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Abstract

In this paper, we introduce the concept of non-dominance (commonly used in

multiobjective optimization) as a way to incorporate constraints into the �tness

function of a genetic algorithm. Each individual is assigned a rank based on

its degree of dominance over the rest of the population. Feasible individuals are

always ranked higher than infeasible ones, and the degree of constraint violation

determines the rank among infeasible individuals. The proposed technique does

not require �ne tuning of factors like the traditional penalty function and uses

a self-adaptation mechanism that avoids the traditional empirical adjustment of

the main genetic operators (i.e., crossover and mutation).

Keywords: genetic algorithms, constraint handling, multiobjective optimiza-

tion, self-adaptation, evolutionary optimization, numerical optimization.

1 Introduction

Despite the wide success of genetic algorithms (GAs) in a wide range of appli-

cations [25, 3, 36, 34], their use in constrained optimization requires the incor-

poration of constraints of any sort (linear, non-linear, equality or inequality)

into the �tness function as to guide the search properly. The approach most

commonly used to incorporate constraints is the penalty function, and there

have been many successful applications of this approach reported in the lit-

erature [1, 15, 35, 31, 12]. However, penalty functions have some well-known

limitations [41], from which the most remarkable is the di�culty to de�ne good

penalty factors. These penalty factors are normally generated by trial and er-

ror, although their de�nition may severely a�ect the results produced by the

GA [41].

In this paper, we propose a new constraint-handling approach that guides

the search of a GA using the concept of non-dominance (used in multiobjective

optimization). Additionally, we introduce a simple self-adaptation mechanism

that allows the GA to �nd its own crossover and mutation rates without the need
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of any human intervention. This aims at reducing the burden that is normally

associated with the use of this heuristic, since it is traditionally required to

perform several experiments to �ne-tune its parameters.

The remainder of this paper is organized as follows: �rst, a short review

of GAs in general is provided. Then, we review some of the previous (related)

work in this area before introducing our own approach. Then, we describe

the representation and genetic operators used by our approach, and the self-

adaptation mechanism proposed. After that, we compare the results produced

by our approach with those reported in the literature for several optimization

problems that have been previously solved with GA-based and mathematical

programming techniques. Finally, we discuss the results obtained and draw

some possible paths of future research.

2 Genetic Algorithms

The optimization capabilities of evolutionary techniques (i.e., techniques based

on the natural selection principle) within a wide variety of domains have been

recognized over the years, and have received much attention from scientists

working in many di�erent disciplines. Perhaps the most widely used technique is

the genetic algorithm (GA) [25, 36, 34]. Being a stochastic, heuristic technique,

the GA does not need speci�c information to guide the search. Its structure is

analogous to biological evolution theory using the principle of survival of the

�ttest [27]. Therefore, the GA can be seen as a \black box" that can be attached

to any particular application.

In general, we need the following basic components to implement a GA in

order to solve a problem [34]:

1. A representation for potential solutions to the problem.

2. A way to create an initial population of potential solutions (this is normally

done randomly, but deterministic approaches can also be used).

3. An evaluation function that plays the role of the environment, rating so-

lutions in terms of their \�tness".

4. Genetic operators that alter the composition of children (normally, crossover

and mutation).

5. Values for various parameters that the genetic algorithm uses (population

size, probabilities of applying genetic operators, etc.).

In this paper, we will use GAs as a numerical optimization tool, and we

will propose a constraint-handling technique that makes unnecessary the use of

a penalty function, which is the most common approach used to incorporate

constraints into the �tness function of a GA [41].

The problem that is of interest to us is the general non-linear programming

problem in which we want to:

2



Find ~x which optimizes f(~x) (1)

subject to:

g

i

(~x) � 0; i = 1; : : : ; n (2)

h

j

(~x) = 0; j = 1; : : : ; p (3)

where ~x is the vector of solutions ~x = [x

1

; x

2

; : : : ; x

r

]

T

, n is the number of

inequality constraints and p is the number of equality constraints (in both cases,

constraints could be linear or non-linear). Only inequality constraints will be

considered in this work.

3 Related Work

The idea of using evolutionary multiobjective optimization techniques [9] to han-

dle constraints is not entirely new. A few researchers have reported approaches

that rely on the use of multiobjective optimization techniques as we will see in

this section.

The most common approach is to rede�ne the single-objective optimization

of f as a multiobjective optimization problem in which we will have m + 1

objectives, where m is the number of constraints. Then, we can apply any

multiobjective optimization technique [23] to the new vector �v = (f; f

1

; : : : ; f

m

),

where f

1

; : : : ; f

m

are the original constraints of the problem. An ideal solution

~x would thus have f

i

(~x)=0 for 1 � i � m and f(~x) � f(~y) for all feasible ~y

(assuming minimization).

Surry et al. [50, 49] proposed the use of Pareto ranking [22] and VEGA [43]

to handle constraints using this technique. In their approach, called COMOGA,

the population was ranked based on constraint violations (counting the number

of individuals dominated by each solution). Then, one portion of the population

was selected based on constraint ranking, and the rest based on real cost (�tness)

of the individuals. COMOGA compared fairly with a penalty-based approach

in a pipe-sizing problem, since the resulting EA was less sensitive to changes

in the parameters, but the results achieved were not better than those found

with a penalty function [50]. It should be added that COMOGA [50] required

several extra parameters, although its authors argue [50] that the technique is

not particularly sensitive to the values of such parameters.

