
Abstract

CHETAN, SRIGIRIRAJU, KISHAN. Noninferior Surface Tracing Evolutionary

Algorithm (NSTEA) for Multi Objective Optimization (Under the direction of Dr. S.

Ranjithan.)

Evolutionary algorithms are becoming increasingly valuable in solving large-

scale, realistic engineering problems.  Most of these problems deal with sufficiently

complex issues that typically conflict with each other, thus requiring multi objective

(MO) analyses to assist in identifying compromise solutions.  The focus of this paper is to

develop and test a new multi objective evolutionary algorithm (MOEA).  The new

procedure, Noninferior Surface Tracing Evolutionary Algorithm (NSTEA), builds upon

two fundamental concepts that are established in the mathematical programming

literature for MO analysis.  Implicit implementation of Pareto optimality and beneficial

seeding of initial population are instrumental in the improved performance.  NSTEA was

evaluated by solving a suite of test problems reported in the MOEA literature.

Performance with respect to accuracy, coverage, and spread of noninferior solutions

generated by NSTEA is evaluated and compared with those of solutions generated by

four other MOEAs that are widely accepted.  Also, in some cases, comparisons are made

with noninferior sets generated using mathematical programming techniques. Overall,

NSTEA performs relatively better than the other MOEAs when tested on these problems.

Application and performance evaluation of NSTEA in solving a real-world MO

engineering optimization problem was also conducted.  In comparison to published

mathematical programming-based noninferior solutions, the NSTEA solutions performed



well. In summary, this paper contributes to the MOEA literature by presenting NSTEA as

a good alternative evolutionary algorithm-based multi objective method that is relatively

simple to implement and to incorporate into existing implementations of evolutionary

algorithm-based optimization procedures.
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1 Introduction

Most real world engineering decision making problems, especially those that involve

public sector issues, require consideration of a multitude of conflicting design objectives.

Although many of these objectives can be represented sufficiently well to allow quantitative

analysis, incorporating them into a decision making process requires multiobjective (MO)

modeling and optimization.  Unlike single objective problems for which the optimal solutions are

sought, the multiobjective problems require the consideration of noninferior tradeoffs among

competing objectives to help identify best compromise solutions.  This information is potentially

useful to decision makers in eliminating inferior solutions from consideration, facilitating an

efficient search for solutions that really matter with respect to the defined objectives. Generation

of tradeoff information in the form of a noninferior, or Pareto optimal set, of solutions within a

region of interest in the objective space is the main goal of multiobjective analysis.

An array of multiobjective evolutionary algorithms (MOEAs) has been reported since the

early eighties. Detailed summaries of the state-of-the-art in MOEA were discussed recently by

Coello (1999a) and Van Veldhuizen and Lamont (2000), and are also represented in the special

issue of Evolutionary Computation (Vol. 8, No. 2, Summer 2000) on multi criterion optimization

(also see Coello (1999b) for an archive of bibliography).  Within standard mathematical

programming frameworks, the constraint method and weighting method are two commonly used

techniques for generating noninferior sets (Cohon, 1978).  In the constraint method, one

objective is optimized while constraining the others to target levels to identify a noninferior

solution.  Alternatively, an aggregate objective function, defined as a linearly weighted sum of

all objective functions, is optimized in the weighting method.
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The underlying Pareto-optimality concepts of these MO methods are general, and can be

applied within any evolutionary algorithm (EA) framework as well as within mathematical

programming techniques for optimization. Solving a number of independent single objective

optimization models to obtain a set of noninferior solutions, however, renders these MO methods

less attractive if each model solution is computationally intensive to obtain.  This issue is

addressed in some mathematical programming approaches (e.g., linear programming, nonlinear

programming, integer programming) by seeding a search for a new noninferior solution with a

previously generated adjacent noninferior solution.  The first noninferior solution can be the

optimal solution for any one of the objectives.  Any efficiency gain is predicated on the notion

that for some class of problems noninferior solutions adjacent in the decision space map to

adjacent points in the objective space.

This paper describes the development of the Noninferior Surface Tracing Evolutionary

Algorithm (NSTEA), which explicitly uses this adjacency mapping property to its advantage

within an MOEA framework.  The underlying simple concepts in NSTEA allow it to be adapted

easily into existing implementations of evolutionary algorithms for single objective optimization,

as well as to eliminate the computational need for iterative sorting and pair-wise comparison that

are required when determining Pareto optimality.  Starting with a general representation of a

standard MO problem, brief descriptions of a four commonly accepted MOEAs that are used for

performance comparison in this paper are provided in the next section.  The details of NSTEA

are then described, followed by a performance comparison of NSTEA and the other MOEAs in

solving a suite of published test problems.  Where possible, the noninferior solutions are also

compared to those obtained via mathematical programming techniques.  An application of
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NSTEA to a real world problem in environmental management is also presented.  Finally,

concluding remarks are made with a brief discussion of NSTEA’s strengths and weaknesses.

