
TREATING CONSTRAINTS

AS OBJECTIVES FOR

SINGLE-OBJECTIVE

EVOLUTIONARY OPTIMIZATION

Carlos A. Coello Coello

�

ccoello@xalapa.lania.mx

Laboratorio Nacional de Inform�atica Avanzada

R�ebsamen 80, Xalapa, Veracruz 91090, M�exico

This paper presents a new approach to handle constraints using evolutionary algorithms. The new

technique treats constraints as objectives, and uses a multiobjective optimization approach to solve the

re-stated single-objective optimization problem. The new approach is compared against other numerical

and evolutionary optimization techniques in several engineering optimization problems with di�erent

kinds of constraints. The results obtained show that the new approach can consistently outperform the

other techniques using relatively small sub-populations, and without a signi�cant sacri�ce in terms of

performance.

Keywords: genetic algorithms, constraint handling, multiobjective optimization, evolutionary optimiza-

tion, numerical optimization.

1 INTRODUCTION

Even when genetic algorithms (GAs) have been quite successful in a wide range of applications [1, 2],

their use in constrained optimization problems raises several issues to which a considerable amount of

research has been devoted in the last few years. From these issues, one of the most important ones is

how to incorporate constraints of any sort (linear, non-linear, equality or inequality) into the �tness

function as to guide the search properly. Due to the nature of the problems for which the GA is more

suitable, it is normally quite di�cult (or even impossible) to know the shape of the search space, and

therefore is not easy to produce special operators and/or to explore it e�ciently, unless we severely

constraint the range of applications for which such approach will be useful.

For several years, practitioners have used penalty functions to incorporate constraints (particularly

inequality constraints) into the �tness function, and there have been a lot of successful applications of

this approach in all engineering �elds [3]. However, penalty functions have some well-known limitations

[4], from which the most remarkable is the di�culty to de�ne good penalty factors. These penalty

factors are normally generated by trial and error, although their de�nition may severely a�ect the

results produced by the GA [4].

In this paper, a new constraint-handling approach is proposed that does not require the use of a

penalty function to handle equality and inequality constraints. This technique is based on a multiob-

jective optimization approach, and it is very suitable for parallelization.

�

This work was performed while the author was a�liated to the Engineering Design Centre at the University of

Plymouth, in the United Kingdom.

The remainder of this paper is organized as follows: �rst, a review of some of the most important

constraint-handling techniques developed so far (in the context of numerical optimization) will be

provided, then 5 engineering optimization problems will be introduced, and solved using the new

approach. After that, the results produced by other (GA-based and mathematical programming)

techniques will be compared with those obtained with the new method, and �nally there will be some

discussion of the results obtained and the expected paths of future research.

2 PREVIOUS WORK

Over the years, several approaches have been developed to handle constraints using evolutionary algo-

rithms. Focusing only on numerical optimization, these approaches can be classi�ed as follows [5]:

� Rejection of infeasible individuals.

� Maintaining a feasible population by special representations and genetic operators.

� Separation of objectives and constraints.

� Penalizing infeasible individuals.

The rejection of infeasible individuals (also called \death penalty") is probably the easiest and most

e�cient way to handle constraints, because when a certain solution violates a constraint, it is assigned

a �tness of zero, and no further calculations are necessary to estimate the degree of infeasibility of the

solution. This approach is very popular within the evolution strategies community [6], but it is limited

to problems in which the feasible search space is convex and constitutes a reasonably large portion of

the whole search space. However, in situations in which the initial population does not contain a single

feasible solution, this approach will cause no further progress in the evolution process because all the

individuals will have the same �tness value.

Davis [7] presented several specialized representations developed for particular optimization prob-

lems (e.g., parametric design of aircraft, robot trajectory generation, schedule optimization, systhesis

of neural network architectures, etc.), which preserved feasibility of the individuals at all times. An-

other example of this approach is GENOCOP (GEnetic algorithm for Numerical Optimization for

COnstrained Problems), developed by Michalewicz [8], which handles linear constraints by eliminating

equalities and designing special genetic operators which guarantee to keep all chromosomes within the

constrained solution space. GENOCOP assumes a feasible starting point (or feasible initial population)

and since it assumes the existence of only linear constraints, it is inherently restricted to convex search

spaces [5].

There are several approaches that handle constraints and objectives separately. On of them was

reported by Paredis [9], and is based on a co-evolutionary model in which there are two populations:

the �rst contains the constraints to be satis�ed and the second contains potential|possibly invalid|

solutions to the problem. Using an analogy with a predator-prey model, the �tness of the members

of one population depends on the �tness of the members of the other population. An individual with

high �tness in the second population represents a solution that satis�es a lot of constraints whereas an

individual with high �tness in the �rst population represents a constraint that is violated by a lot of

solutions.

Schoenauer and Xanthakis [10] proposed another technique called behavioural memory in which

constraints are handled in a particular order. The algorithm is the following [10]:

� Start with a random population of individuals

� Set j = 1 (j is the constraint counter)

� Evolve this population to minimize the violation of the j-th constraint, until a given percentage

of the population (this is called the ip threshold �) is feasible for this constraint. In this case

eval(X) = g

1

(X) (1)

� j = j + 1

� The current population is the starting point for the next phase of the evolution, minimizing the

violation of the j-th constraint,

eval(X) = g

j

(X) (2)

During this phase, points that do not satisfy at least one of the 1st, 2nd, : : : (j�1)-th constraints

are eliminated from the population. The halting criterion is again the satisfaction of the j-th

constraint by the ip threshold percentage � of the population.

� If j < m, repeat the last two steps, otherwise (j = m) optimize the objective function f rejecting

infeasible individuals.

The idea of this technique is to satisfy sequentially (one by one) the constraints imposed on the

problem. Once a certain percentage of the population (de�ned by the ip threshold) satis�es the �rst

constraint, an attempt to satisfy the second constraint (while still satisfying the �rst) will be made.

Notice that in its last step of the algorithm, Schoenauer and Xanthakis use death penalty, because

infeasible individuals are completely eliminated from the population.

This method requires that there is a linear order of all constraints, and apparently, the order in

which the constraints are processed inuences the results provided by the algorithm (in terms of total

running time and precision) [11].

Schoenauer and Xanthakis also recommended the use of a sharing scheme (to keep diversity in the

population), which adds to the ip threshold � and the order of the constraints as extra parameters

required by the algorithm.

Another approach that emulates the immune system to handle constraints was proposed by Hajela

and Lee [12]. The idea of this technique is to separate any feasible individuals in a population (called

antigens) from those that are infeasible (called antibodies). By using a simple matching function that

computes the similarity (on a bit-per-bit basis, assuming binary encoding) between the two chromo-

somes, this approach co-evolves the population of antibodies until they become su�ciently similar to

their antigens by maximizing the degree of matching between the antigens and the antibodies. Then,

the two populations are mixed and evolved using a standard genetic algorithm, but without the use

of a penalty function, since all the individuals are feasible at that point, and the population will be

re-�lled at certain intervals, to eliminate any infeasible individuals generated by the genetic operators.

Although this approach seems quite interesting and more biologically inspired, some issues remain to

be solved. For example, it is not clear what is the e�ect (in terms of performance) of mixing di�erent

proportions of each population (antibodies and antigens), nor how to proceed when there are no feasible

solutions in the initial population.