Parmee and Purchase [37] implemented a version of the Vector Evaluated

Genetic Algorithm (VEGA) [43] that handled the constraints of a gas turbine

problem as objectives to allow a genetic algorithm to locate a feasible region

within the highly constrained search space of this application. However, VEGA

was not used to further explore the feasible region, and instead Parmee and Pur-

chase [37] opted to use specialized operators that would create a variable-size
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hypercube around each feasible point to help the genetic algorithm to remain

within the feasible region at all times. This approach was specially developed for

a heavily constrained search space and it proved to be appropriate to reach the

feasible region. However, this application of a multiobjective optimization tech-

nique does not aim at �nding the global optimum of the problem, and the use

of special operators suggested by the authors certainly limits the applicability

of the approach.

Camponogara & Talukdar [5] proposed the use of a procedure based on

an evolutionary multiobjective optimization technique. Their proposal was to

restate a single objective optimization problem in such a way that two objec-

tives would be considered: the �rst would be to optimize the original objective

function and the second would be to minimize:

�(~x) =

n

X

i=1

max[0; g

i

(~x)]

�

(4)

where � is normally 1 or 2.

Once the problem is rede�ned, non-dominated solutions with respect to the

two new objectives are generated. The solutions found de�ne a search direction

d = (x

i

� x

j

)=jx

i

� xjj, where x

i

2 S

i

, x

j

2 S

j

, and S

i

and S

j

are Pareto

sets. The direction search d is intended to simultaneously minimize all the

objectives [5]. Line search is performed in this direction so that a solution x

can be found such that x dominates x

i

and x

j

(i.e., x is a better compromise

than the two previous solutions found). Line search takes the place of crossover

in this approach, and mutation is essentially the same, where the direction d is

projected onto the axis of one variable j in the solution space [5]. Additionally,

a process of eliminating half of the population is applied at regular intervals

(only the less �tted solutions are replaced by randomly generated points).

Camponogara & Talukdar's approach [5] has obvious problems to keep di-

versity (a common problem with using evolutionary multiobjective optimization

techniques), as it is indicated by the fact that the technique discards the worst

individuals at each generation. Also, the use of line search increases the cost

(computationally speaking) of the approach and it is not clear what is the impact

of the segment chosen to search in the overall performance of the algorithm.

Jim�enez and Verdegay [30] proposed the use of a min-max approach [6] to

handle constraints. The main idea of this approach is to apply a set of simple

rules to decide the selection process:

1. If the two individuals being compared are both feasible, then select based

on the minimum value of the objective function.

2. If one of the two individuals being compared is feasible and the other one

is infeasible, then select the feasible individual.

3. If both individuals are infeasible, then select based on the maximum con-

straint violation (max g

j

(~x); for j = 1; : : : ;m, and m is the total number

of constraints). The individual with the lowest maximum violation wins.
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A subtle problem with this approach is that the evolutionary process �rst

concentrates only on the constraint satisfaction problem and therefore it samples

points in the feasible region essentially at random [50]. This means that in some

cases (e.g., when the feasible region is disjoint) we might land in an inappropriate

part of the feasible region from which we will not be able to escape. However,

this approach (as in the case of Parmee and Purchase's [37] technique) may be

a good alternative to �nd a feasible point in a heavily constrained search space.

Coello [10] proposed the use of a population-based multiobjective optimiza-

tion technique such as VEGA [43] to handle each of the constraints of a single-

objective optimization problem as an objective. At each generation, the popu-

lation is split into m + 1 sub-populations (m is the number of constraints), so

that a fraction of the population is selected using the (unconstrained) objective

function as its �tness and another fraction uses the �rst constraint as its �tness

and so on.

For the sub-population guided by the objective function, the evaluation of

such objective function for a given vector ~x is used directly as the �tness function

(multiplied by (-1) if it is a minimization problem), with no penalties of any

sort. For all the other sub-populations, the algorithm used was the following

[10]:

if g

j

(~x) < 0:0 then �tness = g

j

(~x)

else if v 6= 0 then �tness = �v

else �tness = f

where g

j

(~x) refers to the constraint corresponding to sub-population j +1 (this

is assuming that the �rst sub-population is assigned to the objective function

f), and v refers to the number of constraints that are violated (� m).

This approach provided good results in several optimization problems, but

required a relatively large number of �tness function evaluations to converge

[10].

The limitations of the previously reported multiobjective optimization tech-

niques used to handle constraints were the main motivation of this work.

4 The Proposed Approach

The main goal of this work was to develop a constraint-handling technique that

did not require the use of a penalty factor that needed to be �ne-tuned by

the user, and that could be coupled with an evolutionary algorithm (particu-

larly, with a genetic algorithm) to perform numerical optimization. We were

also concerned with the e�ciency of the technique (in terms of CPU time re-

quirements), since we were particularly interested in using it in engineering

optimization problems for which the cost of evaluating the �tness function is

normally high.