2 Background

2.1 A standard multiobjective optimization problem

A multiobjective problem consisting of k objectives and m constraints defined as

functions of decision variable set x can be represented, without loss of generality, as follows:

Maximize Z(x) = {Zl(x): l=1,2, …, k} (1)

S.T.  gi(x) ≤ 0 ∀i = 1,2,…,m (2)

x ∈ X (3)

where x = {xj : j = 1,2,…..,n} represents the decision vector, xj is the jth decision variable, X

represents the decision space, gi(x) is the ith constraint, Z(x) is the multiobjective vector, and

Zl(x) is the lth objective function.

2.2 Noninferiority

Noninferiority (which is also referred as nondominance or Pareto optimality) of a

multiobjective solution is formally defined as follows (Cohon, 1978):  a feasible solution to a

multiobjective problem is non-inferior if there exists no other feasible solution that will yield an

improvement in one objective without causing a degradation in at least one other objective.
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More rigorous definitions of this and related MO terminology are given by Van

Veldhuizen and Lamont (2000) and Zitzler et al. (2000).  Based on the definitions by Van

Veldhuizen and Lamont (2000) and notations used in Equations 1-3, the following are defined:

Pareto Dominance: A multiobjective vector u = (u1,u2,…uk) is said to dominate v = (v1,v2,…vk)

(denoted by u Ø v ) if and only if u is partially more than v,

i.e., iiii vukivuki >∈∃∧≥∈∀ :},...2,1{},,...2,1{ .

Pareto Optimality: A solution x ∈ X is said to be Pareto optimal with respect to X if and only if

there exists no x’ ∈ X for which v = Z(x’)  dominates u = Z(x).

Pareto Optimal Set: For a given multiobjective problem Z(x), the Pareto optimal set P* is a set

consisting of Pareto optimal solutions. P* is a subset of all the possible solutions in X.

Mathematically, P* is defined as follows:

P* := {x ∈ X | ¬∃ x’ ∈ X : Z(x’) Ø Z(x)} (4)

Pareto Front: The Pareto front, PF* is the set that contains the evaluated objective vectors of P*.

Mathematically PF* is defined as:

PF* := { u = Z(x) | x ∈ P* } (5)

2.3 Evolutionary algorithms for multiobjective optimization

Since the pioneering work by Schaffer (1984, 1985) in the area of EAs for MO

optimization, development of MOEAs has taken multiple directions.  Detailed surveys of these

techniques are catalogued by Fonesca and Fleming (1993, 1995), Horn (1997), Coello (1999a,

1999b), and Van Veldhuizen and Lamont (2000).  Many different bases (such as differences in

fitness and selection implementations) for higher level classification of MOEAs are used in these
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surveys.  For example, Schaffer’s (1985) vector evaluated genetic algorithm (VEGA) uses a

special single-objective-based preferential selection procedure, the method by Hajela and Lin

(1992) uses an aggregated fitness function, and the methods by Horn et al. (1994), Srinivas and

Deb (1994), Zitzler and Thiele (1999), and Knowles and Corne (2000) use Pareto-based

selection procedures to determine the noninferior set.  In addition, these techniques can be

categorized by special operators, such as niching and sharing (e.g., Horn et. al., 1994; Menczer

et. al., 2000), restrictive mating (e.g., Loughlin and Ranjithan, 1997), and elitism (e.g., Knowles

and Corne, 2000; Zitzler and Thiele, 1999).  An EA-based approach presented more recently by

Loughlin et al. (2000a) addresses problems with conflicting objectives where some may not be

easily quantified or modeled.  A wide range of applications (e.g., Hajela and Lin, 1992; Ritzel et

al., 1994; Cieniawski et al., 1995; Jimenez and Cadenas, 1995; Harrell and Ranjithan, 1997;

Coello et al., 1998; Coello and Christiansen, 2000; Loughlin et al., 2000b; Obayashi et al., 2000)

of MOEAs in solving realistic MO engineering problems have also been reported.  All existing

MOEAs are not described in this paper, but brief discussions are provided below for selected

MOEAs that are used to compare the performance of NSTEA proposed in this paper.

2.3.1 Vector Evaluated Genetic Algorithm (VEGA)

VEGA (Schaffer, 1985) was the first reported MOEA that exploited the population

within an EA to consider multiple objectives and to search for nondominated solutions

simultaneously.  For a problem with k objectives, k subpopulations of size N/k are considered,

where N is the population size.  Beside the standard crossover and mutation operators, VEGA

applies a selection operator preferentially to each subpopulation based on one of the objectives.

These subpopulations are then shuffled together at end of each iteration to obtain a new

population.  Shuffling and merging all subpopulations corresponds to averaging the normalized
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fitness components associated with each of the objectives. The linear combination of the

objectives implicitly performed over many generations by VEGA can be attributed to the

speciation phenomenon.  This tends to split the population into species, each specializing with

respect to one of the objectives.  As a result, VEGA provides a poor coverage of the noninferior

set.

2.3.2 Niched Pareto Genetic Algorithm (NPGA)

Horn et al., (1994) proposed NPGA that uses Pareto optimality as a basis for the selection

operator.  Individuals undergo a tournament selection in which the Pareto dominance of the

individuals is used as the criterion for determining the winner. Instead of limiting the tournament

comparison to two individuals, a comparison set consisting of a specific number (tdom) of

individuals is picked at random from the population at the beginning of each selection process.

