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Abstract. Recognising the multiobjective nature of the decision process for 

rehabilitation of water supply distribution systems, this paper presents a comparative 
study of two multiobjective evolutionary methods, namely, multiobjective genetic 
algorithm (MOGA) and strength Pareto evolutionary algorithm (SPEA). The analyses 
were conducted on a simple hypothetical network for cost minimisation and minimum 
pressure requirement, treated as a two-objective problem. For the application example 
studied, SPEA outperforms MOGA in terms of the Pareto fronts produced and 
processing time required. 

1 Introduction 

Most of the existing water supply distribution systems were developed to operate over 
a determined planning period. Along time, however, failures caused by the 
deterioration of pipes and hydraulic components become frequent in such systems. 
Besides, the increasing levels of urbanisation and demand for water lead to problems 
such as insufficient discharges to meet demand and low-pressure levels in the 
network. Thus, the decision process for rehabilitation and replacement of existing 
components to meet current and future demands constitutes a subject of great interest. 

Improvements in a distribution system performance can be achieved through 
rehabilitation of some pipes or other components and/or adding new components to 
the existing network. Generally limited funding is available to modify the systems in 
order to guarantee a satisfactory level of the water supply service. Several researchers 
[1]–[5] have applied optimisation techniques in rehabilitation of water distribution 
systems, focusing on the economic considerations. Techniques such as linear, integer, 
non-linear and dynamic programming have been exhaustively used in water 
distribution system optimisation. 

Many researchers [6]-[7] have pointed out the disadvantages of the conventional 
optimisation methods. The rehabilitation of water distribution systems is a complex 
and discontinuous problem with many local optima. Many conventional optimisation 
methods do not guarantee that the global optimum shall be found. Further, they are 
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based on single objectives, whereas many real situations require simultaneous 
optimisation of multiple objectives. 

Optimisation has evolved over the last years by the introduction of a number of 
non-conventional algorithms as the Genetic Algorithms (GAs), which mimic the 
evolutionary principles of nature to drive the search towards optimal solutions. One of 
the most striking differences between classical search methods and GAs is the use of 
populations of solutions instead of only one solution [8]. 

In single objective optimisation, this algorithm attempts to obtain the best design or 
operational strategy, which is usually the global minimum or maximum, depending on 
the nature of the problem to be solved. Based on a very different concept, a typical 
multiobjective method seeks for a set of solutions that are superior to the remainder 
solutions in the search space. This set is denominated Pareto optimal front [8]. 
Because GAs work with populations of points, a number of optimal solutions can be 
captured during their iterative search process. Thus they are naturally well-suited to 
treat the multiobjective problems. 

Evolutionary techniques for multiobjective optimisation can be classified into 
several classes [9]: objective reduction approaches, classified population approaches, 
weight-randomising approaches, preference relationship approaches and Pareto-based 
approaches. In Pareto-based approaches the objectives are dealt with simultaneously 
however in a different manner as compared to other cited classes which need some 
simplification process.   

Three types of implementations based on non-dominance concept of Pareto [10] 
were first proposed as: multiobjective GA (MOGA) [11], niched Pareto GA (NPGA) 
[12] and non-dominated sorting GA (NSGA) [13]. Later, many others methods are 
being proposed, which can be classified as non-elitist and elitist [14]-[15] and still 
others based on tournament approaches [16]. In spite of such variety of methods, there 
are few comparisons available in literature for water resources engineering problems.  

Many authors [17]-[20] have used GAs applied to the water engineering problem, 
focusing on sizing and layout of water distribution networks. However, few studies 
have applied multiobjective optimisation techniques in water distribution system 
problems. Halhal et al. [19] and Walters et al. [18] developed a structured messy 
genetic algorithm for a multiobjective approach. These studies incorporate the 
multiple objectives into the single objective formulation using weighting factors for 
each objective or constraint. More recently, MOGA was applied [20] to the problem 
of rehabilitation of a hypothetical network, considering economic and reliability 
criteria. 

