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Abstract. This tutorial will review some of the basic concepts related to
evolutionary multiobjective optimization (i.e., the use of evolutionary al-
gorithms to handle more than one objective function at a time). The most
commonly used evolutionary multiobjective optimization techniques will
be described and criticized, including some of their applications. Theory,
test functions and metrics will be also discussed. Finally, we will provide
some possible paths of future research in this area.

1 Introduction

Most real-world engineering optimization problems are multiobjective in nature,
since they normally have several (possibly conflicting) objectives that must be
satisfied at the same time. The notion of “optimum” has to be re-defined in this
context and instead of aiming to find a single solution, we will try to produce
a set of good compromises or “trade-offs” from which the decision maker will
select one.

Over the years, the work of a considerable amount of operational researchers
has produced an important number of techniques to deal with multiobjective
optimization problems [46]. However, it was until relatively recently that re-
searchers realized of the potential of evolutionary algorithms in this area.

The potential of evolutionary algorithms in multiobjective optimization was
hinted by Rosenberg in the 1960s [52], but this research area, later called Evolu-
tionary Multi-Objective Optimization (EMOO for short) remained unexplored
for almost twenty five years. However, researchers from many different disciplines
have shown an increasing interest in EMOO in recent years. The considerable
amount of research related to EMOO currently reported in the literature (over
630 publications') is a clear reflection of such interest.

* This work was done while the author was at the Laboratorio Nacional de Informdtica
Avanzada, Rébsamen 80, Xalapa, Veracruz 91090, México.
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This paper will provide a short tutorial on EMOO, including a review of
the main existing approaches (a description of the technique, together with its
advantages and disadvantages and some of its applications) and of the most
significant research done in theory, test functions and metrics. We will finish
with a short review of two promising areas of future research.

2 Basic Definitions

Multiobjective optimization (also called multicriteria optimization, multiperfor-
mance or vector optimization) can be defined as the problem of finding [49]:

a vector of decision variables which satisfies constraints and optimizes a
vector function whose elements represent the objective functions. These
functions form a mathematical description of performance criteria which
are usually in conflict with each other. Hence, the term “optimize” means
finding such a solution which would give the values of all the objective
functions acceptable to the designer.

Formally, we can state it as follows:

Find the vector * = [x‘{,w’z‘,...,w;]T which will satisfy the m inequality
constraints:

gi()>0 i=1,2,....,m (1)

the p equality constraints

hi(x)=0 i=1,2...,p (2)

and optimizes the vector function

f(@) = [fi(@), fa(@), -, fu(@)]" 3)

where & = [21, Z3,..., 2]  is the vector of decision variables.

In other words, we wish to determine from among the set F of all num-
bers which satisfy (1) and (2) the particular set z7,z3,...,z; which yields the
optimum values of all the objective functions.

It is rarely the case that there is a single point that simultaneously optimizes
all the objective functions. Therefore, we normally look for “trade-offs”, rather
than single solutions when dealing with multiobjective optimization problems.
The notion of “optimum” is therefore, different. The most commonly adopted
notion of optimality is that originally proposed by Francis Ysidro Edgeworth
[22], and later generalized by Vilfredo Pareto [50]. Although some authors call
Edgeworth-Pareto optimum to this notion (see for example Stadler [61]), we will
use the most commonly accepted term: Pareto optimum.

We say that a vector of decision variables £* € F is Pareto optimal if there
does not exist another @ € F such that f;(z) < fi(z*) for all s = 1,...,k and
fi(z) < f;(=*) for at least one j.



In words, this definition says that x* is Pareto optimal if there exists no
feasible vector of decision variables € F which would decrease some criterion
without causing a simultaneous increase in at least one other criterion. Unfor-
tunately, this concept almost always gives not a single solution, but rather a set
of solutions called the Pareto optimal set. The vectors &* correspoding to the
solutions included in the Pareto optimal set are called nondominated. The plot
of the objective functions whose nondominated vectors are in the Pareto optimal
set is called the Pareto front.

2.1 An Example

Fig. 1. A four-bar plane truss.