Motivated by the previous work related on the use of multiobjective opti-

mization techniques to handle constraints, we decided to develop an approach

based on non-dominance to assign ranks to each individual in a population,
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following a similar rationale than the one used by the Multi-Objective Genetic

Algorithm (MOGA) [22], which is a very popular (and e�ective) evolutionary

multiobjective optimization approach.

The concept of dominance (or Pareto dominance, as it is usually called in

Operations Research) is the following:

De�nition 1 (Pareto Dominance): A vector ~u = (u

1

; : : : ; u

k

) is said to

dominate ~v = (v

1

; : : : ; v

k

) (denoted by ~u � ~v) if and only if u is partially less

than v, i.e., 8i 2 f1; : : : ; kg; u

i

� v

i

^ 9i 2 f1; : : : ; kg : u

i

< v

i

. 2

where f : 
 � R

n

!R, 
 6= ;.

The problem with using the concept of dominance in a direct way is its

ine�ciency (it would imply an O(n

2

) procedure, where n refers to the size of the

population). This is necessary when dealing with multiobjective optimization

problems, but if we intend to use this procedure to handle constraints in a

single-objective optimization problem, we can reduce the complexity of the task

by using some simple rules. For example, if we have a feasible individual in

the population (i.e., one that does not violate any constraints), we can directly

use its �tness value to compare it against the others since in this case the EA

will be operating as it is intended to work: as an unconstrained optimization

technique. On the other hand, if an individual violates constraints, then it

will be necessary to compare it to the others. This motivated the idea of the

algorithm presented here, which has 3 levels of comparison: if feasible, its �tness

value is used and whenever it is compared against an unfeasible individual, it

wins. If it is infeasible, then we compare its number of constraints violated �rst

and only in case of a tie, we use the amount of constraint violation to decide who

wins. Since we used stochastic universal sampling in our implementation, then

we assign �tness to each individual based on these simple rules described before.

It is also possible to use directly a tournament selection based on dominance (like

proposed by Deb [17]), but its main drawback is that the high selection pressure

generated by tournament selection will make necessary to use an additional

procedure to preserve diversity in the population (e.g., niching or sharing [18]),

and we wanted to avoid the introduction of extra parameters into the GA.

To understand better the way in which our procedure works, we include here

its main algorithm used to assign �tness to an individual:

Let the vector ~x

i

(i = 1; : : : ; pop size) be an individual in the current pop-

ulation whose size is pop size. The proposed algorithm is the following:

� To compute the rank of an individual ~x

i

is feasible, we use the following

procedure:

rank(~x

i

) = count(~x

i

) + 1 (5)

where count(~x

i

) is computed according to the following rules:
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1. Compare ~x

i

against every other individual in the population. As-

suming pairwise comparisons, we will call ~x

j

(j = 1; : : : ; pop size

and j 6= i) the other individual against which x

i

is being compared

at any given time.

2. Initialize count(~x

i

)(for i = 1; : : : ; pop size) to zero.

3. If both ~x

i

and ~x

j

are feasible, then both are given a rank of zero and

count(~x

i

) remains without changes.

4. If ~x

i

is infeasible and ~x

j

is feasible, then count(~x

i

) is incremented by

one.

5. If both ~x

i

and ~x

j

are infeasible, but ~x

i

violates more constraints than

~x

j

, then count(~x

i

) is incremented by one.

6. If both ~x

i

and ~x

j

are infeasible, and both violate the same number of

constraints, but ~x

i

has a total amount of constraint violation larger

than the constraint violation of ~x

j

, then count(~x

i

) is incremented by

one.

If any constraint g

k

(~x) (k = 1; : : : ;m, wherem is the total amount of

constraints) is considered satis�ed if g

i

(~x) � 0, then, the total amount

of constraint violation for an individual ~x

i

(denoted as coef(~x

i

) is

given by:

coef(~x

i

) =

p

X

k=1

g

k

(~x

i

) for all g

k

(~x

i

) > 0 (6)

� Compute �tness using the following rules:

1. If ~x

i

is feasible, then rank(~x

i

) = fitness(~x

i

), else

2. rank(~x

i

) =

1

rank(~x

i

)

� Individuals are selected based on rank(~x

i

) (stochastic universal sampling

is used).

� Values produced by fitness(~x

i

) must be normalized to ensure that the

rank of feasible individuals is always higher than the rank of infeasible

ones.

5 Use of Adaptive Crossover andMutation Rates

A common problem associated with the use of genetic algorithms is that they

require a certain (empirical) �ne-tuning to select proper values for their pa-

rameters (i.e., population size, crossover and mutation rates, maximum number

of generations, etc.). To avoid this problem, we decided to experiment with a

simple self-adaptive approach in which the crossover and mutation rates were
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2.15 1.89 0.43 3.14 0.27 7.93 5.11

Figure 1: An example of a real-coded GA.

considered as additional variables, ranging from 0.0 to 1.0 (de�ned as continu-

ous variables). The population size and the maximum number of generations

were (arbitrarily) de�ned by the user and kept constant during the evolutionary

process.

Some simple rules were de�ned to decode the crossover and mutation rates

to be used for each genetic operation:

Given individuals p

i

and p

j

to be crossed (after selection), which have c

i

and

c

j

as their corresponding crossover rates encoded in their chromosomic strings,

then use a crossover rate c =

c

i

+c

j

2

.