In order to compare the performance of the non-elitist (MOGA) and elitist (SPEA) 
methods, this paper uses a hypothetical network from literature. EPANET 2 [21] is 
used for the hydraulic evaluation in terms of nodal heads and pipe discharges.  

2 The Problem of Water Distribution System Rehabilitation 

The performance of water networks can be improved in terms of their hydraulic 
capacity by cleaning, relining, duplicating or replacing existing pipes; increasing their 
physical integrity by replacing structurally weak pipes; increasing system flexibility 
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by additional pipe links; improving water quality by removing or relining old pipes 
[19].  

Generally, high costs are involved in remedial works and available economic 
resources are limited to implementation of such task. Thus, there is need for 
implementation and development of optimal rehabilitation plans since the funding 
must be optimally invested over the planning period. 

3 Multiobjective Optimisation Model  

Five objectives can be pointed out as regards the operation of water distribution 
networks, namely, hydraulic capacity, physical integrity, flexibility, water quality and 
economy, each of which can be expressed by means of several attributes, constituting 
a complex multiobjective problem. 

In the absence of any preference information among the objectives, the goal of a 
multiobjective optimisation method is to arrive at a set of Pareto optimal designs. In 
addition to a number of Pareto optimal designs, a widely varying set of solutions is 
usually required to allow the decision-maker to choose from the set [22]. 

Classical methods are not efficient for multiobjective problems as they often lead 
to a single solution instead of a set of Pareto optimal solutions. Multiple runs cannot 
guarantee generation of different points on the Pareto front each time and some 
methods cannot even handle problems with multiple optimal solutions [8],[22]. 

Evolutionary methods, on the other hand, maintain a set of solutions as a 
population during the course of search and thus result in a set of Pareto optimal 
solutions in a single run. Widely differing Pareto optimal solutions can also be 
generated by using a diversification strategy within the evolutionary algorithms 
[8],[11]. 

3.1 Constraints 

In GAs, one of the most important issues is the manner in which the constraints are 
incorporated into the fitness function to guide the search properly. In the last years, 
researchers [10],[23],[24] have proposed penalty functions to incorporate constraints 
into the fitness function. In many engineering problems this approach has been used 
and the results have demonstrated consistency. However, penalty functions have some 
known limitations of which the most significant is the difficulty of defining good 
penalty factors. These penalty factors are normally found by trial and error as their 
definition may affect the results produced by the GAs. 

3.2 Problem Formulation 

Water distribution systems frequently require rehabilitation (cleaning, lining, 
reinforcement among others) to maintain the satisfactory services for the society. 
However, the rehabilitation of an existing system is a complex task if it is to be 
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implemented in the most effective and economic manner. It necessitates a systematic 
and thorough approach, backed up by skilful engineering judgement, and significant 
capital resources. The examination and evaluation for design alternatives is a field in 
which optimisation models can play an important role, particularly when finances are 
limited and the problems are of a large size [18]. 

Many objectives can be incorporated in rehabilitation decision models. We prefer 
to formulate a two-objective network rehabilitation problem in order to compare our 
results with those of a similar one-objective problem [17] which dealt with the 
remaining objective as a constraint include in objective function. Thus the present 
paper formulates the rehabilitation problem as that of minimisation of cost (1) as well 
as pressure deficit (2) considering various combinations of rehabilitation choices. The 
individual objectives are: 

Minimise Cost, F1 = ∑ ∑
ℑ∈ π∈

+
l

ll

k
kkLcLc  (1) 

where l is the index of the pipes to be rehabilitated (cleaned or left unaltered); k is 
the index of the new pipes (replaced or duplicated); ℑ  is the set of alternatives 
related to the pipes requiring rehabilitation; π  is the set of alternatives for new pipes; 
L is length of the pipe; cj are rehabilitation unit costs and ck are unit costs of new 
pipes. The decision problem corresponds to the identification of pipes to be added in 
parallel or as a new pipe.  

