Parallel and
Distributed Computing, pages 810–837, 2001.

[16] Vipin Kumar, Ananth Grama, Anshul Gupta, and
George Karypis. Introduction to Parallel Comput-
ing Design and Analysis of Algorithms. The Ben-
jamin/Cummings Publishing Company, 1994.

[17] Z. Michalewicz and G. Nazhiyath. Genocop III: A
co-evolutionary algorithm for numerical optimization
problems with nonlinear constraints. In Proceedings
of IEEE International Conference on Evolutionary
Computation, pages 2:647–651, 1995.

[18] Zbigniew Michalewicz. Genetic Algorithms + Data
Structures = Evolution Programs. Springer-Verlag,
1994.

[19] Horst D. Simon. Partitioning of unstructured prob-
lems for parallel processing. Computing Systems in
Engineering, 2:135–148, 1991.

[20] David A. Van Veldhuizen and Gary B. Lamont. Mul-
tiobjective evolutionary algorithms: Analyzing the
state-of-the-art. Evolutionary Computation, 8(2):125–
147, 2000.