For mutation, we mutate an individual p

i

using m

i

, which is the mutation

rate encoded in its chromosomic string (after selection and crossover).

The best individual of each generation is kept intact (this is called \elitism").

6 Genetic Operators

We used a real-coded genetic algorithm [26, 34]. According to this representa-

tion, a chromosome is a vector of the form hr

1

; r

2

; : : : ; r

m

i, where r

1

; r

2

; : : : ; r

m

are real numbers whose lower and upper bounds are de�ned by the user. De-

spite the well-known fact that the binary alphabet o�ers the maximum number

of schemata per bit of information of any coding [28], the `implicit parallelism'

property of genetic algorithms does not preclude the use of alphabets of higher

cardinality.

Whereas theoreticians claim that small alphabets should be more e�ective

than large alphabets, practitioners have shown through a considerable amount

of real-world applications (particularly numerical optimization problems) that

the direct use of real numbers in a chromosome works better in practice that

the traditional binary representation [14, 20].

The use of real numbers in a chromosomic string (see Figure 1) has been

common in other evolutionary techniques, such as evolution strategies [46] and

evolutionary programming [21], where mutation is normally the primary opera-

tor. However, when dealing with GAs, there has been a strong criticism towards

the use of real values for the genes of a chromosome, mainly because this higher

cardinality representation will make the GA's behavior more erratic and di�cult

to predict. Because of this, several special operators have been designed over

the years to emulate the e�ect of crossover and mutation over binary alphabets

[20, 51, 19].
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Practitioners argue that one of the main abilities of real-coded GAs is their

capacity to exploit the gradualness of functions of continuous variables (where

gradualness is taken to mean small changes in the variables correspond to small

changes in the function).

This means that real-coded GAs can adequately deal with the \cli�s" pro-

duced when the variables used are real numbers, because a small change in the

representation is mapped as a small change in the search space [20, 51].

For crossover, it was decided to use arithmetical crossover [34], which is

de�ned as a linear combination of the two vectors representing the \parents" to

be crossed: if p

t

1

and p

t

2

are the two parents selected for crossover at generation

t, then the resulting o�spring o

t+1

1

and o

t+1

2

will be:

o

t+1

1

= w � p

t

2

+ (1�w) � p

t

1

(7)

o

t+1

2

= w � p

t

1

+ (1�w) � p

t

2

where w is a real number that, in our case, was randomly generated in the

range [0::1].

It has been argued that a non-uniform mutation operator is more useful

when optimizing with a GA because it allows us to search in di�erent ways

as needed (i.e., exploring wider or narrower regions) over time [34]. Due to

some previous favorable experience with non-uniform mutation in the context

of numerical optimization [13] it was decided to use this approach instead of the

traditional uniform mutation operator.

To illustrate this operator, we will assume that at generation t, we have

a string C

t

= hc

1

; c

2

; : : : ; c

l

i. After randomly selecting a position along the

string, in generation t + 1, the new chromosome after mutation will be C

t+1

=

hc

1

; c

2

; : : : ; c

0

k

; : : : ; c

l

i, where:

c

0

k

=

�

c

k

+�(t; u

k

� c

k

) if ip(0:5) = 0

c

k

��(t; c

k

� l

k

) if ip(0:5) = 1

(8)

where the domain of c

k

is [l

k

; u

k

], and the function flip(0:5) returns ran-

domly and with equal probability one of two possible values: either zero or one.

The function �(t; y) returns a value in the range [0; y] such that the probability

of �(t; y) being close to 0 increases as t increases. The expression used here

for the variation of the mutation step is the function originally suggested by

Michalewicz [34]:

�(t; y) = y �

�

1� r

(

1�

t

T

)

b

�

(9)

where r is a randomly generated real number in the range [0..1], T is the

maximum number of generations, and b is a system parameter that determines

the degree of dependency on the current generation number. The value adopted

for the current implementation was b = 5, as suggested by Michalewicz [34].
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Figure 2: The welded beam used for the �rst example.

7 Examples

Several examples taken from the optimization literature will be used to show

the way in which the proposed approach works. These examples have linear

and nonlinear constraints, and have been previously solved using a variety of

other techniques (both GA-based and traditional mathematical programming

methods), which is useful to determine the quality of the solutions produced by

the proposed approach.

7.1 Example 1 : Welded Beam Design

A welded beam is designed for minimum cost subject to constraints on shear

stress (�), bending stress in the beam (�), buckling load on the bar (P

c

), end

deection of the beam (�), and side constraints [40]. There are four design

variables as shown in Figure 2 [40]: h (x

1

), l (x

2

), t (x

3

) and b (x

4

).