Minimise Pressure Deficit, F2 = ( ) nn,...,2,1jHHmax
LC

1i
iminjj =−∑

=

 (2) 

where pressure deficit is the sum of maximum nodal deficits on the network for each 
demand pattern; j is the index that represents the nodes; nn is the total number of 
nodes in the system; Hj is the energy and Hjmin is the required minimum energy at 
node j. LC denotes the number of demand patterns considered. In this study three 
demand patterns shall be investigated: peak, average and minimum demands. One can 
observe that F2 replaces a constraint of the rehabilitation problem. 

3.3 Multiobjective Evolutionary Algorithms 

Fonseca and Fleming [11] introduced multiobjective genetic algorithms where the 
ranking of a solution was based on non-dominated classification. The multiobjective 
genetic algorithm (MOGA) classifies each solution assigning a rank value that means 
the number of solutions that dominates it plus one. After the rank is assigned, the 
algorithm tries to distribute the points evenly over the Pareto optimal region using a 
sharing mechanism in the objective function domain. The solutions are proportionally 
selected and submitted to the crossover and mutation operators.  

Ziztler and Thiele [14] introduced elitism by explicitly maintaining an external 
population. This population stores a fixed number of the non-dominated solutions that 
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are found until the beginning of a simulation. At every generation, newly found non-
dominated solutions are compared with existing external population and the resulting 
non-dominated solutions are preserved. This algorithm is called strength Pareto 
evolutionary (SPEA). It does more than just preserve the best solutions, it also uses 
these elite solutions to participate in the genetic operations along with the current 
population in the hope of influencing the population to steer towards good regions in 
the search space. 

In this paper, these two multiobjective evolutionary algorithm techniques (MOGA 
and SPEA) are applied to compare non-elitist and elitist methods in the rehabilitation 
water distribution system problem (2), whose details can be found in [8]. 

3.3.1 Evolutionary Algorithms Libraries  
We implemented the MOGA algorithm through a C++ code supported by the GAlib 
library [25] basic operators written by Matthew Wall at Massachusetts Institute of 
Technology.  

The MOMHLib++ library [26] was used to obtain the results for the SPEA 
algorithm developed by Andrzej Jaszkiewicz at Poznan University of Technology. 

3.4 Hydraulic Simulator Model 

A steady-state hydraulic analysis was used to evaluate the consequences of a 
rehabilitation plan in terms of the objectives, F1 and F2 using the EPANET 2 [21] 
which was linked to our C++ code. It should be noted that EPANET 2 represents an 
efficient code for hydraulic calculations related to water distribution networks. 

3.5 Comparative Study 

The set coverage metric [8] was adopted as performance index to compare the applied 
methods (MOGA and SPEA). The metric is used to get an idea of the relative spread 
of solutions between two sets of solution vectors A and B. The set coverage metric 
C(A,B) calculates the proportion of solutions in B, which are weakly dominated by 
solutions of A ( 3): 

{ }
B

ba:AaBb
)B,A(C

p∈∃∈
=  (3) 

The expression ba p denotes that a dominates b. The metric value C(A,B) = 1 
means that all the members of B are weakly dominated by A. On the other hand, 
C(A,B) = 0 expresses that no member of B is weakly dominated by A. Since the 
domination operator is not a symmetric operator, C(A,B) is not necessarily equal to 1 
– C(B,A). Thus, one must calculate both C(A,B) and C(B,A) to understand how many 
solutions of A are covered by B and vice versa [8]. 
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4 Application Example 

The rehabilitation study of the hypothetical network in Fig.1 was initially proposed in 
[27]. The network in Fig.1 has 14 pipes, 2 constant level reservoirs (nodes 1 and 5) 
and 9 demand nodes (2, 3, 6, 7, 8, 9, 10, 11 and 12), where the solid lines represent 
the existing system and dashed lines depict new pipes. The pipe and node data are 
presented in Tables 1 and 2.  
 
 

Table 1. Pipe characteristics 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Hypothetical Network [27] 

The problem as posed in [27] has some interesting features that include: selection 
of diameters for five new pipes; three existing pipes may be cleaned, duplicated, or 
may remain unaltered; three demand patterns are considered; and two supply sources 
are available, whose options are described in Tables 3 and 4. The respective costs are 
presented in Tables 5 and 6. 