Let us analyze a simple example of a multiobjective optimization problem,
that has been studied by Stadler & Dauer [62]. We want to design the four-bar
plane truss shown in Figure 1. We will consider two objective functions: minimize
the volume of the truss (f;) and minimize its joint displacement A (fz). The
mathematical definition of the problem is:

Minimi fi(z) =L (2-1’1 + 422 + /T3 + a:4) @
mimize
fle)=Ek (2 +22-2£4 2)

such that:
(F/o) <z < 3(F/o)
V2(F/o) < x5 < 3(F/0) (5)

V2(F/0) < 23 < 3(F/0)
(F/o) < x4 < 3(F/0)

where F = 10 kN, E = 2 x 105 kN/cm?, L = 200 cm, o = 10 kN/cm?.



The global Pareto front of this problem can be obtained by enumeration. The
process consists of iterating on the four decision variables (with a reasonable
granularity) to get a set of points representing the search space. Then, we apply
the concept of Pareto optimality previously defined to the points generated. The
result of this procedure, plotted on objective function space is shown in Figure 2.
This is the true (or global) Pareto front of the problem.
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Fig. 2. True Pareto front of the four-bar plane truss problem.

3 Why Evolutionary Algorithms?

The first implementation of an EMOOQO approach was Schaffer’s Vector Evaluation
Genetic Algorithm (VEGA), which was introduced in the mid-1980s, mainly
intended for solving problems in machine learning [57-59].

Schaffer’s work was presented at the First International Conference on Ge-
netic Algorithmsin 1985 [58]. Interestingly, his simple unconstrained two-objective
functions became the usual test suite to validate most of the evolutionary multi-
objective optimization techniques developed during the following years [60, 38].

Evolutionary algorithms seem particularly suitable to solve multiobjective
optimization problems, because they deal simultaneously with a set of possible
solutions (the so-called population). This allows us to find several members of
the Pareto optimal set in a single run of the algorithm, instead of having to
perform a series of separate runs as in the case of the traditional mathematical



programming techniques [5]. Additionally, evolutionary algorithms are less sus-
ceptible to the shape or continuity of the Pareto front (e.g., they can easily deal
with discontinuous or concave Pareto fronts), whereas these two issues are a real
concern for mathematical programming techniques.

4 Reviewing EMOO Approaches

There are several detailed surveys of EMOO reported in the literature [5,27, 64]
and this tutorial does not intend to produce a new one. Therefore, we will limit
ourselves to a short discussion on the most popular EMOO techniques currently
in use, including two recent approaches that look very promising.

4.1 Aggregating functions

A genetic algorithm relies on a scalar fitness function to guide the search. There-

fore, the most intuitive approach to deal with multiple objectives would be to

combine them into a single function. The approach of combining objectives into

a single (scalar) function is normally denominated aggregating functions, and it

has been attempted several times in the literature with relative success in prob-

lems in which the behavior of the objective functions is more or less well-known.
An example of this approach is a sum of weights of the form:

k
min Y wifi(z) ®

where w; > 0 are the weighting coefficients representing the relative impor-
tance of the k objective functions of our problem. It is usually assumed that

k

Since the results of solving an optimization model using (6) can vary signifi-
cantly as the weighting coefficients change, and since very little is usually known
about how to choose these coefficients, a necessary approach is to solve the same
problem for many different values of w;.

4.1.1 Advantages and Disadvantages This approach does not require any
changes to the basic mechanism of a genetic algorithm and it is therefore very
simple, easy to implement and efficient. The approach can work properly in
simple multiobjective optimization problems with few objective functions and
convex search spaces. One obvious problem of this approach is that it may be
difficult to generate a set of weights that properly scales the objectives when
little is known about the problem. However, its most serious drawback is that
it cannot generate proper members of the Pareto optimal set when the Pareto
front is concave regardless of the weights used [13].



4.1.2 Sample Applications

— Truck packing problems [30].
— Real-time scheduling [47].
— Structural synthesis of cell-based VLSI circuits [1].
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Fig. 3. Schematic of VEGA selection.