The problem can be stated as follows:

Minimize:

F (~x) = 1:10471x

2

1

x

2

+ 0:04811x

3

x

4

(14:0 + x

2

) (10)

Subject to:

g

1

(~x) = �(~x)� �

max

� 0 (11)

g

2

(~x) = �(~x)� �

max

� 0 (12)

g

3

(~x) = x

1

� x

4

� 0 (13)

g

4

(~x) = 0:10471x

2

1

+ 0:04811x

3

x

4

(14:0 + x

2

)� 5:0 � 0 (14)
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g

5

(~x) = 0:125� x

1

� 0 (15)

g

6

(~x) = �(~x)� �

max

� 0 (16)

g

7

(~x) = P � P

c

(~x) � 0 (17)

where

�(~x) =

r

(�

0

)

2

+ 2�

0

�

00

x

2

2R

+ (�

00

)

2

(18)

�

0

=

P

p

2x

1

x

2

; �

00

=

MR

J

;M = P

�

L+

x

2

2

�

(19)

R =

s

x

2

2

4

+

�

x

1

+ x

3

2

�

2

(20)

J = 2

(

p

2x

1

x

2

"

x

2

2

12

+

�

x

1

+ x

3

2

�

2

#)

(21)

�(~x) =

6PL

x

4

x

2

3

; �(~x) =

4PL

3

Ex

3

3

x

4

(22)

P

c

(~x) =

4:013E

q

x

2

3

x

6

4

36

L

2

 

1�

x

3

2L

r

E

4G

!

(23)

P = 6000 lb; L = 14 in; E = 30� 10

6

psi; G = 12� 10

6

psi (24)

�

max

= 13; 600 psi; �

max

= 30; 000 psi; �

max

= 0:25 in (25)

7.2 Example 2 : Design of a Pressure Vessel

A cylindrical vessel is capped at both ends by hemispherical heads as shown in

Figure 3. The objective is to minimize the total cost, including the cost of the

material, forming and welding. There are four design variables: T

s

(thickness

of the shell), T

h

(thickness of the head), R (inner radius) and L (length of the

cylindrical section of the vessel, not including the head). T

s

and T

h

are integer

multiples of 0.0625 inch, which are the available thicknesses of rolled steel plates,
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R

Th

R

sTL

Figure 3: Center and end section of the pressure vessel used for the second

example.

and R and L are continuous. Using the same notation given by Kannan and

Kramer [32], the problem can be stated as follows:

Minimize :

F (~x) = 0:6224x

1

x

3

x

4

+ 1:7781x

2

x

2

3

+ 3:1661x

2

1

x

4

+ 19:84x

2

1

x

3

(26)

Subject to :

g

1

(~x) = �x

1

+ 0:0193x

3

� 0 (27)

g

2

(~x) = �x

2

+ 0:00954x

3

� 0 (28)

g

3

(~x) = ��x

2

3

x

4

�

4

3

�x

3

3

+ 1; 296; 000 � 0 (29)

g

4

(~x) = x

4

� 240 � 0 (30)

7.3 Example 3 : Design of a 10-bar plane truss

Consider the 10-bar plane truss shown in Figure 4 [4]. The problem is to �nd

the moment of inertia of each member of this truss, such that we minimize its

weight, subject to stress and displacement constraints. The weight of the truss

is given by:

f(x) =

10

X

j=1

�A

j

L

j

(31)
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360"

   360"                      360"

 5                            3                          1

Figure 4: 10-bar plane truss used for Example No. 3.

where x is the candidate solution, A

j

is the cross-sectional area of the jth

member, L

j

is the length of the jth member, and � is the weight density of the

material.

The assumed data are: modulus of elasticity, E = 1:0 � 10

4

ksi 68965.5

MPa), � = 0:10 lb/in

3

(2768.096 kg/m

3

), and a load of 100 kips (45351.47 Kg)

in the negative y-direction is applied at nodes 2 and 4. The maximum allowable

stress of each member is called �

a

, and it is assumed to be�25 ksi (172.41 MPa).

The maximum allowable displacement of each node (horizontal and vertical) is

represented by u

a

, and is assumed to be 2 inches (5.08 cm).

There are 10 stress constraints, and 12 displacement constraints (we can re-

ally assume only 8 displacement constraints because there are two nodes with

zero displacement, but they will nevertheless be considered as additional con-

straints by the new approach). The moment of inertia of each element can be

di�erent, thus the problem has 10 design variables.

7.4 Example 4 : Design of a 25-bar space truss

Consider the 25-bar space truss taken from Rajeev and Khrisnamoorthy [39]

shown in Figure 5. The problem is to �nd the cross-sectional area of each

member of this truss, such that we minimize its weight, the displacement of

each free node, and the stress that each member has to support.

Loading conditions are given in Table 1, member groupings are given in

Table 2, and node coordinates are given in Table 3. The assumed data are:

modulus of elasticity, E = 1�10

4

ksi, � = 0:10 lb/in

3

; �

a

= �40 ksi, u

a

= �0:35

in. This problem has 8 design variables and 86 constraints.

13
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Figure 5: 25-bar space truss used for example No. 4.

Node Fx (lbs) Fy (lbs) Fz (lbs)

1 1000 -10000 -10000

2 0 -10000 -10000

3 500 0 0

6 600 0 0

Table 1: Loading conditions for the 25-bar space truss shown in Figure 5.

14



Group Number Members

1 1-2

2 1-4, 2-3, 1-5, 2-6

3 2-5, 2-4, 1-3, 1-6

4 3-6, 4-5

5 3-4, 5-6

6 3-10, 6-7, 4-9, 5-8

7 3-8, 4-7, 6-9, 5-10

8 3-7, 4-8, 5-9, 6-10

Table 2: Group membership for the 25-bar space truss shown in Figure 5.