 
 
 

Reservoir

Tank

2 3 4

6 7 8

9 10 11 12

1

[1]

[2] [3]

[4]

[5] [6]

[7] [8]

[9] [10] [11]

[12] [13] [14]

5

Nodes

Existing system

New pipes

Existing pipe to be duplicated, cleaned or left

Pipe Diameter 
(mm) 

Length 
(m) Chw  

1 356 4828 75 
2 254 1609 80 
3 254 1609 80 
4 254 6437 80 
5 254 1609 80 
6 New 1609 120 
7 203 1609 100 
8 New 1609 120 
9 254 1609 80 

10 102 1609 100 
11 New 1609 120 
12 203 1609 100 
13 New 1609 120 
14 New 1609 120 
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Table 2. Demand patterns, associated minimum pressures and node elevation for example 
network 

 
Table 3. Decision options - rehabilitation Table 4. Decision options - new pipes 

  
 

Table 5. Rehabilitation Costs [12] Table 6. Costs of new pipes [12] 

  

4.1 Genetic Algorithm Implementation 

It is important in GA applications to find the appropriate representation of decision 
variables by strings of fixed length. While many coding schemes are possible, it is 
convenient to avoid the decoding phase in order to reduce processing time. Several 
authors [23], [28] have suggested the use of real code instead of the binary one in 

Rehabilitation Option Real Code 
Leave as existing 0 

Clean existing pipe 1 
Duplicate with 152 mm 2 
Duplicate with 203 mm 3 
Duplicate with 254 mm 4 
Duplicate with 305 mm 5 
Duplicate with 356 mm 6 
Duplicate with 407 mm 7 

New Pipe Diameter (mm) Real Code 
152 0 
203 1 
254 2 
305 3 
356 4 
407 5 
458 6 
509 7 

Diameter (mm) Cleaning of Pipe ($/m) 
152 47.57 
203 51.51 
254 55.12 
305 58.07 
356 60.70 
407 63.00 
458 - 
509 - 

Diameter (mm) New Pipe Cost ($/m) 
152 49.54 
203 63.32 
254 94.82 
305 132.87 
356 170.93 
407 194.88 
458 232.94  
509 264.10 

Demand Pattern 1 Demand Pattern 2 Demand Pattern 3 
Node Elevation 

(m) Demand (L/s) Minimum 
Pressure (m) Demand (L/s) Minimum 

Pressure (m) Demand (L/s) Minimum 
Pressure (m) 

1 365.76 Reservoir - Reservoir - Reservoir - 
2 320.40 12.62 28.18 12.62 14.09 12.62 14.09 
3 326.14 12.62 17.61 12.62 14.09 12.62 14.09 
4 323.23 0 17.61 0 14.09 0 14.09 
5 371.86 Tank - Tank - Tank - 
6 298.70 18.93 35.22 18.93 14.09 18.93 14.09 
7 295.66 18.93 35.22 82.03 10.57 18.93 14.09 
8 292.61 18.93 35.22 18.93 14.09 18.93 14.09 
9 289.56 12.62 35.22 12.62 14.09 12.62 14.09 

10 289.56 18.93 35.22 18.93 14.09 18.93 14.09 
11 292.61 18.93 35.22 18.93 14.09 18.93 14.09 
12 289.56 12.62 35.22 12.62 14.09 50.48 10.57 
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order to keep one gene-one variable correspondence. Hence, this study has preferred 
the use of real code for decision variables representing the rehabilitation options to be 
implemented in the network to improve its hydraulic performance. The first three 
variables in the string refers to the decision in pipes 1, 4 and 5, for which values in the 
range from 0 to 7 have to be determined, according to the options defined in Table 3. 
The next five variables in the string refer to the decision for pipes 6, 8, 11, 13 and 14, 
for which values in the range from 0 to 7 have to be determined according to the 
options defined in Table 4. 