4.2 VEGA

Schaffer [58] proposed an approach that he called the Vector Evaluated Genetic
Algorithm (VEGA), and that differed of the simple genetic algorithm (GA) only
in the way in which selection was performed. This operator was modified so that
at each generation a number of sub-populations was generated by performing
proportional selection according to each objective function in turn. Thus, for
a problem with k objectives and a population size of M, k sub-populations of
size M/k each would be generated. These sub-populations would be shuffled
together to obtain a new population of size M, on which the GA would apply
the crossover and mutation operators in the usual way. This process is illustrated
in Figure 3.

The solutions generated by VEGA are locally nondominated, but not neces-
sarily globally nondominated. VEGA presents the so-called “speciation” problem
(i-e., we could have the evolution of “species” within the population which ex-
cel on different objectives). This problem arises because this technique selects
individuals who excel in one objective, without looking at the others. The poten-
tial danger doing that is that we could have individuals with what Schaffer [58]



called “middling” performance? in all dimensions, which could be very useful
for compromise solutions, but that will not survive under this selection scheme,
since they are not in the extreme for any dimension of performance (i.e., they
do not produce the best value for any objective function, but only moderately
good values for all of them). Speciation is undesirable because it is opposed to
our goal of finding compromise solutions.

4.2.1 Advantages and Disadvantages Since only the selection mechanism
of the GA needs to be modified, the approach is easy to implement and it is quite
efficient. However, the “middling” problem prevents the technique from finding
the compromise solutions that we normally aim to produce. In fact, if propor-
tional selection is used with VEGA (as Schaffer did), the shuffling and merging
of all the sub-populations corresponds to averaging the fitness components asso-
ciated with each of the objectives [51]. In other words, under these conditions,
VEGA behaves as an aggregating approach and therefore, it is subject to the
same problems of such techniques.

4.2.2 Sample Applications

— Optimal location of a network of groundwater monitoring wells [4].
— Combinational circuit design [8].
— Design multiplierless IIR filters [71].

4.3 MOGA

Fonseca and Fleming [25] proposed the Multi- Objective Genetic Algorithm (MOGA).
The approach consists of a scheme in which the rank of a certain individual cor-
responds to the number of individuals in the current population by which it is
dominated. All nondominated individuals are assigned rank 1, while dominated
ones are penalized according to the population density of the corresponding
region of the trade-off surface.

Fitness assignment is performed in the following way [25]:

1. Sort population according to rank.

2. Assign fitness to individuals by interpolating from the best (rank 1) to the
worst (rank n < M) in the way proposed by Goldberg [29] (the so-called
Pareto ranking assignment process), according to some function, usually lin-
ear, but not necessarily.

3. Average the fitnesses of individuals with the same rank, so that all of them
will be sampled at the same rate. This procedure keeps the global population
fitness constant while maintaining appropriate selective pressure, as defined
by the function used.

? By “middling”, Schaffer meant an individual with acceptable performance, perhaps
above average, but not outstanding for any of the objective functions.



Since the use of a blocked fitness assignment scheme as the one indicated
before is likely to produce a large selection pressure that might produce pre-
mature convergence [29], the authors proposed the use of a niche-formation
method to distribute the population over the Pareto-optimal region [20]. Sharing
is performed on the objective function values, and the authors provided some
guidelines to compute the corresponding niche sizes. MOGA also uses mating
restrictions.

4.3.1 Advantages and Disadvantages The main strengths of MOGA is
that is efficient and relatively easy to implement [11]. Its main weakness is that,
as with all the other Pareto ranking techniques®, its performance is highly de-
pendent on an appropriate selection of the sharing factor.

MOGA has been a very popular EMOO technique (particularly within the
control community), and it normally exhibits a very good overall performance
[11].

4.3.2 Some Applications

— Fault diagnosis [45].

— Control system design [3, 69, 21].

— Wing planform design [48].

— Design of multilayer microwave absorbers [68].

4.4 NSGA

The Nondominated Sorting Genetic Algorithm (NSGA) was proposed by Srini-
vas and Deb [60], and is based on several layers of classifications of the individu-
als. Before selection is performed (stochastic remainder proportionate selection
was used), the population is ranked on the basis of domination (using Pareto
ranking): all nondominated individuals are classified into one category (with a
dummy fitness value, which is proportional to the population size). To maintain
the diversity of the population, these classified individuals are shared (in decision
variable space) with their dummy fitness values. Then this group of classified
individuals is removed from the population and another layer of nondominated
individuals is considered (i.e., the remainder of the population is re-classified).
The process continues until all individuals in the population are classified. Since
individuals in the first front have the maximum fitness value, they always get
more copies than the rest of the population. This allows us to search for non-
dominated regions, and results in convergence of the population toward such
regions. Sharing, on its part, helps to distribute the population over this region.
Figure 4 (taken from Srinivas and Deb [60]) shows the general flow chart of this
approach.

