214

GAS TURBINE ENGINE CONTROLLER DESIGN USING MULTIOBJECTIVE
GENETIC ALGORITHMS

A Chipperfield and P Fleming
University of Sheffield, UK

email: A Chipperfield@Sheffield.ac.uk

ABSTRACT

This paper describes the use of multiobjective
genetic algorithms (MOGAs) in the design of a
multivariable control system for a gas turbine
engine. It is shown how the MOGA confers an
immedeate  advantage conventional
multiobjective  optimization  mecthods by
evolving a family of Pareto-optimal solutions
allowing the control engineer to examine the
trade-offs  between the different design
objectives. In addition, the paper demonstrates
how the genetic algorithm can be used to search
in both controller structure and parameter space
thereby offering a potentially more general
approach to optimization in controller design
than traditional numerical methods.

over

INTRODUCTION

Modern gas turbine engines are highly complex
systems that require equally complex controllers
in order to remain stable whilst satisfying the
demands placed on them by the pilot and
operating  conditions.  Because of these
complexities, extensive use is made of computer
aided control system design (CACSD) methods
to design controllers to meet the desired
performance  specifications.  In  particular,
optimization based methods in CACSD have
been shown to be a valuable tool in assisting the
control engineer in selecting suitable controlfer
parameters [ 1].

However, parametric optimization methods are
numerically intensive and require repcated
application to identify the trade-offs between
different design objectives. In this paper, we
consider the application of multiobjective
genetic algorithms (MOGAs) to the design of
gas turbine engine control systems. It is shown

that the MOGA confers an immediate advantage
over conventional multiobjective optimization
methods by evolving a family of Pareto-optimal
solutions. Thus, the relative trade-offs between
design objectives may be easily identified and a
more informed choice made for the final
confroller structure.

MULTIOBJECTIVE OPTIMIZATION

The use of multiobjective optimization (MO)
recognises that most practical problems require
a number of design criteria to be satisfied
simultaneously, viz:

min
xEQ

F (x)

where x = [x,x,,...,x,] and Q define the set
of free variables, x, subject to any constraints
and F(x) = [f(x),/,(x), .., (x)] are

the design objectives to be minimised.

Clearly, for this set of functions, F(x), it can be
seen that there is no one ideal “optimal”
solution, rather a set of Pareto-optimal solutions
for which an improvement in one of the design
objectives will lead to a degradation in one or
more of the remaining objectives. Such solutions
are also known as non-inferior or non-
dominated solutions to the MO problem.

Conventionally, members of the Pareto-optimal
solution set are sought through solution of an
appropriately formulated nonlinear
programming problem. A number of approaches
are currently employed including the -
constraint, weighted sum and goal attainment
methods [2]. However, such approaches require
precise expression of a, usually not well
understood, set of weights and goals. If the
trade-off surface between the design objectives
is to be better understood, repeated application
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Figure 1: SIMULINK model of the ASTOVL engine

of such methods will be necessary. In addition,
nonlinear programming mcthods cannot handle
multinodality and discontinuitics in function
space well and can thus only be expected to
produce local solutions.

Multiobjective GAs [3] evolve a population of
solution estimates  thereby conferring an
immediate benefit over conventional MO
methods. Using rank-based selection and
nicheing techniques, it is feasible to generate
populations of non-dominated solution estimates
without combining objectives in some way. This
is advantageous because the combination of
non-commensurale objectives requires precise
understanding of the interplay between those
objectives if the optimization is to be
meaningful. The use of rank-based fitness
assignment  permits  different  non-dominated
individuals to be sampled at the same rate
thereby according the same preference to all
Pareto-optimal solutions.

Because MOGAs are susceptible to unstable
converged populations, due to the potential for
very different genotypes to result in non-
dominated individuals, a particular problem is
the production of lethals when fit members of
the population are mated. The search then
becomes incfficient and the GA is likely to
converge to some suboptimal solution. However,
the use of mating restrictions, to reduce the
production of lethals, enhances the stability of
the population whilst allowing a wide diversity
in genetic material.