4.1.1 Genetic Algorithm Parameters 
For this application example, three population sizes were considered: 100, 300 and 
500; crossover probability of 1.0 and mutation probability of 0.1, following [17], 
although a check of other values is desirable. In MOGA algorithm, the sharing 
parameter value of was assumed to be 0.5. The algorithms were permitted to run for 
50,100 and 200 generations, starting from thirty different initial populations [14] of 
solutions (random seeds) for each population size. 

5 Results and Discussions 

The results obtained from the application of MOGA and SPEA methods to the 
example problem (Fig.1) are presented in this section.  

Firstly, we performed a sensitivity analysis on the number of generations, in order 
to identify the consequences of this parameter in the final Pareto fronts. Several 
simulations were developed for both methods starting from 30 distinct initial 
populations, producing similar final Pareto fronts. To illustrate this behavior, Fig. 2 
presents some results found for population size of 300 solutions. The analysis 
suggests that no premature convergence was detected. Thus, only the results obtained 
for 200 generations are shown in this paper for reasons of limited space. 

 
MOGA SPEA 

  

Fig. 2. Sensitivity analysis for the number of generations 

Fig. 3, 4 and 5 show Pareto fronts obtained using the population sizes of 100, 300 
and 500, where one can observe that SPEA produces solutions (represented by points) 
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better defining the fronts than those met by MOGA. Considering the points in Pareto 
front corresponding to values for F2 near zero as a region of special interest for our 
purposes, SPEA algorithm appears more efficient in defining such points.  

 
MOGA SPEA 

  

Fig. 3. Pareto fronts of population size 100 and generation number 200 of both methods 

MOGA SPEA 

  

Fig. 4. Pareto fronts of population size 300 and generation number 200 of both methods 

MOGA SPEA 

  

Fig. 5. Pareto fronts of population size 500 and generation number 200 of both methods 

Fig. 6 presents the individual MOGA and SPEA solutions randomly chosen among 
thirty (30) final solutions produced for population sizes of 500 and 200 generations. 
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These fronts were chosen for visual comparison effect, as they were obtained starting 
from different initial populations for both methods. 

 

Fig. 6. Comparison of the methods for a run case 
 
Even in this simple example of two objectives functions, the visual comparison is 

difficult, requiring a comprehensive metric to evaluate the relative merit of both 
algorithms. Once 30 runs were made for each algorithm starting from distinct initial 
populations, the comparisons were performed considering the combinations between 
all possible pairs of solutions obtained from both algorithms. The metric in (3) was 
used and the results presented in matrix box plot form in Fig.7, where each rectangle 
contain a box plot representing the distribution of the C values for all combinations 
(900) of pairs of  two algorithms. The scale is 0 at the bottom and 1 at the top in each 
box plot. Each graph presents distribution of C calculated from results (A) obtained 
from the algorithm indicated in the row in combination with those (B) from the 
algorithm indicated in the column through definition in (3) for C(A,B). 

Box plots are used to visualise the distribution of these samples. The upper and 
lower ends of the box are the upper and lower quartiles, while a thick line within the 
box encodes the median. Dashed appendages summarise the spread and shape of the 
distribution. 

Fig.7 shows the direct comparison based on the measure C (3) for MOGA and 
SPEA methods. The Pareto fronts achieved by MOGA (population size 100, 300 and 
500) are entirely dominated by fronts identified by SPEA for all the population sizes. 
The elitist method (SPEA) seems to perform better than the non-elitist multiobjective 
evolutionary algorithm (MOGA). However, there is no clear evidence of superior 
performance when the results obtained for several population sizes are compared 
among themselves for a given algorithm. 
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Fig. 7. Box plot based on measure C defined in (3) 

Table 7 presents the average processing times for MOGA and SPEA on Athlon XP 
1.8 GHz with 512 MB RAM computer. Note that SPEA is faster than MOGA for all 
cases investigated. 