Node X Y Z

1 -37.50 0.00 200.00

2 37.50 0.00 200.00

3 -37.50 37.50 100.00

4 37.50 37.50 100.00

5 37.50 -37.50 100.00

6 -37.50 -37.50 100.00

7 -100.00 100.00 0.00

8 100.00 100.00 0.00

9 100.00 -100.00 0.00

10 -100.00 -100.00 0.00

Table 3: Coordinates of the joints of the 25-bar space truss shown in Figure 5.
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8 Comparison of Results

8.1 Example 1

This problem was solved before by Deb [15] using a simple genetic algorithm

with binary representation, and a traditional penalty function as suggested by

Goldberg [25]. It has also been solved by Ragsdell and Phillips [38] using ge-

ometric programming. Ragsdell and Phillips also compared their results with

those produced by the methods contained in a software package called \Opti-

Sep" [47], which includes the following numerical optimization techniques: AD-

RANS (Gall's adaptive random search with a penalty function), APPROX (Grif-

�th and Stewart's successive linear approximation), DAVID (Davidon-Fletcher-

Powell with a penalty function), MEMGRD (Miele's memory gradient with a

penalty function), SEEK1 & SEEK2 (Hooke and Jeeves with 2 di�erent penalty

functions), SIMPLX (Simplex method with a penalty function) and RANDOM

(Richardson's random method).

Their results are compared against those produced by the approach proposed

in this paper, which are shown in Table 4. In the case of Siddall's techniques

[47], only the best solution produced by the techniques contained in \Opti-Sep"

is displayed. The solution shown for the technique proposed here is the best

produced after 30 runs, and using the following ranges for the design variables:

0:1 � x

1

� 2:0, 0:1 � x

2

� 10:0, 0:1 � x

3

� 10:0, 0:1 � x

4

� 2:0.

The mean from the 30 runs performed was f(~x) = 1:919013258, with a

standard deviation of 0:053775284. The worst solution found was f(~x) =

1:99498555, which is better than any of the solutions produced by any of the

other techniques depicted in Table 4. The population size used was 50, and the

maximum number of generations was 100. It is important to point out that Deb

[15] used a population size of 100 and a maximum number of generations of 50

with his GA. Therefore, the total number of �tness function evaluations is the

same in both cases (5; 000). However, in our case the size of the search space

is larger, because of the real numbers used in the chromosomic string. Deb [15]

used binary strings of length 40 in his paper, with which the intrinsic size of

the search space is 2

40

� 1:099 � 10

22

. It should be noted that the solution

reported here is not the global optimum, and we have found a better solution

in previous work (f(~x) = 1:74830941 [11]). However, that solution was found

with over 900; 000 �tness function evaluations per run, whereas in the current

paper, we found a solution that is less than 5% below the other one, performing

only 5; 000 �tness function evaluations (about 0.6% of the number of evaluations

used before). Better solutions are possible if we allow a larger number of �tness

function evaluations.

8.2 Example 2

This problem was solved before by Deb [16] using GeneAS (Genetic Adaptive

Search), by Kannan and Kramer using an augmented Lagrangian Multiplier

approach [32], and by Sandgren [42] using a branch and bound technique. Their

16



Design Best solution found

Variables This paper Deb [15] Siddall [47] Ragsdell [38]

x

1

(h) 0.1829 0.2489 0.2444 0.2455

x

2

(l) 4.0483 6.1730 6.2189 6.1960

x

3

(t) 9.3666 8.1789 8.2915 8.2730

x

4

(b) 0.2059 -0.2533 0.2444 0.2455

g

1

(~x) -408.732772 -5758.603777 -5743.502027 -5743.826517

g

2

(~x) -2105.91421 -255.576901 -4.015209 -4.715097

g

3

(~x) -0.023060 -0.004400 0.000000 0.000000

g

4

(~x) -3.321528 -2.982866 -3.022561 -3.020289

g

5

(~x) -0.057884 -0.123900 -0.119400 -0.120500

g

6

(~x) -0.237029 -0.234160 -0.234243 -0.234208

g

7

(~x) -160.586452 -4465.270928 -3490.469418 -3604.275002

f(~x) 1:82455147 2:43311600 2:38154338 2:38593732

Table 4: Comparison of the results for the �rst example (optimal design of a

welded beam).

results were compared against those produced by the approach proposed in this

paper, and are shown in Table 5. The solution shown for the technique proposed

here is the best produced after 30 runs, and using the following ranges for the

design variables and the weights: 1 � x

1

� 99, 1 � x

2

� 99, 10:0 � x

3

� 200:0,

10:0 � x

4

� 200:0. The values for x

1

and x

2

were considered as integer (i.e.,

real values were rounded up to their closest integer value) multiples of 0.0625,

and the values of x

3

and x

4

were considered as real numbers.

The mean from the 30 runs performed was f(~x) = 6263:792526931, with

a standard deviation of 97:944473926. The worst solution found was f(~x) =

6403:45006683, which is better than any of the solutions produced by any of the

other techniques depicted in Table 5. The population size used was 50, and the

maximum number of generations was 1000. The parameters used by GeneAS

were not available for comparison.