ASTOVL EXAMPLE

This example application demonstrates how
GAs may be used to select the controller
structure and suitable parameter sets for a
multivariable flight control system. The system
considered is a propulsion unit for an Advanced
Short Take-Off, Vertical Landing (ASTOVL)
aero-engine [4], shown in Fig. 1. There are two
inputs to the system, XTOTD and XDIFFD, and it
is required that the pilot have control of the fore-
aft differential thrust (XDIFF) and the total
engine thrust (XTOT). The design problem is to
find a set of pre-compensators that satisfy a
number of time-response design specifications
whilst minimizing the interaction between the
loops of the systen.

The time-domain performance requirements, in
response to a step in demand at one of the inputs,
are:

(i) 70% rise-time = 0.35 seconds
(ii) 10% settling-time < 0.5 seconds

(iii) maximum overshoot = 10%

at the associated output. The amount of
interaction, or cross-coupling, between modes is
measured as:

f(XTor) 2a’t,
0

when excited by a step input to XDIFFD, and
vice-versa, and should be less than 0.05 for this
example.
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Figure 2: Representing the pre-compensator structures and parameler sets

IMPLEMENTATION

The ASTOVL propulsion unit was modelled
directly using the SIMULINK package as shown
in Fig. 1. The objective functions were written
as m-files using commands from the Control
Systems Toolbox. The pre-compensators for this
problem were allowed to be either first or second
order or simple gains, Fig. 2(a).

‘Using a structured chromosome representation
[5], Fig. 2(b), it is possible to allow the free
parameters for each possible pre-compensator
configuration to reside in all individuals. Here,
high-level genes, labelled Py to P4 in Fig. 2(b)
and encoded as integers, are used to determine
which pre-compensator structures are active in a
particular chromosome. Associated with cach
pre-compensator, P;, are three sets of real-valued
parameters, A;, B; and C;, corresponding to the
gains and time constants of the permissible pre-
compensator structures. Thus, the values of the
pre-compensator structure flags select which set
of parameters are valid with each pre-
compensator and therefore the order of the pre-
compensators. In this way, a chromosome may
contain a number of possibly good
representations at any one time, although only
the set defined by the values of the high-level
genes will be active.

In addition, as the overall structure of the
controller varies with the set of active pre-
compensators, an additional objective was
included that measured the complexity of the
controller. This was calculated by summing the
values of the pre-compensator flags thus:

P;=9.

i=1
Thus, a total chromosome length of 28 elements
was used and nine design objectives should be

satisfied.

The MATLAB Genetic Algorithm Toolbox [6],
was used to implement the GA with additional
extensions to accommodate multiobjective
ranking, sharing and mating restrictions in the
objective domain [3].

Multiobjective ranking is based upon the
dominance of an individual, how many
individuals outperform it in objective space,
combined with goal and priority information. In
this example, the goals were set to the values
given in the previous Section and all objective
were assigned the same priority. In cases where
objectives are assigned different priorities,
higher priority objectives are optimized in a
Pareto fashion until their goals are met at which
point the remaining objectives are optimized

(see, [7]).

Nicbe induction techniques [8] provide a
mechanism for uniform sampling of non-
dominated individuals in the region of the trade-
off surface relevant to the optimization. Fitness
sharing, implemented in the objective domain
[9] [3], favours sparsely populated regions of the
trade-off surface and may be combined with
mating restrictions to reduce the production low
performance individuals by encouraging the
mating of individuals similar to one another.

The crossover operator employed was
intermediate recombination [10] applied with



probability 0.7. As the chromosome contains
many inactive clements, the probability of
applying breeder GA mutation [10] was sct to
0.1. The use of adaptive mutation rates may
have been more appropriate for this example and
representation, although the (seemingly) high
mutation rate is consistent with the use of real-
valued operators and the average number of
active parameters. No fine-tuning of operator
rates was attempted.

Finally, in order to reduce the computational
burden of evaluating the objectives, re-
evaluation of individuals was only performed if
they had been affected by the genctic operators
[11]. This reduced the number function
evaluations requircd by 20 to 30%.

RESULTS

Using a population size of 40, the GA was run
for 100 generations in the first instance. A list of
the best 50 individuals was continually
maintained during the execution of the GA
allowing the final selection of controller to be
made from the best structures found by the GA

over all generations.
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Figure 3: Typical optimized ASTOVL response

Fig. 3 shows a typical response for a controller
found by the MOGA. It can be clearly seen that
all of the design objective have been satisfied.
However, from such responses it is difficult to
determine the relative merits of one controller
against another over the entire population. This
is particularly true if on-line preference
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Figure 4: Sample ASTOVL trade-off graph and design objectives
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Figure 5: Trade-off graph for revised design objectives

articulation is to be used to guide the search
during an optimization.