Table 7. Average processing time 

Average Processing Time (Seconds) Population 
Size Generation MOGA SPEA 

50 12.4 7.6 
100 20.6 17.4 100 
200 47.3 30.1 
50 36.5 26.3 

100 74.2 43.4 300 
200 249.6 86.5 
50 65.2 44.2 

100 127.6 87.3 500 
200 249.6 165.1 
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Table 8 presents ten combinations of least cost alternatives with zero pressure 
deficit found by the SPEA algorithm. In this table, we can see the lowest value of 
$1,666,760 whereas [27], using selective enumeration to optimise this problem found 
a least cost network of $1,833,700. Simpson et al. [17] accomplished complete 
enumeration of all alternative solutions for each of the three demand patterns finding 
two least cost networks at a cost of $1,750,000. We attribute the difference in results 
obtained to the hydraulic simulator used by [17] based on Newton-Raphson solver. In 
this paper EPANET 2 was used as hydraulic simulator which is based on gradient 
method solver. 

Table 8. Some solutions of lower costs found by SPEA algorithm   

 DECISION VECTOR 
Pipes 

Objective Function 
Solution 1 4 5 6 8 11 13 14 F1 ($) F2 (m) 

1 1 4 4 2 1 1 1 2 1,666,760 0 
2 1 4 4 2 1 2 0 2 1,695,270 0 
3 1 4 3 2 2 2 0 2 1,695,270 0 
4 1 4 4 2 1 3 0 1 1,705,810 0 
5 1 4 4 3 1 2 0 1 1,705,810 0 
6 1 4 4 2 1 1 2 2 1,717,440 0 
7 7 0 5 2 0 1 0 2 1,721,100 0 
8 1 4 3 2 2 1 1 3 1,727,980 0 
9 0 6 0 3 1 1 0 2 1,750,100 0 

10 0 6 0 3 1 2 0 1 1,750,100 0 
 

Fig. 8. Pressures in the example network considering demand pattern 2 (average) 
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As mentioned above, the points on Pareto front region which are of special interest, 
were analysed in detail from the hydraulic point of view in terms of nodal pressures. 
Fig. 8 reproduces the solution vector in terms of pressures corresponding to the 
alternative solution 1 in Table 8. The minimum pressures in Fig. 8 are the values 
stipulated in Table 2. The pressures in the rehabilitated network are the values 
obtained from the hydraulic simulations applying the decision vector of solution 1 
(Table 8). The pressures in the network without rehabilitation refer to the values 
resulting from the hydraulic simulations assuming minimum diameters for pipes (6, 8, 
11, 13 and 14) besides the existing pipes according to Table 1. One can observe that 
the network rehabilitation improved the hydraulic performance, making the nodal 
pressures acceptable for the demand patterns considered (peak, average and 
minimum). 

6 Conclusions 

This paper represents an effort to compare the performance of two approaches known 
as multiobjective genetic algorithm (MOGA) and strength Pareto evolutionary 
algorithm (SPEA) applied to the water supply network rehabilitation problem. The 
same problem was studied before [17] through the conventional approach that 
includes a penalty function in the single objective formulation. 

A sensitivity analysis of the number of generations with respect to the final 
solutions defined in terms of Pareto fronts was conducted. Several simulations were 
made for both methods starting from distinct initial populations, producing similar 
final Pareto fronts. Direct comparison based on set coverage metric [8] shows that the 
Pareto fronts achieved by MOGA are entirely dominated by indicated by SPEA for 
various population sizes. Further, SPEA is faster than MOGA, requiring smaller 
processing time. 

A least cost solution of $1,666,760 could be identified, whereas [17], using 
complete enumeration for each of the three demands, found two networks with a least 
cost of $1,750,000. It is presumed that this difference results from the use of a 
hydraulic simulator inferior to EPANET 2. 

Finally, once the potentialities of the elitist multiobjective evolutionary algorithm 
SPEA are demonstrated, several future possibilities open for solution of engineering 
problems. Such possibilities include the treatment of more realistic and complex 
objectives than those dealt with here and comparative studies between more recent 
elitist methods and SPEA.  
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