The most common approach in the GA community to handle constraints (particularly, inequality

constraints) is to use penalties. The basic approach is to de�ne the �tness value of an individual i by

extending the domain of the objective function f using [5]

fitness

i

= f

i

(X)�Q

i

(3)

where Q

i

represents either a penalty for an infeasible individual i, or a cost for repairing such an

individual (i.e., the cost for making it feasible). It is assumed that if i is feasible then Q

i

= 0.

Ideally, the penalty should be kept as low as possible, just above the limit below which infeasible

solutions are optimal (this is called, the minimum penalty rule [13]). However, although very simple, in

practice it is quite di�cult to implement this rule, because the exact location of the boundary between

the feasible and infeasible regions is unknown in most problems.

It is known that the relationship between an infeasible individual and the feasible part of the search

space plays a signi�cant role in penalizing such individual [4]. However, it is not completely clear how

to exploit this relationship to guide the search in the most desirable direction.

There are at least 3 main choices to de�ne a relationship between an infeasible individual and the

feasible region of the search space [5]:

1. an individual might be penalized just for being infeasible (i.e., we do not use any information

about how close it is from the feasible region),

2. the `amount' of its infeasibility can be measured and used to determine its corresponding penalty,

or

3. the e�ort of `repairing' the individual (i.e., the cost of making it feasible) might be taken into

account.

Several researchers have studied heuristics on the design of penalty functions. Probably the most

well-known of these studies is the one conducted by Richardson et al. [4] from which the following

guidelines were derived:

1. Penalties which are functions of the distance from feasibility are better performers than those

which are merely functions of the number of violated constraints.

2. For a problem having few constraints, and few full solutions, penalties which are solely functions

of the number of violated constraints are not likely to �nd solutions.

3. Good penalty functions can be constructed from two quantities: the maximum completion cost

and the expected completion cost. The completion cost is the cost of making feasible an infeasible

solution.

4. Penalties should be close to the expected completion cost, but should not frequently fall below

it. The more accurate the penalty, the better will be the solution found. When a penalty often

underestimates the completion cost, then the search may not �nd a solution.

Based mainly on these guidelines, several researchers have attempted to derive good techniques to

build penalty functions. Homaifar, Lai and Qi [14] proposed an approach in which the user de�nes

several levels of violation, and a penalty coe�cient is chosen for each in such a way that the penalty

coe�cient increases as we reach higher levels of violation. The main drawback of this technique is

the high number of parameters required [15]. For m constraints, this approach requires m(2l + 1)

parameters in total, where l is the number of levels de�ned. So, if we have for example 5 constraints

and 3 levels, we would need 35 parameters, which is a very high number considering the small size of

the problem.

Joines and Houck [16] proposed a technique in which dynamic penalties (i.e., penalties that change

over time) are used. Individuals are evaluated (at generation t) using:

fitness

i

(X) = f

i

(X) + (C � t)

�

m

X

j=1

f

�

j

(X) (4)

where C, � and � are constants de�ned by the user and m is the number of constraints. This

dynamic function increases the penalty as we progress through generations. Some researchers [17] have

argued that dynamic penalties work better than static penalties. However, it is di�cult to derive good

dynamic penalty functions in practice as it is to produce good penalty factors for static functions. For

example, in this approach the quality of the solution found is very sensitive to changes in the values

of the parameters. Even when a certain set of values for these parameters (C = 0:5, � = � = 2) were

found by the authors of this method to be a reasonable choice, Michalewicz [15] reported that these

values produce premature convergence most of the time. Also, it was found that the technique normally

either converged to an infeasible solution or to a feasible one that was far away from the global optimum

[15, 5].

Powell and Skolnick [18] incorporated a heuristic rule (suggested by Richardson et al. [4]) for

processing infeasible solutions: evaluations of feasible solutions are mapped into the interval (�1,

1), and infeasible solutions into the interval (1, 1). This is equivalent (for ranking and tournament

selection procedures [19, 8]) to the following evaluation procedure:

fitness

f

(X) = f(X) (5)

fitness

u

(X) = f(X) + r

m

X

j=1

f

j

(X) (6)

In this expression, r is a constant, and

fitness(X) =

�

fitness

f

(X); if X is feasible

fitness

u

(X) + �(X; t); otherwise

(7)

�(X; t) = maxf0;maxffitness

f

(X)gg �minffitness

u

(X)g (8)

The key concept of this approach is the assumption of the superiority of feasible solutions over

infeasible ones, and as long as such assumption holds, the technique is expected to behave well [18].

However, in cases where the ratio between the feasible region and the whole search space is too small,

the technique will fail unless a feasible point is introduced in the initial population [11].

Michalewicz and Attia [20] considered a method based on the idea of simulated annealing [21]: the

penalty coe�cients are changed once in many generations (after the convergence of the algorithm to a

local optima). At every iteration the algorithm considers active constraints only, and the pressure on

infeasible solutions is increased due to the decreasing values of the temperature of the system.

The method of Michalewicz and Attia [20] requires that constraints are divided into 4 groups:

linear equalities, linear inequalities, nonlinear equalities and nonlinear inequalities. Also, a set of

active constraints A has to be created, and all nonlinear equalities together with all violated nonlinear

inequalities have to be included there. The population is evolved using [15]:

fitness(X) = f(X) +

1

2�

X

j2A

f

2

j

(X) (9)

An interesting aspect of this approach is that the initial population is not really diverse, but consists

of multiple copies of a single individual that satis�es all linear constraints. At each iteration, the

temperature � is decreased and the new population is created using the best solution found in the

previous iteration. The process stops when a pre-de�ned �nal `freezing' temperature �

f

is reached.

One of the main drawbacks of this approach is its extreme sensitivity to the values of its parameters,

and it is also well known that it is normally di�cult to choose an appropriate cooling scheme when

solving a problem with simulated annealing [21]. Also, the approach used to handle linear constraints

(treated separately by this technique) is very e�cient, but it requires that the user provides an initial

feasible point to the algorithm.

Bean and Hadj-Alouane [22] developed a method of adapting penalties that uses a penalty function

which takes a feedback from the search process. Each individual is evaluated by the formula:

fitness(X) = f(X) + �(t)

m

X

j=1

f

2

j

(X) (10)

where �(t) is updated every generation t in the following way:

�(t+ 1) =

8

<

:

(1=�

1

) � �(t); if case#1

�

2

� �(t); if case#2

�(t); otherwise;

(11)

where cases #1 and #2 denote situations where the best individual in the last k generation was

always (case #1) or was never (case #2) feasible, �

1

; �

2

> 1, and �

1

6= �

2

(to avoid cycling). In other

words, the penalty component �(t+1) for the generation t+1 is decreased if all best individuals in the

last k generations were feasible or is increased if they were all infeasible. If there are some feasible and

infeasible individuals tied as best in the population, then the penalty does not change.

The obvious drawback of this dynamic penalty approach is how to choose the generational gap

(i.e., the appropriate value of k) that provides reasonable information to guide the search, and more

important, how do we de�ne the values of �

1

and �

2

to penalyze fairly a given solution.

Le Riche et al. [13] designed a (segregated) genetic algorithm which uses two penalty parameters

(for each constraint) instead of one; these two values aim at achieving a balance between heavy and

moderate penalties by maintaining two subpopulations of individuals. The population is split into two

cooperating groups, where individuals in each group are evaluated using either one of the two penalty

parameters. The idea is to combine those 2 sub-populations into a single one, mixing then individuals

which are feasible with those that are not. Linear ranking is used to decrease the selection pressure

that could cause premature convergence.