8.3 Example 3

This problem was used by Belegundu [4] to evaluate the following numerical op-

timization techniques: Feasible directions (CONMIN and OPTDYN), Pshenich-

ny's Recursive Quadratic Programming (LINRM), Gradient Projection (GRP-

UI), Exterior Penalty Function (SUMT), Multiplier Methods (M-3, M-4 and

M-5).

The results reported by Belegundu [4] are compared to the current approach

in Tables 6 and 7 (all the solutions presented are feasible). To solve this problem,

it was necessary to add a module responsible for the analysis of the plane truss.

This module uses the matrix factorization method included in Gere and Weaver

[24] together with the sti�ness method [24] to analyze the structure, and returns

17



Design Best solution found

Variables This paper GeneAS [16] Kannan [32] Sandgren [42]

x

1

(T

s

) 0.8750 0.9375 1.125 1.125

x

2

(T

h

) 0.5000 0.5000 0.625 0.625

x

3

(R) 42.0939 48.3290 58.291 47.700

x

4

(L) 177.0805 112.6790 43.690 117.701

g

1

(~x) -0.000088 -0.004750 0.000016 -0.204390

g

2

(~x) -0.035924 -0.038941 -0.068904 -0.169942

g

3

(~x) -2156.836486 -3652.876838 -21.220104 54.226012

g

4

(~x) -62.919507 -127.321000 -196.310000 -122.299000

f(~x) 6069:3267 6410:3811 7198:0428 8129:1036

Table 5: Comparison of the results for the second example (optimization of a

pressure vessel).

the values of the stress and displacement constraints, as well as the total weight

of the structure.

The solution shown for the technique proposed here is the best produced

after 30 runs. The range 0:1 � x � 999:0 was used for the 10 design variables

(moments of inertia were used as the design variables, and their square roots

were found in order to obtain the cross-sectional areas of each truss member).

The mean from the 30 runs performed was f(~x) = 5338:41193, with a stan-

dard deviation of 73.63898. The worst solution found was f(~x) = 5469:38852,

which is better than any of the solutions produced by any of the other tech-

niques depicted in Tables 6 and 7. The population size used was 50, and the

maximum number of generations was set to 1; 000 (a total of 50; 000 �tness

function evaluations).

8.4 Example 4

This problem has been solved using many di�erent optimization techniques:

Schmit and Farshi [44] used an adaptation of the method of inscribed hyper-

spheres, Khan et al. [33] used an optimality criterion method, Adeli and Ka-

mal [2] used geometric programming, Chao et al. [7] used quadratic program-

ming, Schmit andMiura [45] used both the CONstrained function MINimization

(CONMIN) and the NEW Unconstrained Sequential Minimization Technique

(NEWSUMT), and Coello et al. [8] used a simple genetic algorithm with bi-

nary representation and binary tournament selection (the search space in that

case was smaller than in the work reported in the current paper, because each

variable was considered discrete whereas we considered them as continuous in

the current paper).

The results reported by the previously mentioned authors are compared to

the current approach in Tables 8 and 9 (all the solutions presented are feasible).

To solve this problem, it was necessary to add a module responsible for the
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Design Best solution found

Variables This paper CONMIN OPTDYN LINRM

x

1

979.7582 639.20 664.30 21.57

x

2

0.1039 3.60 0.01 10.98

x

3

539.4210 618.40 630.70 22.08

x

4

208.7898 250.50 375.90 14.95

x

5

0.1087 0.01 0.01 0.10

x

6

0.1243 3.05 0.01 10.98

x

7

69.6764 280.80 235.90 18.91

x

8

483.3090 389.20 413.00 18.42

x

9

44.7585 440.10 430.30 18.40

x

10

0.1036 6.30 1.30 13.51

f(~x) 5153:61 5563:32 5471:48 6428:89

Table 6: Comparison of results for the third example (10-bar plane truss). The

value of all variables is given in in

4

. Part I.

Design Best solution found

Variables GRP-UI SUMT M-3 M-4 M-5

x

1

614.30 942.00 667.90 1000.0 667.70

x

2

17.40 5.60 9.40 139.40 8.30

x

3

614.40 1000.0 697.80 1000.0 699.40

x

4

208.80 135.90 163.10 306.40 162.60

x

5

0.01 0.01 0.01 1000.0 0.01

x

6

17.40 13.80 11.80 105.00 14.20

x

7

304.80 471.20 373.90 1000.00 375.50

x

8

370.90 467.00 367.60 1000.00 368.00

x

9

371.30 195.30 351.90 1000.00 352.20

x

10

27.70 10.60 19.50 1000.00 19.20

f(~x) 5727:05 5932:21 5719:19 11279:22 5726:08

Table 7: Comparison of results for the third example (10-bar plane truss). The

value of all variables is given in in

4

. Part II.
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Design Best solution found

Variables This paper Chao [7] CONMIN [45] NEWSUMT [45]

x

1

0.1303 0.0100 0.1660 0.0100

x

2

0.1201 2.0415 2.0170 1.9850

x

3

3.4834 3.0011 3.0260 2.9960

x

4

0.1102 0.0100 0.0870 0.0100

x

5

1.6583 0.0100 0.0970 0.0100

x

6

0.8373 0.6836 0.6750 0.6840

x

7

0.1172 1.6248 1.6360 1.6670

x

8

4.0900 2.6716 2.6690 2.6620

f(~x) 470:09 545:03 548:47 545:17

Table 8: Comparison of results for the fourth example (25-bar space truss). The

value of all variables is given in in

2

. Part I

analysis of the space truss. This module uses the matrix factorization method

included in Gere and Weaver [24] together with the sti�ness method [24] to

analyze the structure, and returns the values of the stress and displacement

constraints, as well as the total weight of the structure.