Fig. 4 illustrates a typical trade-off graph for the
ASTOVL controller and a user interface for
inferactively setting design goals and examining
non-dominated solutions in a population or
database. In the plot, cach line represents a non-
dominated individual found by the MOGA.
Objectives 1, 2 and 3 are the rise-time, settling-
time and overshoot respectively for the XTOT
channel and objective 4 is the cross-coupling
between XTOTD and XDIFF. Objectives 5 to 8
correspond to the same design specifications on
the XDIFF channcl and objective 9 is the overall
controller complexity. The y-axis shows the
performance of individuals in each objective
domain with cross-marks showing the design
goals.

In Fig. 4, tradc-offs between adjacent design
objectives result in the crossing of lines between
them whereas non-crossing lines indicate that
objectives do not compete with one another. For
example, the XTOT channel scttling-time,
overshoot and cross-coupling (objectives 2, 3
and 4) appear to compete quite heavily while the
same trade-offs are not exhibited by the XDIFF
channel. Only the preferred individuals, those
that satisfy the design goals, are shown. When
no individuals are preferred, the non-dominated
individuals are displayed. An additional feature
of the user interface is the ability to move the
position of the objectives on the x-axis. This
affords the control congineer a
mechanism for  examining  the  trade-ofts
between non-adjacent design objectives.

convenient

Having satisfied the original design goals, the
conirol engineer is now free to enhance the
performance of the controllers. The relative
degree of under-/over-attainment of the design
goals is clearly visible in Fig. 4 and the designer
may take advantage of this information when
setting new design goals.

Fig. 5 shows the new trade-off graph produced
when the goals are reset and the MOGA is
allowed 1o continues further 25
The cross-marks on the plot
correspond to the new goal set of {0.25, 0.4, 5.0,
0.03,0.25,0.4, 5.0, 0.03, 12]. In this goal set, all
of the performance goals have been tightened
while controller complexity has been
relaxed. Thiz allows more complex controllers
to be considere¢ in order to meet the stricter
performance requirements. However, as many
satisfactory structures already exist in this
region, the most complex controllers bave not
had their parameters tuned sufficiently to meet
these new design requirements.

for a

gencrations.

the

By changing the values of the goals, the search
is forced to examine a smaller area of the trade-
off surface. Individuals that do not now satisfy
the design goals are no longer preferred and the
population is forced to evolve towards a new
region of the design space. Thus, a more
accurate picture of the trade-off surface in that
region is constructed.

CONCLUDING REMARKS

This paper has shown how MOGAs may be
applied to the design of gas turbine engine
control  systems. Using a single unified



formulation, a number of competing design
objectives may be simultaneously optimized
through search in both controller structure and
parameter space. The MOGA approach has a
clear advantage over conventional
multiobjective optimization methods in that it
allows a number of non-dominated controller
structures to be examined in a single design
cycle. In addition, the software tools described
in this paper have been built upon a standard and
familiar CACSD software package, MATLAB.
This allows the retention of existing modelling
and simulation routines and facilitates the rapid
development of objective functions for complex
systems.

A simple user interface has been demonstrated
that allows the control engineer to examine the
trade-offs and interplay between design
objectives. The control engincer may interact
with the MOGA through the successive
articulation  of  preferences, guiding the
optimization on the basis of design requircments
rather than the propertics of the objective
functions. Such a process allows a closer
interaction between the control engineer and the
primary design tools, hopefully leading to a
more informed design procedure.

Whilst interactive use is desirable, the
numerically intensive nature of evaluating
objective functions may render such an approach
infeasible. In such cases, parallel processing
techniques could be employed to alleviate the
computational burden. Similarly, the nicheing
mechanisms which arise in some distributed
population structures may prove beneficial to the
MOGA. Finally, whilst this paper has considered
the application of MOGAs to gas turbine engine
design, the procedures and techniques discussed
should prove useful in the wider field of CACSD
and CAE in general.
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