3 The use of a ranking scheme based on the concept of Pareto optimality was originally
proposed by Goldberg [29].
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Fig. 4. Flowchart of the Nondominated Sorting Genetic Algorithm (NSGA).



4.4.1 Advantages and Disadvantages Some researchers have reported that
NSGA has a lower overall performance than MOGA (both computationally and
in terms of quality of the Pareto fronts produced), and it seems to be also more
sensitive to the value of the sharing factor than MOGA [11]. However, Deb et al.
[18,19] have recently proposed a new version of this algorithm, called NSGA-II,
which is more efficient (computationally speaking), uses elitism and a crowded
comparison operator that keeps diversity without specifying any additional pa-
rameters. The new approach has not been extensively tested yet, but it certainly
looks promising.

4.4.2 Sample Applications

— Airfoil shape optimization [43].
— Scheduling [2].
— Minimum spanning tree [73].

4.5 NPGA

Horn et al. [38] proposed the Niched Pareto Genetic Algorithm, which uses a
tournament selection scheme based on Pareto dominance. Instead of limiting
the comparison to two individuals (as normally done with traditional GAs), a
higher number of individuals is involved in the competition (typically around
10% of the population size). When both competitors are either dominated or
nondominated (i.e., when there is a tie), the result of the tournament is decided
through fitness sharing in the objective domain (a technique called equivalent
class sharing was used in this case) [38].

The pseudocode for Pareto domination tournaments assuming that all of the
objectives are to be maximized is presented below [37]. S is an array of the N
individuals in the current population, random_pop_index is an array holding the
N indices of S, in a random order, and t4,.,, is the size of the comparison set.

function selection /* Returns an individual from the current population S */
begin
shuffle(random_pop_index); /* Re-randomize random index array */
candidate_1 = random_pop_index][1];
candidate_2 = random_pop_index|[2];
candidate_1_dominated = false;
candidate_2_dominated = false;
for comparison_set_index = 3 to tgom + 3 do
/* Select tgom individuals randomly from S */
begin
comparison_individual = random_pop-index[comparison_set_index];
if S[comparison_individual] dominates S[candidate_1]
then candidate_1_dominated = true;
if S[comparison_individual] dominates S[candidate_2]
then candidate_2_dominated = true;



end /* end for loop */

if ( candidate_1_dominated AND — candidate_2_dominated )
then return candidate_2;

else if ( - candidate_1_dominated AND candidate_2_dominated )
then return candidate_1;

else
do sharing;

end

This technique normally requires population sizes considerably larger than
usual with other approaches, so that the noise of the selection method can be
tolerated by the emerging niches in the population [26].

4.5.1 Advantages and Disadvantages Since this approach does not apply
Pareto ranking to the entire population, but only to a segment of it at each run,
its main strength are that it is faster than MOGA and NSGA®. Furthermore,
it also produces good nondominated fronts that can be kept for a large number
of generations [11]. However, its main weakness is that besides requiring a shar-
ing factor, this approach also requires an additional parameter: the size of the
tournament.

4.5.2 Sample Applications

— Automatic derivation of qualitative descriptions of complex objects [55].
— Feature selection [24].

— Optimal well placement for groundwater containment monitoring [37, 38].
— Investigation of feasibility of full stern submarines [63].

4.6 Target Vector Approaches

Under this name we will consider approaches in which the decision maker has
to assign targets or goals that wishes to achieve for each objective. The GA in
this case, tries to minimize the difference between the current solution found and
the vector of goals (different metrics can be used for that purpose). The most
popular techniques included here are hybrids with: Goal Programming [16, 70],
Goal Attainment [71,72] and the min-max approach [32,9].