Two individuals are selected at random from the population for determining a winner. Both

individuals are compared with the individuals in the comparison set to check for dominance. If

one of them is non-dominated and the other is dominated, then the non-dominated individual is

selected. If both of them are dominated or non-dominated then a niche count is calculated for

each individual and the individual with lower niche count is selected. By ensuring the selection

of non-dominated individuals, convergence towards the noninferior set is ensured. By selecting

the individual with the lower niche count, diversity is maintained in the population. NPGA has

been shown to be successful in obtaining good convergence to the noninferior set as well as

maintaining good coverage. The performance of NPGA is heavily dependent, however, on the

selection of the sharing factor and size of the tournament (tdom).
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2.3.3 Non-dominated Sorting Genetic Algorithm (NSGA)

The NSGA (Srinivas and Deb, 1994) is based on several layers of classifications of the

individuals. NSGA varies from a simple genetic algorithm only in the way the selection operator

is used. The crossover and mutation operators remain unchanged. Before selection, the

population is ranked on the basis of nondomination, classifying all nondominated individuals

into one category with a dummy fitness value. To maintain diversity in the population, these

classified individuals undergo sharing based on their dummy fitness values. This group is then

ignored and the next layer of nondominated individuals is classified similarly, assigning a lower

fitness value. This layering process continues until the whole population is classified. Thereafter

a stochastic remainder roulette-wheel selection is used to select the next generation of

individuals, resulting in more copies of individuals that are relatively more dominant.  This

facilitates search for nondominated regions and consequent convergence to the noninferior set.

A tangential pressure applied in the objective space by the sharing procedure helps enhance

coverage of the noninferior set.  NSGA is shown to obtain a good coverage of the noninferior

set, but is sensitive to the sharing factor.

2.3.4 Strength Pareto Evolutionary Algorithm (SPEA)

Zitzler and Thiele (1999) presented SPEA, an elitist MOEA based on Pareto optimality

concepts.  SPEA maintains an external population of noninferior solution by storing at every

generation all Pareto optimal solutions.  Along with the current population, this external

population undergoes all genetic operations. A fitness value is determined for each individual in

the combined population. The fitness value of each individual in the combined population is

determined based on the number of solutions it dominates. All Pareto optimal solutions in the
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combined population are assigned a fitness value based on the number of solutions they

dominate. A relatively higher fitness value is assigned to an individual that dominates more

solutions in the combined population, while a relatively lower fitness value is associated with a

solution dominated by more solutions in the combined population. Care is taken to assign no

non-dominated solution a fitness value worse than the most dominated solution. This

methodology of fitness assignment ensures that the search is directed towards the noninferior set

while simultaneously maintaining diversity.

3 NSTEA - Noninferior Surface Tracing Evolutionary Algorithm

The most successful among the existing MOEAs with respect to identifying the noninferior

set with sufficient coverage use, in general, a Pareto-based approach.  Each step for checking

Pareto optimality requires sorting and pair-wise comparison of at least a subset of the population,

thus increasing the computational needs.  This is avoided in the new MOEA technique NSTEA

that is presented in this paper.  Building upon the concepts of the mathematical programming-

based weighting approach (Cohon, 1978) for generating the noninferior set, NSTEA achieves

Pareto optimality in an implicit manner by applying fitness pressure that encourages the

population at each intermediate step to move towards a noninferior solution.  Similar to an

objective aggregation approach, a linearly weighted function of all objective functions is used to

evaluate fitness at each intermediate step to enforce Pareto optimality of a solution.  Normalized

objective function values are used to maintain generality.  Through repeated execution of this

intermediate step with varying weight vectors, NSTEA attempts to identify the noninferior set.

A linearly weighted fitness function, Zag, is computed as follows:

∑
=

=
k

l
llag

ZwZ
1

(6)
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where, w = {wl: :l=1,2,…k} is the weight vector, wl is the lth weight and lZ  is the lth normalized

objective function value. The weight wl is a fractional number such that

1
1

=∑
=

k

l
lw (7)

A straightforward implementation of an algorithm that repeats this intermediate step with

varying w would be similar to iterative execution of a single objective EA, which is not

necessarily computationally efficient.  Instead, NSTEA exploits the basic concept that for some

classes of problems, adjacent solutions in the decision space map to adjacent points in the

objective space.  Its implication is that these decision vectors (xs) (that map to adjacent

noninferior points in the objective space) have solution features (i.e., values of xjs) that are only

marginally different.  This enables the beneficial use of the final population corresponding to the

current noninferior solution to seed the search of an adjacent noninferior solution.  The new

search of course would have an updated weight vector w to represent an adjacent noninferior

point in the objective space.  When the new selection pressure manifesting from the updated

weight vector is applied on the previous population, the population quickly migrates to an

adjacent noninferior solution.  A systematic update of the weight vector thus enables an efficient

mechanism for incrementally tracing the noninferior set.  This incremental population migration

approach significantly reduces the computational burden compared to that required when solving

each single objective EA as independent search problems.