The problem with this approach is again the way of choosing the penalties for each of the 2 sub-

populations, and even when some guidelines have been provided by the authors of this method [11] to

de�ne such penalties, they also admit that it is di�cult to produce generic values that can be used in

any problem for which no previous information is available.

Another approach that does not seem to �t into any of the previous categories de�ned is tha

mapping-based method proposed by Kim and Husbands [23]. This technique is a more theoretical

approach that uses Riemann mappings to transform the feasible region into a shape that facilitates the

search for the GA. The problem with this approach is that it has been used only for problems with low

dimensionality (no more than 4 variables), in which the objective function is given in explicit (algebraic)

form, and it does not seem clear how to extend the technique to handle more di�cult problems.

3 MULTIOBJECTIVE OPTIMIZATION TECHNIQUES

In this approach, objectives and constraints are handled separately. The main idea is to rede�ne the

single-objective optimization of f as a multiobjective optimization problem in which we will have m+1

objectives, where m is the number of constraints. Then, we can apply any multiobjective optimization

technique [24] to the new vector �v = (f; f

1

; : : : ; f

m

), where f

1

; : : : ; f

m

are the original constraints of

the problem. An ideal solution X would thus have f

i

(X)=0 for 1 � i � m and f(X) � f(Y) for all

feasible Y (assuming minimization).

f(x)

g (x)

g (x)

g (x)

1

f(x)

g (x)

g (x)

1

22

Sub-populations
Old

Sub-populations
New

m+1

3

1

2

1

2

3

m+1

genetic
operators

Apply

g (x)
mm

Figure 1: Graphical representation of the approach introduced in this paper.

Surry et al. [25] proposed the use of Pareto ranking [26] and VEGA [27] to handle constraints using

this technique. In their approach, called COMOGA, the population was ranked based on constraint

violations (counting the number of individuals dominated by each solution). Then one portion of the

population was selected based on constraint ranking, and the rest based on real cost (�tness) of the

individuals. This approach compared fairly with a penalty-based approach in a pipe-sizing problem,

since the resulting GA was less sensitive to changes in the parameters, but the results achieved were

not better than those found with a penalty function [25]. It should be added that COMOGA [25]

required several extra parameters, fromwhich the so-called p

cost

was themost important (this parameter

regulates the proportion of feasible and infeasible individuals that will exist in the population at any

given time).

Parmee and Purchase [28] implemented a version of VEGA [27] that handled the constraints of a gas

turbine problem as objectives to allow the GA to locate a feasible region within the highly constrained

search space of this application. However, VEGA was not used to further explore the feasible region,

and instead Parmee and Purchase [28] opted to use specialized operators that would create a variable-

size hypercube around each feasible point to help the GA to remain within the feasible region at all

times.

3.1 Description of the new approach

The main idea behind the approach proposed in this paper is to use a population-based multiobjective

optimization technique such as VEGA [27] to handle each of the constraints as an objective in the

way indicated before. The technique may be better illustrated by Figure 1. At each generation, the

population is split into m + 1 sub-populations, where m refers to the number of constraints of the

problem (we have to add one to consider also the objective function). Although the size of each sub-

population may be variable, it was decided to allocate the same size to each of them in the experiments

reported in this paper, but the use of di�erent sizes remains as an open issue that requires further

research.

Using this scheme, a fraction of the population will be selected using the (unconstrained) objective

function as its �tness; another fraction will use the �rst constraint as its �tness and so on. However, it

is not completely obvious how to guide each of these sub-populations during the search.

For the sub-population guided by the objective function, the evaluation of such objective function

for a given vector X (decoded from the chromosome) is used directly as the �tness function (probably

multiplied by (-1) if it is a minimization problem), with no penalties of any sort. For all the other

sub-populations, the algorithm used was the following:

if g

j

(X) < 0:0 then �tness = g

j

(X)

else if v 6= 0 then �tness = �v

else �tness = f

where g

j

(X) refers to the constraint corresponding to sub-population j+1 (this is assuming that the

�rst sub-population is assigned to the objective function f), and v refers to the number of constraints

that are violated (� m).

There are a few interesting things that can be observed from this procedure. First, each sub-

population associated with a constraint will try to reduce the amount in which that constraint is

violated. If the solution evaluated does not violate the constraint corresponding to that sub-population,

but it is infeasible, then the sub-population will try to minimize the total number of violations, joining

then the other sub-populations in the e�ort of driving the GA to the feasible region. This aims at

combining the distance from feasibility with information about the number of violated constraints,

which is the same heuristic normally used with penalty functions. However, traditionally it is necessary

to de�ne in advance either an static penalty value or a dynamic penalty function that estimates this

distance from feasibility, whereas in the current approach such distance is estimated automatically by

the above algorithm using the constraint violation information derived from the GA run.

Finally, if the solution encoded is feasible, then this individual will be `merged' with the �rst sub-

population, since it will be evaluated with the same �tness function (i.e., the objective function).

It is important to clarify that the current approach does not use dominance to impose an order on the

constraints based on their violation (like in the case of COMOGA [25]) which is a more expensive process

(in terms of CPU time) that also requires additional parameters. In fact, the current approach does not

rank individuals, but it uses instead di�erent �tness functions for each of the sub-population allocated

(whose number depends on the number of constraints) depending on the feasibility of the individuals

containedwithin each of them. This is easier to implement, does not require special operators to preserve

feasiblity (like in the case of Parmee and Purchase's approach [28]), makes unnecessary the use of a

sharing function to preserve diversity (like with traditional multiobjective optimization techniques),

and does not require extra parameters to control the mixture of feasible and infeasible individuals (like

in the case of COMOGA [25]).

It is interesting to notice that the use of the unconstrained objective function in one of the sub-

populations may assign good �tness values to infeasible individuals. However, because the number

of constraints will normally be greater than one, the other sub-populations will drive the GA to the

feasible region. In fact, the sub-population evaluated with the objective function will be useful to keep

diversity in the population, making then unnecessary the use of sharing techniques. The behavior

expected under this scheme is to have few feasible individuals at the beginning, and then gradually

produce solutions that may be feasible with respect to some constraints but not with respect to others.

Over time, the building blocks of these sub-populations will combine to produce individuals that are

feasible, but not necessarily optimum. At that point the direct use of the objective function will help the

GA to approach the optimum, but since some infeasible solutions will still be present in the population,

those individuals will be responsible to keep the diversity required to avoid stagnation.

Although VEGA is known to have di�culties in multiobjective optimization problems due to the fact

that it tries to �nd individuals that excel only in one dimension regardless of the others (the so-called

h

R

R 0

P0

Lubricant
in

Thrust load
W

P1

Lubricant
out

Figure 2: The hydrostatic thrust bearing used for the �rst example.

\middling" problem [27, 24]), that drawback turns out to be an advantage in this context, because

what we want to �nd are precisely solutions that are completely feasible, instead of good compromises

that may not satisfy one of the constraints.

The new approach has been tested with several functions of di�erent degrees of di�culty, and has

been able to deal properly with both inequality and equality constraints, as will be seen in a further

section.

4 EXAMPLES

Several examples taken from the optimization literature will be used to show the way in which the pro-

posed approach works. These examples have linear and nonlinear constraints, and have been previously

solved using a variety of other techniques (both GA-based and traditional mathematical programming

methods), which is useful to determine the quality of the solutions produced by the new approach.