4.6.1 Advantages and Disadvantages The main strength of these meth-
ods is their efficiency (computationally speaking) because they do not require a
Pareto ranking procedure. However, their main weakness is the definition of the

4 Pareto ranking is O(kM?), where k is the number of objectives and M is the popu-
lation size.



desired goals which requires some extra computational effort (normally, these
goals are the optimum of each objective function, considered separately). Fur-
thermore, these techniques will yield a nondominated solution only if the goals
are chosen in the feasible domain, and such condition may certainly limit their
applicability.

4.6.2 Some Applications

— Truss design [56, 7].
— Design of a robot arm [10].
— Synthesis of low-power operational amplifiers [72].

4.7 Recent approaches

Recently, several new EMOO approaches have been developed. We consider im-
portant to discuss briefly at least two of them: PAES and SPEA.

The Pareto Archived Evolution Strategy (PAES) was introduced by Knowles
& Corne [42]. This approach is very simple: it uses a (1+1) evolution strategy
(i-e., a single parent that generates a single offspring) together with a histori-
cal archive that records all the nondominated solutions previously found (such
archive is used as a comparison set in a way analogous to the tournament com-
petitors in the NPGA). PAES also uses a novel approach to keep diversity, which
consists of a crowding procedure that divides objective space in a recursive man-
ner. Each solution is placed in a certain grid location based on the values of its
objectives. A map of such grid is maintained, indicating the amount of solu-
tions that reside in each grid location. Since the procedure is adaptive, no extra
parameters are required (except for the number of divisions of the objective
space). Furthermore, the procedure has a lower computational complexity than
traditional niching methods. PAES has been used to solve the off-line routing
problem [41] and the adaptive distributed database management problem [42].

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Zit-
zler & Thiele [78]. This approach was conceived as a way of integrating different
EMOO techniques. SPEA uses an archive containing nondominated solutions
previously found (the so-called external nondominated set). At each generation,
nondominated individuals are copied to the external nondominated set. For each
individual in this external set, a strength value is computed. This strength is
similar to the ranking value of MOGA, since it is proportional to the number of
solutions to which a certain individual dominates. The fitness of each member
of the current population is computed according to the strengths of all external
nondominated solutions that dominate it. Additionally, a clustering technique
is used to keep diversity. SPEA has been used to explore trade-offs of software
implementations for DSP algorithms [76] and to solve 0/1 knapsack problems
[78].



5 Theory

The most important theoretical work related to EMOO has concentrated on two
main issues:

— Studies of convergence towards the Pareto optimum set [53, 54, 33, 34, 65].
— Ways to compute appropriate sharing factors (or niche sizes) [36, 35, 25].

Obviously, a lot of work remains to be done. It would be very interesting
to study, for example, the structure of fitness landscapes in multiobjective op-
timization problems [40, 44]. Such study could provide some insights regarding
the sort of problems that are particularly difficult for an evolutionary algorithm
and could also provide clues regarding the design of more powerful EMOOQO tech-
niques.

Also, there is a need for detailed studies of the different aspects involved in
the parallelization of EMOO techniques (e.g., load balancing, impact on Pareto
convergence, performance issues, etc.), including new algorithms that are more
suitable for parallelization than those currently in use.

6 Test Functions

The design of test functions that are appropriate to evaluate EMOO approaches
was disregarded in most of the early research in this area. However, in recent
years, there have been several interesting proposals. Deb [14, 15] proposed ways
to create controllable test problems for evolutionary multiobjective optimization
techniques using single-objective optimization problems as a basis. He proposed
to transform deceptive and massively multimodal problems into very difficult
multiobjective optimization problems. More recently, his proposal was extended
to constrained multiobjective optimization problems [17] (in most of the early
papers on EMOO techniques, only unconstrained test functions were used).

Van Veldhuizen and Lamont [66,67] have also proposed some guidelines to
design a test function suite for evolutionary multiobjective optimization tech-
niques, and have included in a technical report some sample test problems
(mainly combinatorial optimization problems) [66]. In this regard, the litera-
ture on multiobjective combinatorial optimization can be quite useful [23]. The
benchmarks available for problems like the multiobjective 0/1 knapsack can
be used to validate EMOO approaches. Such idea has been explored by a few
EMOO researchers (for example [78,39]), but more work in this direction is still
necessary.