Using a two objective problem as an illustration, let the current weight vector w be {w1, w2};

without loss of generality, we assume w1 + w2 = 1.  The updated weight vector corresponding to

the search for an adjacent noninferior solution would then be {w1+∆, w2-∆}, where the
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magnitude of ∆ determines the minimum interval between adjacent noninferior solutions. For

example, smaller values of ∆ would result in a finer coverage  (or better distribution) of the

noninferior set, but would require execution of more intermediate steps, each of which requiring

the solution of a single objective EA.  At the beginning of the algorithm, the population is

converged to an extreme point in the noninferior set by optimizing for one of the objectives.  In

the above example, this is achieved by solving the optimization problem corresponding to w1=1

and w2=0 (or alternately w1=0 and w2=1).  Once the population has converged to this solution

according to some stopping criterion, the best solution is stored.  Then the weight vector is

incremented adaptively to w1←w1-∆ and w2←w2+∆, and the current population is continually

subjected to all the genetic operators where the fitness evaluation is now based on the updated

weight vector.  To introduce higher population diversity at the beginning of each search, the

mutation operator is applied in an adaptive manner during each intermediate step, starting with a

higher rate and gradually reducing it (e.g., exponential decay) with generations within each step.

Thus, at the beginning of each intermediate step the higher mutation rate perturbs the converged

population around the previous noninferior point, introducing diversity for the new search.

This iterative process is terminated when the weight vector corresponds to optimization of

the other objective, i.e., when w1= 0 and w2=1 (or alternatively w1=1 and w2=0). Two

convergence criteria are implemented to determine when to change the weight vector and initiate

the search for the next noninferior solution.  One of the criteria is to check if the number of

generations, generation, exceeds a maximum value, maxGenerations. The other criterion is to

track the improvement in the best solution corresponding to a weight vector; convergence is

assumed when the best solution does not improve within a certain number (N) of successive
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generations.  If either of the above two criteria is satisfied then the weight vector is updated. The

key steps of NSTEA are shown as a flowchart in Figure 1.

Figure 1: Flowchart for NSTEA - Noninferior Surface Tracing Evolutionary Algorithm.

* The two convergence criteria are: 1) generation ≥ maxGenerations, and 2) no

improvement in N successive generations

Unlike most other MOEAs, NSTEA does not attempt to let the population converge to the

noninferior set simultaneously.  Instead, at each intermediate step, a point in the noninferior set is

identified through a search conducted by the whole population, and the final noninferior set is

generated by storing all noninferior solutions found at the intermediate steps.  Analogous to the

weighting method, the use of an aggregate fitness function implicitly ensures Pareto optimality.
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The coverage of the noninferior set is achieved explicitly by traversing the noninferior surface

through incremental and systematic updates of the weight vector.

4 Testing and evaluation of NSTEA

NSTEA was applied to a set of test problems of varied difficulty and characteristics. The

first application uses Schaffer’s F2 problem (Schaffer, 1985), which is an unconstrained,

nonlinear problem.  This is included since most other MOEA methods have been tested against

it, providing a common basis for comparison.  The second application uses a constrained, non-

linear optimization problem (Winston, 1993).  Although this problem has not been used for

testing of other MOEA methods, it offers a relatively challenging constrained problem that is

easily implemented. A noninferior set obtained by solving this problem using a gradient-based

nonlinear programming algorithm (Generalized Reduced Gradient-GRG2 algorithm (Lasdon et

al., 1978; Fylstra et al., 1998) hosted by Microsoft Excel 97 Solver) is used to evaluate the

performance of NSTEA. While the first two applications represent problems in a continuous

search space, the third application, which uses the extended 0/1 multiobjective knapsack problem

(Zitzler and Thiele, 1999), represent a problem in a combinatorial search space.  This problem is

a constrained, binary problem.  Performance comparisons of several MOEAs in solving this

problem are presented by Zitzler and Thiele (1999), and are used here to compare the

performance of NSTEA.  In addition, a noninferior set was generated using a mathematical

programming-based weighting method for the extended 0/1 knapsack problem, which was solved

using a binary programming solver (CPLEX Version 4.0).

Several performance criteria are used to evaluate NSTEA and to compare it with other

approaches: 1) accuracy, i.e., how close are the generated noninferior solutions to the best
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available prediction; 2) coverage, i.e., how many different noninferior solutions are generated

and how well are they distributed; and 3) spread, i.e., what is the maximum range of the

noninferior surface covered by the generated solutions.  Currently reported as well as newly

defined quantitative measures are used in comparing NSTEA with other MOEAs.  The

robustness of NSTEA in solving problems with different characteristics (e.g., real vs. binary

variables, constrained vs. unconstrained, continuous vs. combinatorial) is examined, in some

limited manner, by applying it to a variety of problems.  To evaluate the robustness of NSTEA in

generating the noninferior set and providing good coverage, random trials were performed where

the problems were solved repeatedly for different random seeds.  A representative solution is

used in the discussion below

4.1 Schaffer’s F2 problem

4.1.1 Description

The F2 problem is defined as follows:

Minimize 2
1 xZ = (8)

Minimize Z2 = (x – 2)2 (9)

The range for the decision variable x is [-5,7]. The Pareto optimal solutions constitute all

x values varying from 0 to 2. The solution x = 0 is optimum with respect to Z1 while the solution

x = 2 is optimum with respect to Z2. That is, objective functions Z1 and Z2 are in conflict in the

range [0,2].
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4.1.2 Results

The F2 problem was solved using NSTEA with algorithm-specific parameters as shown

in Table 1.  Results are compared in Figure 2 where the exact solution (obtained analytically

using Equations 8 and 9) for this problem is also shown.
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Figure 2: The true noninferior tradeoff curve and the noninferior set determined by NSTEA for

Schaffer’s F2 problem.