It should be mentioned that the initial goal of this work was to reproduce the quality of the results

found with simple genetic algorithms (using a penalty function) that were �ne-tuned to solve an speci�c

problem using an empirical approach (normally by simple trial and error) and with traditional numerical

optimization techniques. However, as will be seen later, the new technique proposed in this paper not

only matched previous results, but in fact it improved them, though fairly small sub-populations were

used in the experiments reported next. It should also mentioned that the ranges shown for the design

variables are the same reported in the original references from where these problems were obtained.

4.1 Example 1 : Design of a hydrostatic thrust bearing

In this problem we want to minimize the power loss during the operation of a hydrostatic thrust bearing

(see Figure 2) which has to withstand a speci�ed load while providing an axial support. Four design

variables are considered: R (bearing step radius), R

0

(recess radius), � (viscosity), and Q (ow rate).

The optimization problem can be stated as follows:

Minimize :

F (X) =

QP

0

0:7

+ E

f

(12)

Subject to :

g

1

(X) =

�P

0

2

R

2

�R

2

0

ln(R=R

0

)

�W

s

� 0 (13)

g

2

(X) = P

max

� P

0

� 0 (14)

g

3

(X) = �T

max

��T � 0 (15)

g

4

(X) = h� h

min

� 0 (16)

g

5

(X) = R �R

0

� 0 (17)

g

6

(X) = 0:001�

gP

0

�

Q

2�Rh

�

� 0 (18)

g

7

(X) = 5000�

W

�(R

2

�R

2

0

)

� 0 (19)

where the inlet pressure P

0

is de�ned as

P

0

=

6�Q

�h

3

ln

R

R

0

(20)

and the power loss due to friction is

E

f

= 9336:0QC�T (21)

where = 0:0307 lb/in

3

(849.5755 kg/m

3

) is the weight density of oil and C = 0:5 Btu/lb

�

F (0.5

cal/g

�

C) is the speci�c heat of oil. The temperature rise �T can be calculated from the following

expression:

�T = 2P

2

(22)

where

P

2

= 10

P

3

� 560 (23)

and

P

3

=

log

10

log

10

(8:122� 10

6

� + 0:8)�C

1

n

(24)

C

1

and n are constants for a given oil, de�ned according to Table 1. For the purposes of this

example, we will use SAE 20 grade oil, and therefore C

1

= �3:55 and n = 10:04. After calculating the

value of E

f

, we can calculate the �lm thickness h from the following equation:

h =

�

2�N

60

�

2

2��

E

f

�

R

4

4

�

R

4

0

4

�

(25)

Other parameters required are: W

s

= 101000 lb (45804.99 Kg), P

max

= 1000 psi (6.89655�10

6

Pa),

�T

max

= 50

�

F (10

�

C), h

min

= 0:001 in (0.00254 cm), g = 386:4 in/seg

2

(981.456 cm/seg

2

), and

N = 750.

Oil C

1

n

SAE 5 10.85 -3.91

SAE 10 10.45 -3.72

SAE 20 10.04 -3.55

SAE 30 9.88 -3.48

SAE 40 9.83 -3.46

SAE 50 9.82 -3.44

Table 1: Values of C

1

and n for various grades of oil (example 1).

iD

De

h

t

P

Figure 3: The Belleville spring used for the second example.

4.2 Example 2 : Design of a Belleville spring

In this case, the objective is to design a Belleville spring that has minimum weight while satisfying

several constraints (see Figure 3). There are four design variables: D

e

(external diameter of the

spring), D

i

(internal diameter of the spring), t (thickness of the spring), and h (height of the spring).

The problem can be stated as follows:

Minimize:

F (X) = 0:07075�(D

2

e

�D

2

i

)t (26)

Subject to:

g

1

(X) = S �

4E�

max

(1� �

2

)�D

2

e

[�(h � �

max

=2) + t] � 0 (27)

g

2

(X) =

4E�

(1� �

2

)�D

2

e

[(h� �

max

=2)(h� �

max

)t+ t

3

] � P

max

� 0 (28)

g

3

(X) = �

l

� �

max

� 0 (29)

g

4

(X) = H � h� y � 0 (30)

g

5

(X) = D

max

�D

e

� 0 (31)

g

6

(X) = D

e

�D

i

� 0 (32)

g

7

(X) = 0:3�

h

D

e

�D

i

� 0 (33)

a f(a)

� 1.4 1

1.5 0.85

1.6 0.77

1.7 0.71

1.8 0.66

1.9 0.63

2.0 0.60

2.1 0.58

2.2 0.56

2.3 0.55

2.4 0.53

2.5 0.52

2.6 0.51

2.7 0.51

� 2.8 0.50

Table 2: Values of a and f(a) for the second example.

The parameters are de�ned as follows: the maximum load is P

max

= 5400 lb (2448.98 Kg), the

maximum deection is �

max

= 0:2 in (0.508 cm), the allowable strength is S = 200 kPsi (1379.31

MPa), the modulus of elasticity E = 30� 10

6

psi (206897 MPa), Poisson's ratio for the material used

is � = 0:3, the maximum limit on the overall height is H = 2 in (5.08 cm), and the outside diameter of

the spring is D

max

= 12:01 in (30.505 cm). Assuming K = D

e

=D

i

, then:

� =

6

� lnK

�

K � 1

k

�

2

(34)

� =

6

� lnK

�

K � 1

k

� 1

�

(35)

 =

6

� lnK

�

K � 1

2

�

(36)

Finally, the limiting deection is �

l

= f(a)h, where a = h=t, and f(a) is de�ned according to the

values given in Table 2.

4.3 Example 3 :

The third example consists of designing the combinational circuit represented by the function with 3

inputs and 1 output shown in Table 3. To solve this problem, a bidimensional matrix representation of

the circuit will be encoded in each chromosomic string as shown in Figure 4 [29]. In this matrix, each

element is a gate (there are 5 types of gates: AND, NOT, OR, XOR and WIRE) that receives its 2

inputs from any gate at the previous column.

More formally, we can say that the circuit will be represented as a bidimensional array of gates S

i;j

,

where j indicates the level of a gate, so that those gates closer to the inputs have lower values of j.

(Level values are incremented from left to right in Figure 4). For a �xed j, the index i varies with respect

to the gates that are \next" to each other in the circuit, but without being necessarily connected. It is

interesting to notice that if a row-order encoding is used, the problem becomes disruptive [30], making

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Table 3: Truth table for the circuit of the third example.

Input Output

Figure 4: A gate in a two-dimensional template, gets its second input from either one of two gates in

the previous column.

Input 1 Input 2 Gate Type

Figure 5: Encoding used for each of the matrix elements that represent a circuit.

it very hard for the GA. The reason is that using such an encoding, any circuit designs that are close in

two-dimensional (phenotypic) space may be far apart in one-dimensional (genotypic) space, making it

di�cult to preserve highly �t schemas (in GA terminology, we say that the problem is deceptive [31]).

A chromosomic string will then encode the matrix shown in Figure 4 by using triplets in which the

2 �rst elements refer to each of the inputs used, and the third is the corresponding gate as shown in

Figure 5 (only 2-input gates were used in this work).

The goal in this example was then to produce a fully functional design (i.e., one that produced all

the expected outputs for any combination of inputs according to the truth table given for the problem)

which maximized the number of WIREs

1

.

In this example, there are 2

3

= 8 equality constraints, each corresponding to a desired output from

the truth table shown above (see Table 3).