The solution shown for the technique proposed here is the best produced

after 30 runs. The range 0:1 � x � 999:00 was used for the 8 design variables

(all variables were treated as continuous).

The mean from the 30 runs performed was f(~x) = 482:505592634, with

a standard deviation of 6.351394347. The worst solution found was f(~x) =

493:80920116, which is slightly better than any of the solutions produced by

any of the other techniques depicted in Tables 8 and 9.

The best solution previously reported was found by Coello et al. [8] using

a population size of 300 running during 100 generations. However, to �nd

the best solution reported, 81 runs were performed (varying the crossover and

mutation rates), whereas in our case, we performed only 30 runs. To allow a

fair comparison, we decided to run our current GA with a population of 50

individuals during 600 generations to have the same number of total �tness

function evaluations (per run) than in Coello et al. [8] (i.e., 300; 000 �tness

function evaluations).

9 Discussion

There are some interesting issues about the proposed procedure that deserve

to be briey discussed. Firstly, we have to consider the di�erent situations

that could arise when randomly generating a set of individuals (vectors of real

numbers in our case). We could have 3 situations:

1. All individuals are infeasible. This situation can arise in highly con-

strained search spaces (e.g., on Example 2 from this paper) and a GA is
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Design Best solution found

Variables Schmit [44] Khan [33] Adeli [2] Coello [8]

x

1

0.010 0.010 0.010 0.100

x

2

1.964 1.755 1.9855 0.700

x

3

3.033 2.869 2.9606 3.200

x

4

0.010 0.010 0.0100 0.100

x

5

0.010 0.010 0.0100 1.400

x

6

0.670 0.845 0.8062 1.100

x

7

1.680 2.011 1.6795 0.500

x

8

2.670 2.478 2.5298 3.400

f(~x) 545:22 553:94 545:66 493:94

Table 9: Comparison of results for the fourth example (25-bar space truss). The

value of all variables is given in in

2

. Part II

expected to be able to deal with it. When we face this situation using

a penalty function, all individuals would be penalized. In the proposed

approach, they would all be ranked according their degree of constraint

violation. Conceptually, both approaches are equivalent, but in our case,

the user does not need to estimate penalty functions or factors of any

kind, since the information about constraint violation derived from the

evolutionary process itself is used to assign �tness to each individual.

2. All individuals are feasible. This could happen in some cases in which

the constraints are not very di�cult to satisfy, and then the GA would be

very e�cient, because no additional computations are required to assign

�tness values. The direct value of the objective function can be used (or

its reciprocal value in case of a minimization problem).

3. There is a mixture of feasible and infeasible individuals. This is

the probably the most common situation when using an GA. The main

concern when using the approach proposed here is that the ranking of

infeasible individuals does not assign values higher than the �tness values

of the feasible individuals. To ensure that, we scale the ranking values of

infeasible individuals after the procedure has �nished, so that the �tness

value of the infeasible individual with the best ranking is smaller than the

�tness of the worst feasible individual.

One of the main highlights of this procedure is that it does not require any

additional procedure to keep diversity, because the selection pressure generated

by the ranking process is not excessive and therefore individuals who might be

assigned an extremely low �tness with a badly designed penalty function might

still have a probability of surviving with our procedure. This fact encourages

diversity, while at the same time pushes the infeasible individuals towards the

feasible region.
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10 Conclusions

This paper has introduced a new constraint-handling approach that is based

on the concept of \non-dominance" used in multiobjective optimization. The

approach is intended to be used with evolutionary algorithms as a way to reduce

the burden normally associated with the �ne-tuning of a penalty function.

The proposed approach performedwell in several test problems both in terms

of the number of �tness function evaluations required and in terms of the qual-

ity of the solutions found. The results produced were compared against those

generated with other (evolutionary and mathematical programming) techniques

reported in the literature.

11 Future Work

We are interested in developing constraint-handling versions of the other two

most popular multiobjective optimization techniques that we have not addressed

yet (NPGA [29] and NSGA [48]). These techniques have certain di�erences with

respect to MOGA. NSGA uses ranking, but removes highest ranking individuals

(i.e., non-dominated vectors) and then re-classi�es the rest of the population,

until no individuals are left to classify. NPGA uses a tournament selection

scheme based on dominance, which is more e�cient than checking dominance

for the whole population (only a subset is used instead). Both approaches

are promising and could present interesting aspects when adapted to handle

constraints.

We are also interested in developing parallel versions of these techniques,

so that they can be made more e�cient when dealing with highly constrained

search spaces. Work in that direction is also under way.
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