Although this is a relatively simple problem, the results indicate that NSTEA is very

accurate in generating the noninferior set for this problem.  Also, it provides good coverage by

generating a good distribution of noninferior solutions, and provides a full spread.
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Table 1: NSTEA parameters and settings for solving the test problems

Problem Decision
variable

type

NSTEA
Parameters

No. of
intervals

Population
size

Encoding Crossover
type

No. of
random trials

F2 Real 100 100 Binary, 32 bits per
variable

Uniform 5

Winston Real 100 100 Binary, 32 bits per
variable

Uniform 5

Knapsack Binary 100 100 Binary, 1 bit per
variable

Uniform 5

4.2 Winston problem

4.2.1 Description

This problem, adapted from Winston (1993), is a constrained, two objective, nonlinear

problem with two real-valued decision variables. This is a resource allocation problem in which

television advertising resources must be distributed between two target audiences.  The goal is to

maximize the exposure of the advertisements to both male and female viewers.  Given a limited

total advertising budget, the choice is between placing advertisements during football games and

soap operas, each costing different amount. This problem is mathematically stated as follows:

Maximize the number of men, SFZ 4201 += (10)

Maximize the number of women SFZ 1542 +=  (11)

Subject to the budget constraint: 100F + 60S ≤ 1000 (12)

where F and S (such that F>0 and S>0) are the number of one-minute advertisements placed

during football games and soap operas, respectively.
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4.2.2 Results

The Winston problem was solved using NSTEA with parameter settings as shown in

Table 1. For comparative purposes, a noninferior set was obtained using the constraint method

for this problem. A series of single objective constrained nonlinear programming models were

solved using the nonlinear programming (NLP) solver (Generalized Reduced Gradient-GRG2

algorithm (Lasdon et al., 1978; Fylstra et al., 1998) hosted by Microsoft Excel 97 Solver). The

resulting noninferior solutions are shown in Figure 3.
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Figure 3: The noninferior solution obtained using NSTEA and an NLP solution approach for the

Winston problem.
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Noninferior solutions generated by NSTEA are accurate (in comparison with the

noninferior solutions generated using the NLP approach) and cover the noninferior surface

evenly.  Also, the generated solutions spread the entire range of the noninferior set.

4.3 Extended 0/1 multiobjective knapsack problem

4.3.1 Description

Zitzler and Thiele (1999) used in their work a knapsack problem that extends the

traditional single objective knapsack problem by incorporating two knapsacks that can be filled

by items selected from a larger collection of items. Similar to the traditional knapsack problem,

each knapsack has a limited weight capacity with different payoff when each item is included in

it. The goal is to allocate a limited set of items to maximize the payoff in each knapsack without

violating its weight capacity constraint. This multiobjective problem is defined mathematically

as follows:

Maximize Zl(x) = ∑
=

n

j 1

pl,j  x j ∀l = 1,2,…,k (13)

Subject to ∑
=

n

j 1

wl,j  x j ≤  cl ∀l = 1,2,…,k (14)

In the formulation, Zl(x) is the total profit associated with knapsack l,  pl,j = profit of

placing item j in knapsack l, wl,j = weight of item j when placed in knapsack l, cl = capacity of

knapsack l, x = (x1, x2,……, xn) ∈ {0,1}n such that xj = 1 if selected and = 0 otherwise, n is the

number of available items and k is the number of knapsacks.
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This binary MO problem was solved for the cases with two knapsacks (i.e. k = 2) and 250

and 500 items. The results reported here correspond to n = 500 and k = 2. The data for the

problems solved were adapted from Zitzler and Thiele (1999).

4.3.2 Results

The extended knapsack problem was solved by NSTEA for the parameter setting shown

in Table 1.  In addition, the noninferior set was generated using the constraint method for this

problem by modeling it as a binary linear programming (BLP) model.  This was solved using the

binary linear programming solver, CPLEX. In Figure 4, these results are shown along with the

results reported by Zitzler and Thiele (1999) for the following MOEAs: VEGA, NPGA, NSGA,

and SPEA.
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Figure 4: A comparison of noninferior sets obtained using NSTEA, VEGA, NPGA, NSGA,

SPEA, and mathematical programming approach (BLP) for the extended 0/1

multiobjective knapsack problem.

To examine the consistency of NSTEA in solving this problem, five trials with different

random seeds were conducted.  The results are summarized in Figure 5.  NSTEA appears to be

insensitive to the random seed, indicating robust behavior.
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Figure 5: A comparison of noninferior sets obtained using NSTEA for five random trials and

BLP (binary linear programming) method for the extended 0/1 multiobjective

knapsack problem.