4.4 Example 4 : Himmelblau's Nonlinear Optimization Problem

This problem was originally proposed by Himmelblau [32], and it was chosen to try the new approach

because it has been used before as a benchmark for GA-based techniques that use penalties. In this

problem, there are 5 design variables (x

1

; x

2

; x

3

; x

4

; x

5

), 6 nonlinear inequality constraints and 10

boundary conditions. The problem can be stated as follows:

Minimize f(X) = 5:3578547x

2

3

+ 0:8356891x

1

x

5

(37)

Subject to:

g

1

(X) = 85:334407+ 0:0056858x

2

x

5

+ 0:00026x

1

x

4

� 0:0022053x

3

x

5

(38)

g

2

(X) = 80:51249+ 0:0071317x

2

x

5

+ 0:0029955x

1

x

2

+ 0:0021813x

2

3

(39)

g

3

(X) = 9:300961 + 0:0047026x

3

x

5

+ 0:0012547x

1

x

3

+ 0:0019085x

3

x

4

(40)

0 � g

1

(X) � 92 (41)

90 � g

2

(X) � 110 (42)

20 � g

3

(X) � 25 (43)

78 � x

1

� 102 (44)

33 � x

2

� 45 (45)

27 � x

3

� 45 (46)

27 � x

4

� 45 (47)

27 � x

5

� 45 (48)

6 4 2

360"

 360" 360"

 5 3 1

Figure 6: 10-bar plane truss used for Example No. 5.

4.5 Example 5 : Design of a 10-bar plane truss

Consider the 10-bar plane truss shown in Figure 6 [33]. The problem is to �nd the cross-sectional area

of each member of this truss, such that we minimize its weight, subject to stress and displacement

constraints. The weight of the truss is given by:

f(x) =

10

X

j=1

�A

j

L

j

(49)

where x is the candidate solution, A

j

is the cross-sectional area of the jth member, L

j

is the length

of the jth member, and � is the weight density of the material.

The assumed data are: modulus of elasticity, E = 1:0 � 10

4

ksi 68965.5 MPa), � = 0:10 lb/in

3

(2768.096 kg/m

3

), and a load of 100 kips (45351.47 Kg) in the negative y-direction is applied at nodes

2 and 4. The maximum allowable stress of each member is called �

a

, and it is assumed to be �25

ksi (172.41 MPa). The maximum allowable displacement of each node (horizontal and vertical) is

represented by u

a

, and is assumed to be 2 inches (5.08 cm).

There are 10 stress constraints, and 12 displacement constraints (we can really assume only 8

displacement constraints because there are two nodes with zero displacement, but they will nevertheless

be considered as additional constraints by the new approach). The cross-section of each element can

be di�erent, thus the problem has 10 design variables.

5 COMPARISON OF RESULTS

The genetic algorithm used for the experiments presented in this paper uses a �xed-point representation

[34, 35], according to which a chromosome is a string of the form hd

1

; d

2

; : : : ; d

m

i, where d

1

; d

2

; : : : ; d

m

are digits (numbers between zero and nine). Consider the examples shown in Figure 7, in which the

same value is represented using binary and �xed point encoding.

1

WIRE basically indicates a null operation, or in other words, the absence of gate, and it is used just to keep regularity

in the representation used by the GA that otherwise would have to use variable-length strings.

1 1 11 0 1 01 0 0 01 0 0

1 2 9 34 5

using fixed point encoding

1 1 1

Representation of the number 415.293
using binary encoding

Representation of the number 415.293

10

Figure 7: Representing the same number using binary and �xed point encodings.

Fixed point representation is faster and easier to implement, and provides a higher precision than

its binary counterpart, particularly in large domains, where binary strings would be prohibitively long.

One of the advantages of �xed point representation is that it has the property that two points close to

each other in the representation space must also be close in the problem space, and vice versa [8]. This

is not generally true in the binary approach, where the distance in a representation is normally de�ned

by the number of di�erent bit positions.

For crossover, it was decided to use uniform crossover [36], which can be seen as a generalization

of the more traditional one-point and two-point crossover operators [1, 8]. In this case, for each gene

(i.e., string position) in the �rst o�spring it is decided (with some probability p) which parent will

contribute its value for that position. The second o�spring would receive the gene from the other

parent. An example of 0.5-uniform crossover can be seen in Figure 8.

Instead of using the traditional uniform mutation operator, for the purposes of this work, it was

decided to use non-uniform mutation [8]. To illustrate this operator, let's assume that at generation t,

we have a string S

t

= hs

1

; s

2

; : : : ; s

l

i. After randomly selecting a position along the string, in generation

t+ 1, the new chromosome after mutation will be S

t+1

= hs

1

; s

2

; : : : ; s

0

k

; : : : ; s

l

i, where:

s

0

k

=

�

s

k

+�(t; 9� s

k

) if flip(0:5) = 0

s

k

��(t; s

k

) if flip(0:5) = 1

(50)

The function flip(0:5) returns randomly and with equal probability one of two possible values:

either zero or one. The function �(t; y) returns a value in the range [0; y] such that the probability

of �(t; y) being close to 0 increases as t increases. The expression used by the author is the function

originally suggested by Michalewicz [8]:

�(t; y) = y �

�

1� r

(

1�

t

T

)

b

�

(51)

where r is a randomly generated real number in the range [0..1], T is the maximum number of

generations, and b is a system parameter that determines the degree of dependency on the current

10

1

P a r e n t 2P a r e n t 1

P a r e n t 2P a r e n t 1

C h i l d 1

C h i l d 2

3 4 7 9 2 6 5 3 8 6 0 499

3 4 2 67 09

3 8 9 409 94

5 3 8 6 9 49 0

5 3 7 0 1626

Figure 8: Use of 0.5-uniform crossover (using 50% probability) between two chromosomes. Notice how

half of the genes of each parent goes to each of the two children. First, the bits to be copied from each

parent are selected randomly using the probability desired, and after the �rst child is generated, the

same values are used to generate the second child, but inverting the source of procedence of the genes.

Design Best solution found

Variables This paper GeneAS BGA Siddall

x

1

(R) 6.271 6.778 7.077 7.155

x

2

(R

0

) 12.901 6.234 6.549 6.689

x

3

(�)� 10

�6

5.605 6.096 6.619 8.321

x

4

(Q) 2.938 3.809 4.849 9.168

g

1

(X) 2126.86734 8329.7681 1440.6013 -11086.7430

g

2

(X) 68.0396 177.3527 297.1495 402.4493

g

3

(X) 3.705191 10.684543 17.353800 35.057196

g

4

(X) 0.000559 0.000652 0.000891 0.001542

g

5

(X) 0.666000 0.544000 0.528000 0.466000

g

6

(X) 0.000805 0.000717 0.000624 0.000144

g

7

(X) 849.718683 83.618221 467.686527 563.644401

f(X) 1950:2860 2161:4215 2296:2119 2288:2268

Table 4: Comparison of results for the �rst example (design of a hydrostatic thrust bearing).

generation number. The value adopted for the current implementation was b = 5, as suggested by

Michalewicz [8]. Binary tournament selection was used for all the examples presented next.

5.1 Example 1

This problem was solved before by Deb and Goyal [37] using GeneAS (Genetic Adaptive Search, which

is a real-coded GA) and a traditional (binary) genetic algorithm (both approaches used a penalty

function), and by Siddall [38] using ADRANS (Gall's adaptive random search with a penalty function).