7 Metrics

Assuming that we have a set of test functions available, the next issue is how
to compare different EMOO techniques. The design of metrics has been studied
recently in the literature. The main proposals so far are the following:



— Van Veldhuizen and Lamont [65] proposed the so-called generational dis-
tance, which is a measure of how close our current Pareto front is from the
true Pareto front (assuming we know where it lies).

— Srinivas and Deb [60] proposed the use of an statistical measure (the chi-
square distribution) to estimate the spread of the population on the Pareto
front with respect to the sharing factor used.

— Zitzler and Thiele [77] proposed two measures: the first concerns the size of
the objective value space which is covered by a set of nondominated solutions
and the second compares directly two sets of nondominated solutions, using
as a metric the fraction of the Pareto front covered by each of them. Several
other similar metrics have been also suggested recently by Zitzler et al. [75].

— Fonseca and Fleming [28] proposed the definition of certain (arbitrary) goals
that we wish the GA to attain; then we can perform multiple runs and apply
standard non-parametric statistical procedures to evaluate the quality of the
solutions (i.e. the Pareto fronts) produced by the EMOO technique under
study, and/or compare it against other similar techniques.

There are few comparative studies of EMOO techniques where these metrics
have been used and more comprehensive comparisons are still lacking in the
literature [75, 64, 74]. Also, it is important to consider that most of the previously
mentioned metrics assume that the user can generate the global Pareto front of
the problem under study (using, for example, an enumerative approach), and
that will not be possible in most real-world applications.

8 Promising areas of future research

There are at least two areas of future research that deserve more attention in
the next few years:

— Incorporation of preferences: We should not ignore the fact that the so-
lution of a multiobjective optimization problem really involves three stages:
measurement, search, and decision making. Most EMOQO research tends to
concentrate on issues related to the search of nondominated vectors. How-
ever, these nondominated vectors do not provide any insight into the process
of decision making itself (the decision maker still has to choose manually one
of the several alternatives produced), since they are really a useful generaliza-
tion of a utility function under the conditions of minimum information (i.e.,
all attributes are considered as having equal importance; in other words, the
decision maker does not express any preferences of the attributes). Thus, the
issue is how to incorporate the decision maker’s preferences into an EMOO
approach as to guide the search only to the regions of main interest. There are
a few recent proposals in this area [12, 6], but more research is still needed.
Issues such as scalability of the preferences’ handling mechanism and capa-
bility of the approach to incorporate preferences from several decision makers
deserve special attention.



— Emphasis on efficiency: Efficiency has been emphasized in EMOO re-
search until recently, mainly regarding the number of comparisons performed
for ranking the population [18], ways to maintain diversity [42], and proce-
dures to reduce the computational cost involved in evaluating several (ex-
pensive) objective functions [21]. However, more work is still needed. For
example, EMOO researchers have paid little attention to the use of efficient
data structures. In contrast, operational researchers have used, for example,
domination-free quad trees where a nondominated vector can be retrieved
from the tree very efficiently. Checking if a new vector is dominated by the
vectors in one of these trees can also be done very efficiently [31]. It is there-
fore necessary to pay more attention to efficiency issues in the design of new
EMOO approaches, to make them more suitable for real-world applications.

9 Conclusions

This paper has attempted to provide a short tutorial of evolutionary multiob-
jective optimization. Qur discussion has covered the main EMOO approaches
currently in use, their advantages and disadvantages, and some of their applica-
tions reported in the literature.

‘We have also discussed briefly the theoretical work done in this area, as well
as some of the research that has attempted to produce benchmarks that are
appropriate to validate EMOOQO approaches. We also discussed another problem
related to this last issue: the definition of appropriate metrics that allow us to
compare several EMOQO techniques. Such metrics should evaluate the capability
of an EMOO approach to produce a sufficient amount of elements of the Pareto
optimal set of the problem as well as to spread them appropriately.

Our discussion finishes with a short description of two possible areas of future
research in EMOO: mechanisms that facilitate the incorporation of user’s pref-
erences and the search for efficient procedures and algorithms for evolutionary
multiobjective optimization and to keep diversity.
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