Accuracy of the noninferior solutions generated by NSTEA should be compared with

respect to the best available noninferior set, as well as with the best estimate obtained by the

other MOEAs.  The mathematical programming-based estimate of the noninferior set, the best

available for this problem, is included in Figure 4 to make the first evaluation.  Compared to this,

the accuracy of noninferior solutions generated by NSTEA and the other MOEAs is relatively
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poor.  The combinatorial nature of the search can be attributed to the weak performance by all

EAs.  Accuracy of NSTEA in comparison to other MOEA results , however, is very good.  Some

noninferior solutions obtained by SPEA, the best performing MOEA according to Zitzler and

Thiele (1999), appear to dominate some solutions generated by NSTEA.  The spread or range

covered by the NSTEA generated solutions, however, is far superior to that attained by all other

MOEAs. Further, NSTEA is able to provide good coverage by identifying noninferior solutions

that are almost evenly distributed throughout the full range.

4.3.3 Performance metrics and comparison of MOEAs

To compare the performance of NSTEA with that of other MOEAs, the following

quantitative measures are used.

Accuracy

The S factor used by Zitzler and Thiele (1999) to represent the size of noninferior space

covered is used to characterize and compare accuracy.  In addition, the approach used by

Knowles and Corne (2000), which is based on the method proposed by Fonseca and Fleming

(1995), is used to characterize the degree to which a noninferior set outperforms another.  The

same numbers of radial sampling lines used in computing this metric by Knowles and Corne

(2000) are used in the comparisons presented here.  An either-or criterion is used to determine if

the noninferior set obtained by an MOEA dominates that obtained by another MOEA; the

closeness of the two points of intersection are not differentiated statistically.

Spread

Spread is quantified for each objective as the fraction of the maximum possible range of

that objective in the noninferior region covered by a noninferior set.  A larger value of this metric
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indicates better spread.  As shown in Figure 6, let points A and B refer to the two extreme points,

i.e., the single objective optimal solutions for objective 1 and 2, respectively, for a two objective

case. The maximum range covered by the noninferior set C ∈ {Ch : h=1, 2, …,q} is (Z1
Cq – Z1

C1)

and (Z2
C1 – Z2

Cq) in Z1 and Z2 objective space, respectively.  Therefore, the spread metrics in

objective space 1 and 2 are defined as (Z1
Cq – Z1

C1)/(Z1
B – Z1

A) and (Z2
C1 – Z2

Cq)/(Z2
A – Z2

B),

respectively.

Coverage

A quantitative measure computed based on the maximum gap in coverage is defined to

represent the distribution of the noninferior solutions generated by an MOEA.  The Euclidean

distance between adjacent noninferior points in the objective space is used to indicate the gap.

A smaller value of this metric indicates better distribution of solutions in the noninferior set.

This metric is defined separately as V1 and V2 to characterize the coverage within the range of

noninferior region defined by 1) the extreme points, and 2) the solutions generated by the

MOEA, respectively.  Using the illustrations shown in Figure 6, V1 is defined as Max {dh :

h=0,1, …, q}, and V2 is defined as Max {dh : h=1, 2, …, q-1}.
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Figure 6: An example two-objective noninferior tradeoff to illustrate the computation of: 1)

Spread metric, and 2) Coverage metric.

A summary of these metrics are compared in Tables 2a-2d for the noninferior solutions

generated by all MOEAs shown in Figure 4.  These results indicate that overall NSTEA performs

better than NPGA, NSGA, SPEA, and VEGA with respect to finding nondominated solutions

with a good distribution in the noninferior region.  This conclusion is specific to the 0/1 extended

multiobjective knapsack problem, and similar performance comparisons for other problems are

needed to make more general conclusions.  Although NSTEA provides the best distribution of

solutions in the entire noninferior range (based on V1 metric), SPEA provides a better

distribution (based on V2 metric) within the narrower noninferior range represented by its

solutions.
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Table 2a: Accuracy comparison, based on the S factor (Zitzler and Thiele, 1999), of noninferior

sets generated by different MOEAs for the extended 0/1 multiobjective knapsack

problem.  A larger value indicates better performance; the best is shown in bold.

MOEA Method S Factor

SPEA 0.89

NSGA 0.79

NPGA 0.83

VEGA 0.81

NSTEA 0.95

Table 2b: Accuracy comparison, based on the metric defined by Knowles and Corne (2000), of

NSTEA with different MOEAs for the extended 0/1 multiobjective knapsack problem.

(P1, P2): (Percentage number of times MOEA1 outperforms

MOEA2, Percentage number of times MOEA2 outperforms

MOEA2)

Number of Sampling Lines

The MOEAs

Compared

(MOEA1 vs.

MOEA2)

108 507 1083
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(NSTEA vs. SPEA) (96.3, 3.7) (95.9, 4.1) (95.9, 4.1)

(NSTEA vs. NSGA) (100, 0) (100, 0) (100, 0)

(NSTEA vs. NPGA) (100, 0) (100, 0) (100, 0)

(NSTEA vs. VEGA) (100, 0) (100, 0) (100, 0)

Table 2c: Comparison of Spread of noninferior sets generated by different MOEAs for the

extended 0/1 multiobjective knapsack problem.  A larger value indicates better

performance; the best is shown in bold.