Their results were compared against those produced by the approach proposed in this paper, and are

shown in Table 4. Notice that the solution reported by Siddall [39] is infeasible (it violates the �rst

constraint). The solution shown for the technique proposed here is the best produced after 81 runs

in which the crossover and mutation rates were iterated from 0:1 to 0:9 (at increments of 0.1) in a

nested loop in which the mutation rate was iterated �rst while the crossover rate remained �xed. For

example, given an initial crossover rate of 0.1, the nine values from 0.1 to 0.9 were used for the mutation

rate, running a GA for each pair of parameters (crossover and mutation rates). Once the loop for the

mutation rate �nished, the crossover rate was incremented by 0.1 and the loop for the mutation rate

was run again from 0.1 to 0.9. The process was repeated until the crossover rate reached 0.9.

The following ranges were used for the design variables: 1:000 � x

1

� 16:000, 1:000 � x

2

� 16:000,

1:0� 10

�6

� x

3

� 16:0� 10

�6

, 1:000 � x

4

� 16:000. The values of all variables were considered with a

3-decimal precision (the values of x

3

were considered as multiples of 1:0� 10

�6

). The total population

size used was 160 (20 individuals for each of the 8 sub-populations) and the maximum number of

generations was 100.

5.2 Example 2

This problem was solved before by Deb [37] using two versions of GeneAS (one that treated the

variables as continuous|GeneAS I|and another that treated the variables as discrete|GeneAS II) and

a traditional (binary) genetic algorithm (both approaches used a penalty function), and by Siddall [38]

using APPROX (Gri�th and Stewart's successive linear approximation). Their results were compared

against those produced by the approach proposed in this paper, and are shown in Table 5. Notice

Design Best solution found

Variables This paper GeneAS I GeneAS II Siddall

x

1

(t) 0.208 0.205 0.210 0.204

x

2

(h) 0.200 0.201 0.204 0.200

x

3

(D

i

) 8.751 9.534 9.268 10.030

x

4

(D

e

) 11.067 11.627 11.499 12.010

g

1

(X) 2145.4109 -10.3396 2127.2624 134.0816

g

2

(X) 39.75018 2.8062 194.222554 -12.5328

g

3

(X) 0.00000 0.0010 0.0040 0.0000

g

4

(X) 1.592 1.5940 1.5860 1.5960

g

5

(X) 0.943 0.3830 0.5110 0.0000

g

6

(X) 2.316 2.0930 2.2310 1.9800

g

7

(X) 0.21364 0.20397 0.20856 0.19899

f(X) 2:121964 2:01807 2:16256 1:978715

Table 5: Comparison of results for the second example (design of a Belleville spring).

Genetic Algorithm Human Designer ESPRESSO

F = (X + Z)(Y � Y Z) F = Z(X � Y) + Y (X � Z) F = XY Z +XY Z +XY Z

4 gates 5 gates 11 gates

2 ANDs, 1 OR, 1 XOR 2 ANDs, 1 OR, 2 XORs 6 ANDs, 2 ORs, 3 NOTs

Table 6: Comparison of results between a human designer and the approach proposed in this paper

that the solution reported by Deb and Goyal [37] for GeneAS I violates the �rst constraint, and the

solution reported by Siddall [38] violates the second constraint (these results may vary depending on

the precision used and the value of � employed in the equations, but the results shown in Table 5

were all computed using the same precision). The solution shown for the technique proposed here is

the best produced after 81 runs in which the crossover and mutation rates were iterated from 0:1 to

0:9 in a nested loop, and the following ranges were used for the design variables: 0:010 � x

1

� 6:000,

0:050 � x

2

� 0:500, 5:000 � x

3

� 15:000, 5:000 � x

4

� 15:000. The values of all variables were

considered with a 3-decimal precision. The total population size used was 160 (20 individuals for each

of the 8 sub-populations) and the maximum number of generations was 150.

5.3 Example 3

This example was solved by hand using Karnaugh Maps [40] by an experienced designer. His solution

required 5 gates, as shown in Table 6. Also, a computer program called ESPRESSO [41] was used to

compare the results produced by the approach proposed in this paper. It should be mentioned that

ESPRESSO really tries to produce a minumum representation of a circuit but using only two levels,

regardless of the number of inputs that each gate receives. Therefore, it is di�cult to compare its

results with those found by the current technique, because ESPRESSO does not constraint itself to

operate with two-input gates, nor uses the XOR gate. In the expression presented in Table 6, each of

the 3-input gates used was actually split into 2-input gates to make a fair comparison with the GA, but

the fact that ESPRESSO does not handle directly this type of gates obviously makes its results more

complex than those produced with the GA.

Design Best solution found

Variables This paper Gen Homaifar GRG

x

1

78.5958 81.4900 78.0000 78.6200

x

2

33.0100 34.0900 33.0000 33.4400

x

3

27.6460 31.2400 29.9950 31.0700

x

4

45.0000 42.2000 45.0000 44.1800

x

5

45.0000 34.3700 36.7760 35.2200

g

1

(X) 91.956402 90.522543 90.714681 90.520761

g

2

(X) 100.545111 99.318806 98.840511 98.892933

g

3

(X) 20.251919 20.060410 19.999935 20.131578

f(X) �30810:359 �30183:576 �30665:609 �30373:949

Table 7: Comparison of results for the fourth example (Himmelblau's function).

The �tness function for this problem worked in two stages. At the beginning of the search, only

validity of the circuit outputs was taken into account, and the GA was basically exploring the search

space. Once a functional solution appeared, then the �tness function was modi�ed such that any valid

designs produced were rewarded for each WIRE gate that they included, so that the GA tried to �nd

the circuit with the maximum number of gates that performed the function required. It's at this stage

that the GA was actually exploiting the search space, trying to optimize the solutions found (in terms

of their number of gates) as much as possible. Each of the outputs desired was treated as an equality

constraint (as indicated before), and the GA used a population of 360 chromosomes (40 individuals for

each of the 9 sub-populations), with a maximum number of generations of 100. The size of the matrix

used was 5� 5.

5.4 Example 4

This problem was originally proposed by Himmelblau [32] and solved using the Generalized Reduced

Gradient method (GRG). Gen and Cheng [42] solved this problem using a genetic algorithm based on

both local and global reference. The result shown in Table 7 is the best of the two reported by Gen

and Cheng [42].

Homaifar, Qi, and Lai [14] solved this problem using a genetic algorithm with a population size of

400, and their results were the best previously reported in the literature for this problem (see Table 7).

The solution shown for the technique proposed here is the best produced after 81 runs in which the

crossover and mutation rates were iterated from 0:1 to 0:9 in a nested loop, and the following ranges

were used for the design variables: 78:0000 � x

1

� 102:0000, 33:0000 � x

2

� 45:0000, 27:0000 � x

3

�

45:0000, 27:0000 � x

4

� 45:0000, and 27:0000 � x

5

� 45:0000. The values for all the variables were

considered with a 4-decimal precision. The total population size used was 160 (40 individuals for each

of the 4 sub-populations) and the maximum number of generations was 100.

5.5 Example 5

This problem was used by Belegundu [33] to evaluate the following numerical optimization tech-

niques: Feasible directions (CONMIN and OPTDYN), Pshenichny's Recursive Quadratic Programming

(LINRM), Gradient Projection (GRP-UI), Exterior Penalty Function (SUMT), Multiplier Methods (M-

3, M-4 and M-5).