Spread MetricMOEA

in Z1 objective space in Z2 objective space

SPEA 0.28 0.23

NPGA 0.24 0.25

NSGA 0.26 0.15

VEGA 0.20 0.16

NSTEA 0.87 0.88
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Table 2d: Comparison of Coverage of noninferior sets generated by different MOEAs for the

extended 0/1 multiobjective knapsack problem.  A smaller value indicates better

performance; the best is shown in bold.

Coverage MetricMOEA

V1 (includes the extreme

points for each objective)

V2 (excludes the extreme

points for each objective)

SPEA 0.118 0.011

NPGA 0.122 0.016

NSGA 0.121 0.021

VEGA 0.130 0.015

NSTEA 0.028 0.027

4.3.4 A computational comparison

A major premise underlying the new technique was the adjacency mapping between

decision space and objective space. By using the population that has converged around a

noninferior solution to seed the initial population for search for an adjacent noninferior solution,

it was assumed that the number of evaluations to convergence in subsequent searches would be

significantly reduced.  To verify this premise, the search for each noninferior solution was

conducted without seeding the initial population.  This is analogous to running NSTEA without
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seeding at each intermediate step.  These runs were repeated for five random trials.  The numbers

of function evaluations required by NSTEA with and without seeding are compared in Table 3.

Table 3: A computational comparison, for five random trials, in terms of number of function

evaluations needed by NSTEA with and without population seeding to solve the

extended 0/1 multiobjective knapsack problem.

No. of function evaluationsRandom Trial No.

NSTEA with population seeding NSTEA without population seeding

1 211,800 445,600

2 201,700 421,100

3 206,200 440,200

4 205,400 450,900

5 204,700 440,400

Two main observations can be made: 1) the number of function evaluations needed by

NSTEA is significantly smaller (over 50% less than the case when no seeding was applied); and

2) similar computational improvement is observable in all random trials. These results confirm

the benefit of the primary concept of adjacency mapping that is used in constructing the

algorithmic steps in NSTEA.  Also, NSTEA is sufficiently robust, and the computational needs

are consistent as well as independent of the random trials.
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5 Application of NSTEA to a realistic engineering problem – The Delaware estuary

management problem

To evaluate the applicability of NSTEA in generating noninferior solutions for a realistic

multiobjective optimization problem, a case study that was reported in the literature and had all

necessary input information was identified.  Brill (1972) reported a relatively large-scale real

world multiobjective analysis for a water quality management problem in the Delaware estuary.

This was build upon an extensive chemical-physical simulation model (Thomann, 1963) to

describe the water quality and earlier pollution discharge management models (e.g., Smith and

Morris, 1969). A stretch of 84 miles of the Delaware estuary was studied.  This stretch was

bordered by a large metropolitan and industrial complex, including one of the largest oil refining

and chemical areas in the United States. The primary water quality parameter of interest was

dissolved oxygen (DO) in the water.  The critically low level of DO was attributed to the

discharge of wastewater, which had high levels of biochemical oxygen demand (BOD).

The management model described by Brill (1972) is represented as a linear mathematical

programming  (LP) model.  Although an LP-based model was used in that analysis, the structure

of the management model would become more complex (e.g., nonlinear and binary

programming) when nonlinear cost functions and nonlinear physical-chemical processes are

incorporated in the analysis, calling for evolutionary algorithm-based solution approaches.  This

LP-based management model considered 44 major BOD dischargers and their impact on DO in

30 discrete reaches (each approximately 10,000 - 20,000 ft long).  The main goal of this

management model was to identify good BOD control strategies (i.e., which discharger should

control its BOD release and by how much) to meet a specified DO standard.  Like most

environmental management problems, the design criteria were in conflict, and compromise
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solutions were sought to assist in the decision making process.  The MO analysis focused on

consideration of two conflicting objectives: minimizing cost of BOD control, and maximizing

equity with respect to levels of treatment among the different dischargers.  In general, the least

cost discharge control strategy tends to be inequitable since the most cost-effective treatment

options are preferentially selected during optimization, resulting in inequities due to different

treatment levels by the dischargers.  Alternatively, the most equitable strategy, i.e., uniform

treatment, where all dischargers treat at the same rate is typically not cost effective because of

various factors that differ among dischargers, including economies of scale effects, location

effects and other differences among dischargers.   Therefore, consideration of noninferior

tradeoff between these conflicting objectives was needed. Different equity measures were

studied by Brill et al. (1976), and the particular management model that is compared in this paper

is as follows:

Minimize )( minmax1 eeZ −= (equity measure) (15)

Minimize ∑ ∑
= =

=
N

j

K

k
kjkj
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where, N is the number of dischargers, J = {1,2,…,j,…,N} is the set of the indices of the

dischargers, fj,k is the kth piecewise waste reduction variable for discharger j, Cj,k is the unit cost

for fj,k, Kj is the number of waste reduction variables for discharger j, Ai,j is the impact coefficient

representing the improvement in water quality resulting from a unit waste reduction by

discharger j, Dj is the initial efficiency for discharger j, Bi is the water quality improvement

required for section i, M is the number of sections with water quality improvement goals, Uj,k is

the upper bound for fj,k, FTj is the total waste production for discharger j, E is the set of all

dischargers that need primary treatment, emax is the maximum efficiency among dischargers that

increase efficiency, e j is the efficiency in discharger j,  emin is the minimum efficiency among all

dischargers, and Jq is the set of dischargers that increase efficiencies.
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Brill et al. (1972) solved the above management model using the constraint method

(Cohon, 1978) via linear programming (LP).  The same problem was also solved using NSTEA.