The results reported by Belegundu [33] are compared to the current approach in Tables 8 and 9 (all

Design Best solution found

Variables This paper CONMIN OPTDYN LINRM

x

1

30.00 25.28 25.77 21.57

x

2

0.10 1.90 0.10 10.98

x

3

22.40 24.87 25.11 22.08

x

4

16.19 15.83 19.39 14.95

x

5

0.10 0.10 0.10 0.10

x

6

0.57 1.75 0.10 10.98

x

7

7.74 16.76 15.36 18.91

x

8

22.15 19.73 20.32 18.42

x

9

20.80 20.98 20.74 18.40

x

10

0.10 2.51 1.14 13.51

f(X) 5082:76 5563:32 5471:48 6428:89

Table 8: Comparison of results for the �fth example (10-bar plane truss). Part I.

Design Best solution found

Variables GRP-UI SUMT M-3 M-4 M-5

x

1

24.78 30.69 25.84 31.62 25.84

x

2

4.17 2.37 3.07 11.81 2.88

x

3

24.79 31.62 26.42 31.62 26.45

x

4

14.45 11.66 12.77 17.50 12.75

x

5

0.10 0.10 0.10 31.62 0.10

x

6

4.17 3.71 3.44 10.25 3.77

x

7

17.46 21.71 19.34 31.62 19.38

x

8

19.26 20.90 19.17 31.62 19.18

x

9

19.27 13.97 18.76 31.62 18.77

x

10

5.26 3.26 4.42 31.62 4.38

f(X) 5727:05 5932:21 5719:19 11279:22 5726:08

Table 9: Comparison of results for the �fth example (10-bar plane truss). Part II.

the solutions presented are feasible). To solve this problem, it was necessary to add a module responsible

for the analysis of the plane truss. This module uses the matrix factorization method included in Gere

and Weaver [43] together with the sti�ness method [43] to analyze the structure, and returns the values

of the stress and displacement constraints, as well as the total weight of the structure.

The solution shown for the technique proposed here is the best produced after 81 runs in which

the crossover and mutation rates were iterated from 0:1 to 0:9 in a nested loop, and the range 0:1 �

x � 299:00 was used for the 10 design variables. The values for all the variables were considered

with a 2-decimal precision. The total population size used was 230 (10 individuals for each of the 23

sub-populations) and the maximum number of generations was 100.

6 DISCUSSION

In the examples presented before, the new approach found better solutions than those previously

reported in the literature by using relatively small sub-population sizes. However, the selection of an

appropriate sub-population size (assuming that they are all the same) remains an issue as when using

a GA with a single population.

Determining the maximum number of generations presents a similar problem, although in this case

it is possible to monitor the population so that the GA is stopped when there is not enough diversity

anymore (e.g., when the �tness of the best individual is very close to the mean �tness of the population).

The problems selected to illustrate the technique had di�erent kinds of constraints so that the new

algorithm could be tested under di�erent conditions. Examples 1 and 2 for instance, are engineering

design problems, with their constraints given in algebraic form. Example 4 is a numerical optimization

problem that has been used several times before to test constraint handling approaches. Example 3 has

equality constraints which are not given in algebraic form, but are instead derived from a module that

simulates the circuit produced for all possible input combinations. Finally, example 5 does not have its

constraints de�ned in algebraic form either, since they are derived from the module that performs the

analysis of the structure.

The main drawback of the new technique may be the number of sub-populations that may be

needed in larger problems, since they will increase linearly with the number of constraints. However,

it is possible to deal with that problem in two di�erent ways: �rst, some constraints could be tied;

that means that two or more constraints could be assigned to the same sub-population. That would

signi�cantly reduce the number of sub-populations in highly constrained problems. Second, we could

parallelize the approach, in which case a high number of sub-populations will not be a serious drawback,

since they could be processed concurrently. The current algorithm would however need modi�cations

as to decide the sort of interactions between a master process (responsible for actually optimizing the

whole problem) and the slave sub-processes (all the sub-populations responsible for the constraints of

the problem). That is in fact the area of research currently being pursued by the author.

7 CONCLUSIONS

This paper has introduced a new GA-based approach that uses a multiobjective optimization technique

to handle constraints, instead of using the more traditional penalty approach.

The new approach worked well in several test problems that had been previously solved using

GA-based and mathematical programming techniques, producing in all cases results better than those

previously reported in the literature.

The technique was able to achieve such good results with relatively small sub-populations, and

without the need to use any extra parameters for the GA, although the issue of selecting the most

appropriate sub-population size as well as the maximum number of generations, remains open as in the

case of the simple GA [1].

8 FUTURE WORK

The �rst extension of this work is to develop a parallel implementation of the algorithm, so that instead

of using a single population and split it according to the number of constraints, several (fairly small)

sub-populations are generated, each being responsible for a single constraint or set of constraints. Some

interesting issues that a parallel version of this algorithm arise are for example the migration policies

required to exchange information, the consequences of restricting crossover, the e�ect of the topology

used by the parallel architecture on the overall performance of the GA, the signi�cance of the evolution

of the small sub-populations responsible for the constraints concurrently with the evolution of a main

population containing a mixed of feasible and infeasible solutions.

The introduction of a parallel version of the current algorithm may improve its overall performance,

but it may also require a more detailed analysis of the parameters of the GA and the architecture used

to implement it as to evaluate the robustness of the approach.

References

[1] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning .

Addison-Wesley Publishing Co., Reading, Massachusetts.

[2] B�ack, T., editor (July 1997). Proceedings of the Seventh International Conference on Genetic

Algorithms . Morgan Kaufmann Publishers, San Mateo, California.

[3] Parmee, I., editor (1998). The Integration of Evolutionary and Adaptive Computing Technologies

with Product/System Design and Realisation. Springer-Verlag, Plymouth, United Kingdom.

[4] Richardson, J. T., Palmer, M. R., Liepins, G., and Hilliard, M. (1989). Some guidelines for genetic

algorithms with penalty functions. In J. D. Scha�er, editor, Proceedings of the Third International

Conference on Genetic Algorithms , pages 191{197. Morgan Kaufmann Publishers, George Mason

University.

[5] Dasgupta, D. and Michalewicz, Z., editors (1997). Evolutionary Algorithms in Engineering Appli-

cations . Springer-Verlag, Berlin.

[6] Schwefel, H. P. (1981). Numerical Optimization of Computer Models . John Wiley and sons, Great

Britain.

[7] Davis, L., editor (1991). Handbook of Genetic Algorithms . Van Nostrand Reinhold, New York,

New York.

[8] Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs . Springer-

Verlag, second edition.

[9] Paredis, J. (1994). Co-evolutionary Constraint Satisfaction. In Proceedings of the 3rd Conference

on Parallel Problem Solving from Nature, pages 46{55. Springer Verlag, New York.

[10] Schoenauer, M. and Xanthakis, S. (July 1993). Constrained GA Optimization. In S. Forrest,

editor, Proceedings of the Fifth International Conference on Genetic Algorithms , pages 573{580.

Morgan Kau�man Publishers, San Mateo, California.

[11] Michalewicz, Z., Dasgupta, D., Riche, R. L., and Schoenauer, M. (September 1996). Evolutionary

algorithms for constrained engineering problems. Computers & Industrial Engineering Journal ,

30(4):851{870.

[12] Hajela, P. and Lee, J. (1995). Constrained Genetic Search via Schema Adaptation. An Immune

Network Solution. In N. Olho� and G. I. N. Rozvany, editors, Proceedings of the First World

Congress of Stuctural and Multidisciplinary Optimization, pages 915{920. Pergamon, Goslar, Ger-

many.

[13] Riche, R. L., Knopf-Lenoir, C., and Haftka, R. T. (July 1995). A Segregated Genetic Algorithm

for Constrained Structural Optimization. In L. J. Eshelman, editor, Proceedings of the Sixth

International Conference on Genetic Algorithms , pages 558{565. University of Pittsburgh, Morgan

Kaufmann Publishers, San Mateo, California.

[14] Homaifar, A., Lai, S. H. Y., and Qi, X. (1994). Constrained Optimization via Genetic Algorithms.

Simulation, 62(4):242{254.

[15] Michalewicz, Z. (July 1995). Genetic Algorithms, Numerical Optimization, and Constraints. In

L. J. Eshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms ,

pages 151{158. University of Pittsburgh, Morgan Kaufmann Publishers, San Mateo, California.

[16] Joines, J. and Houck, C. (1994). On the use of non-stationary penalty functions to solve nonlinear

constrained optimization problems with GAs. In D. Fogel, editor, Proceedings of the �rst IEEE

Conference on Evolutionary Computation, pages 579{584. IEEE Press, Orlando, Florida.

[17] Siedlecki, W. and Sklanski, J. (jun 1989). Constrained Genetic Optimization via Dynamic Reward-

Penalty Balancing and Its Use in Pattern Recognition. In J. D. Scha�er, editor, Proceedings of the

Third International Conference on Genetic Algorithms , pages 141{150. George Mason University,

Morgan Kaufmann Publishers, San Mateo, California.

[18] Powell, D. and Skolnick, M. M. (jul 1993). Using genetic algorithms in engineering design opti-

mization with non-linear constraints. In S. Forrest, editor, Proceedings of the Fifth International

Conference on Genetic Algorithms , pages 424{431. University of Illinois at Urbana-Champaign,

Morgan Kaufmann Publishers, San Mateo, California.

[19] Mitchell, M. (1996). An Introduction to Genetic Algorithms . MIT Press, Cambridge, Mas-

sachusetts.

[20] Michalewicz, Z. and Attia, N. (1994). Evolutionary Optimization of Constrained Problems. In

Proceedings of the 3rd Annual Conference on Evolutionary Programming , pages 98{108. World

Scienti�c.

[21] Kirkpatrick, S., C. D. Gelatt, J., and Vecchi, M. P. (1983). Optimization by Simulated Annealing.

Science, 220:671{680.

[22] Bean, J. C. and Hadj-Alouane, A. B. (1992). A Dual Genetic Algorithm for Bounded Integer

Programs. Technical Report TR 92-53, Department of Industrial and Operations Engineering,

The University of Michigan.

[23] Kim, D. G. and Husbands, P. (April 1998). Mapping Based Constraint Handling for Evolutionary

Search; Thurston's Circle Packing and Grid Generation. In I. Parmee, editor, The Integration of

Evolutionary and Adaptive Computing Technologies with Product/System Design and Realisation,

pages 161{173. Springer-Verlag, Plymouth, United Kingdom.

[24] Fonseca, C. M. and Fleming, P. J. (Spring 1995). An overview of evolutionary algorithms in

multiobjective optimization. Evolutionary Computation, 3(1):1{16.

[25] Surry, P. D., Radcli�e, N. J., and Boyd, I. D. (1995). A Multi-Objective Approach to Constrained

Optimisation of Gas Supply Networks : The COMOGA Method. In T. C. Fogarty, editor, Evolu-

tionary Computing. AISB Workshop. Selected Papers , Lecture Notes in Computer Science, pages

166{180. Springer-Verlag, She�eld, U.K.

[26] Fonseca, C. M. and Fleming, P. J. (1993). Genetic Algorithms for Multiobjective Optimiza-

tion: Formulation, Discussion and Generalization. In S. Forrest, editor, Proceedings of the Fifth

International Conference on Genetic Algorithms , pages 416{423. University of Illinois at Urbana-

Champaign, Morgan Kau�man Publishers, San Mateo, California.

[27] Scha�er, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms.

In Genetic Algorithms and their Applications: Proceedings of the First International Conference

on Genetic Algorithms , pages 93{100. Lawrence Erlbaum.

[28] Parmee, I. C. and Purchase, G. (1994). The development of a directed genetic search technique

for heavily constrained design spaces. In I. C. Parmee, editor, Adaptive Computing in Engineering

Design and Control-'94 , pages 97{102. University of Plymouth, University of Plymouth, Plymouth,

UK.

[29] Coello, C. A. C., Christiansen, A. D., and Aguirre, A. H. (April 1997). Automated design of

combinational logic circuits using genetic algorithms. In D. G. Smith, N. C. Steele, and R. F. Al-

brecht, editors, Proceedings of the International Conference on Arti�cial Neural Nets and Genetic

Algorithms ICANNGA'97 , pages 335{338. University of East Anglia, Springer-Verlag, Norwich,

England.

[30] Louis, S. J. and Rawlins, G. J. (feb 1991). Using genetic algorithms to design structures. Technical

Report 326, Computer Science Department, Indiana University, Bloomington, Indiana.

[31] Grefenstette, J. J. (1993). Deception Considered Harmful. In L. D. Whitley, editor, Foundations

of Genetic Algorithms 2 , pages 75{91. Morgan Kaufmann, San Mateo, California.

[32] Himmelblau, D. M. (1972). Applied Nonlinear Programming . McGraw-Hill, New York.

[33] Belegundu, A. D. (1982). A Study of Mathematical Programming Methods for Structural Opti-

mization. Dept. of civil and environmental engineering, University of Iowa, Iowa, Iowa.

[34] Coello, C. A. C., Hern�andez, F. S., and Farrera, F. A. (January 1997). Optimal design of reinforced

concrete beams using genetic algorithms. Expert Systems with Applications : An International

Journal , 12(1).

[35] Coello, C. A. C. and Christiansen, A. D. (1997). A simple genetic algorithm for the design of

reinforced concrete beams. Engineering with Computers , 13(4):185{196.

[36] Syswerda, G. (jun 1989). Uniform Crossover in Genetic Algorithms. In J. D. Scha�er, editor, Pro-

ceedings of the Third International Conference on Genetic Algorithms , pages 2{9. George Mason

University, Morgan Kaufmann Publishers, San Mateo, California.

[37] Deb, K. and Goyal, M. (July 1995). Optimizing Engineering Designs Using a Combined Genetic

Search. In L. J. Eshelman, editor, Proceedings of the Sixth International Conference on Genetic

Algorithms , pages 521{528. Morgan Kau�man Publishers, San Mateo, California.

[38] Siddall, J. N. (1982). Optimal Engineering Design. Principles and Applications . Marcel Dekker,

New York.

[39] Siddall, J. N. (1972). Analytical Design-Making in Engineering Design. Prentice-Hall.

[40] Karnaugh, M. (November 1953). A map method for synthesis of combinational logic circuits.

Transactions of the AIEE, Communications and Electronics , 72 (I):593{599.

[41] Brayton, R. K., Hachtel, G. D., McMullen, C. T., and Sangiovanni-Vincentelli, A. L. (1985). Logic

Minimization Algorithms for VLSI Synthesis . Kluwer Academic Publishers.

[42] Gen, M. and Cheng, R. (1997). Genetic Algorithms & Engineering Design. John Wiley & Sons,

Inc, New York.

[43] Gere, J. M. and Weaver, W. (1965). Analysis of Framed Structures . D. Van Nostrand Company,

Inc.