This problem had 44 decision variables represented as real-valued strings, and a population size

of 100 was used.  The number of intervals was set to 100.  The noninferior solutions that were

reported in Brill (1972) are used as the basis for evaluation and comparison of the performance

of NSTEA. The resulting noninferior sets are shown in Figure 7.
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Figure 7: Comparison of noninferior solutions obtained using NSTEA and LP (linear

programming) for the Delaware Estuary management problem.

The noninferior solutions generated by NSTEA provide a good coverage as well as

spread well across the noninferior set.  The accuracy of these solutions is good in most sections
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of the noninferior set, except in the middle where some NSTEA solutions are slightly inferior.  It

must be noted that the linear programming-based noninferior solutions are globally optimal and

therefore represent the best noninferior tradeoff for this problem.

6 Summary and Conclusions

This paper presents a new MOEA, Noninferior Surface Tracing Evolutionary Algorithm

(NSTEA) for solving multiobjective optimization problems. NSTEA is founded upon two

simple, but powerful concepts: 1) optimization of an aggregate function of all objective functions

finds a noninferior, or Pareto optimal, solution; and 2) for some classes of problems, noninferior

solutions adjacent in objective space map to adjacent decision vectors with only marginal

differences in the decision space.  The attractive features of NSTEA include: easily adaptable for

use with existing implementation of evolutionary algorithms for an optimization problem since

no new operators are needed; and relatively less compute intensive since Pareto optimality is

ensured in an implicit manner, and therefore expensive sorting and pair-wise comparison

operations that are typically required by other Pareto-based MOEAs are eliminated.

 To evaluate the applicability of NSTEA to different MO problems, it was applied to a set

of standard test problems (reported in recent MOEA literature) with differing characteristics and

of varying levels of difficulty.  Test problems covered continuous as well as combinatorial

search, unconstrained as well as constrained optimization, real as well as binary variables, and as

few as one variable to as high as 500 variables.  This evaluation included performance

comparisons with other MOEAs and where available, with mathematical programming-based

noninferior solutions.  Accuracy, coverage, and spread of the noninferior solutions were used to

compare the performance.   To evaluate the consistency of NSTEA in generating the noninferior

set, several random trials were performed when solving each problem. Overall, NSTEA
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performed well with respect to these criteria for all problems tested.  The spread and coverage of

noninferior solutions obtained using NSTEA were always better than those demonstrated by

other MOEAs.  With respect to accuracy, NSTEA did well in almost all cases, except for the

extended 0/1 multiobjective knapsack problem for which SPEA did better for a few noninferior

solutions.

NSTEA was also applied to a real-world problem that required a multiobjective analysis

of two conflicting, environmental management objectives.  This problem, which is well

documented and reported in the literature, looked at environmental management strategies for

meeting water quality standards in the Delaware estuary while minimizing the cost of

environmental pollution control as well as minimizing the differences in control levels among

the polluters, i.e., maximizing the equity.  Results reported by other researchers included

noninferior sets with respect to the cost and equity objectives.  These solutions are globally

optimal since a linear programming approach was used to solve the MO model. In a comparison

of noninferior solutions obtained using NSTEA with the reported results, NSTEA performed

well in providing good coverage and spread, and the solutions were sufficiently accurate

compared to the global optimal solutions.

Some known limitations of NSTEA include the following.  The computational efficiency

gain obtained in NSTEA is premised on the existence of similarities in noninferior solutions that

correspond to adjacent points in the objective space. For problems where this may not hold true

strongly, the search implemented by NSTEA becomes analogous to solving a number of

independent single objective optimization problems, and therefore, may not realize any

significant computational gain. As the underlying search mechanism for a Pareto optimal

solution uses an incrementally varying aggregate function, the amount of each weight increment
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would dictate the number of noninferior solutions found.  If this increment is relatively large, it is

possible to miss some of the noninferior solutions, thus affecting the coverage.  As a result,

NSTEA with relatively large weight increments will likely miss noninferior solutions that lie

within any linear segment of the noninferior tradeoff.  For a problem with more than two

objectives, incrementally updating the weight vector to obtain an adjacent point is not necessarily

as straightforward as is for the two-objective cases presented here.  More investigation is needed

to evaluate this issue when applying NSTEA to higher dimensional problems.

The computational performance of NSTEA and other MOEAs needs to be studied

further.  Using the number of functions evaluations as a measure was useful in comparing the

computational needs for NSTEA and a single objective-based MO analysis.  This measure alone

is not sufficient to compare the computational gain, if any, that may be realized by NSTEA over

the other MOEAs that use explicit Pareto optimality checks. As this is dependent on the

algorithmic steps beyond just function evaluation, timing studies based on equivalent

implementations of each algorithm are required.  Future investigations will examine this issue.
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