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Abstract  This chapter presents a review of the most important evolutionary mul-
tiobjective optimization techniques developed to date. Using as a ba-
sis a simple taxonomy of approaches, we briefly describe and analyze
the advantages and disadvantages of each of them, together with some
of their applications reported in the literature. Other important issues
such as diversity and some of the main techniques developed to preserve
it, as well as the need of suitable test functions and metrics that can
properly evaluate the performance of these multiobjective optimization
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techniques are also addressed. We conclude this chapter with a brief
outline of some potential paths of future research in this area.

Keywords: evolutionary algorithms, evolutionary multiobjective optimization, ge-
netic algorithms, multiobjective optimization, vector optimization

1. Introduction

The idea of using techniques based on the emulation of the mecha-
nism of natural selection to solve problems can be traced as long back
as the 1930s [12]. However, it was not until the 1960s that the three
main techniques based on this notion were developed: genetic algo-
rithms [75], evolution strategies [142] and evolutionary programming
[50]. These approaches, which are now collectively denominated “evo-
lutionary algorithms”, have been very effective for single-objective opti-
mization [58, 144, 51].

Evolutionary algorithms seem also particularly desirable for solving
multiobjective optimization problems because they deal simultaneously
with a set of possible solutions (the so-called population) which allows
us to find several members of the Pareto optimal set in a single run of
the algorithm, instead of having to perform a series of separate runs
as in the case of the traditional mathematical programming techniques.
Additionally, evolutionary algorithms are less susceptible to the shape
or continuity of the Pareto front (e.g., they can easily deal with discon-
tinuous and concave Pareto fronts), whereas these two issues are a real
concern for mathematical programming techniques.

The potential of evolutionary algorithms in this field was indicated
in the late 1960s by Rosenberg [132], but the first implementation was
not produced until the mid-1980s [137, 138]. Since then, a considerable
amount of research has been done in this area, now known as evolu-
tionary multi-objective optimization (EMOO for short). The growing
importance of this field is reflected by a significant increment (mainly
during the last five years) of technical papers in international conferences
and peer-reviewed journals, special sessions in international conferences
and interest groups on the Internet’.

The content of this chapter is organized as follows: first, we will define
the terminology that we will adopt and we will describe the general mul-
tiobjective optimization problem. Then, we will give some basic notions

IThe first author maintains an EMOO repository with over 850 bibliographi-
cal entries at: http://delta.cs.cinvestav.mx/~ccoello/EM00, with mirrors at
http://www.lania.mx/"ccoello/EM00/ and http://www.jeo.org/emo/
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of evolutionary algorithms. After that, we will analyze the main evolu-
tionary multiobjective optimization techniques that have been proposed
in the specialized literature. Each technique will be briefly described and
criticized. We will also provide some sample applications of each. Then,
we will describe some of the main approaches proposed to maintain
diversity, emphasizing the importance that this process has in multiob-
jective optimization. Test functions and metrics proposed for EMOO
techniques are also discussed together with some representative appli-
cations reported in the literature. Finally, we will describe some of the
potential research paths in this area.

2. Definitions

The emphasis of this chapter is the solution of multiobjective opti-
mization problems (MOPs) of the form:

minimize [fi(Z), fo(Z),-.., fx(Z)] (1.1a)

subject to the m inequality constraints:

G(@) >0 i=12....m (1.2b)

and the p equality constraints:

hi(Z) =0 i=1,2,...,p (1.3c)

where k is the number of objective functions f; : R* — R. We call ¥ =
[£1, T2, ..., %] the vector of decision variables. We wish to determine
from among the set F of all vectors which satisfy (1.2a) and (1.3b) the
particular set of values z7, 3, ...,z; which yield the optimum values of
all the objective functions.

2.1 Pareto optimality

It is rarely the case that there is a single point that simultaneously
optimizes all the objective functions. Therefore, we normally look for
“trade-offs”, rather than single solutions when dealing with multiob-
jective optimization problems. The notion of “optimality” is therefore,
different. The most commonly adopted notion of optimality is that
originally proposed by Francis Ysidro Edgeworth [44] and later gener-
alized by Vilfredo Pareto [114]. Although some authors call this notion
Edgeworth-Pareto optimality (see for example [152]), we will use the
most commonly accepted term: Pareto optimality.



We say that a vector of decision variables &* € F is Pareto optimal
if there does not exist another Z € F such that f;(Z) < fi(z*) for all
i=1,...,kand f;(Z) < f;(&*) for at least one j.

In words, this definition says that * is Pareto optimal if there exists
no feasible vector of decision variables © € F which would decrease some
criterion without causing a simultaneous increase in at least one other
criterion. Unfortunately, this concept almost always gives not a single
solution, but rather a set of solutions called the Pareto optimal set. The
vectors ¥ correspoding to the solutions included in the Pareto optimal
set are called nondominated. The image of the Pareto optimal set under
the objective functions is called Pareto front.

3. Notions of Evolutionary Algorithms

The term evolutionary computing or evolutionary algorithms is gener-
ically applied to a set of biologically-inspired techniques (inspired by
the Neo-Darwinian theory of natural evolution?. Although three main
paradigms are normally considered (evolutionary programming [50, 51],
evolution strategies [143, 144], and genetic algorithms [76, 58]), nowa-
days it becomes increasingly difficult to distinguish the differences among
them, and researchers tend to use the broader term “evolutionary algo-
rithms” to refer to any technique that is based in the principle of natural
selection (or survival of the fittest) originally defined by Charles Darwin
[29].

In nature, individuals have to adapt to their environment in order to
survive in a process called “evolution”, in which those features that make
an individual more suited to compete are preserved when it reproduces,
and those features that make it weaker are eliminated. Such features
are controlled by units called genes which form sets called chromosomes.
Over subsequent generations not only the fittest individuals survive, but
also their fittest genes which are transmitted to their descendants during
the sexual recombination process which is called crossover.

In general terms, to simulate an evolutionary process in a computer,
we need the following [105]:

m A representation for potential solutions to the problem.

2The Neo-Darwinian theory of natural evolution combines the original evolutionary theory of
Charles Darwin (based on the survival of the fittest), the selectionism of August Weismann
and Mendel’s inheritance laws. It is called “Neo-Darwinian”, because it improves the original
proposal of Charles Darwin.
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= A way to create an initial population of potential solutions (this

is normally done randomly, but deterministic approaches can also
be used).

»  An evaluation function that plays the role of the environment,
rating solutions in terms of their “fitness”.

m  Genetic operators that alter the composition of the offspring gen-
erated (normally, crossover and mutation).

m  Values for various parameters that the evolutionary algorithm uses
(population size, probabilities of applying genetic operators, etc.).

These elements are important both for single- and for multi-objective
optimization. However, in multi-objective optimization, two more issues
must be kept in mind: how to select individuals so that they correspond
to elements of the Pareto optimal set, and how to keep diversity to avoid
convergence of all the population to a single solution.

4. Classifying Techniques

A considerable amount of EMOO techniques have been developed in
recent years [19, 162]. In an attempt to discuss the most important
approaches proposed, we decided to classify these techniques using the
following scheme:

m  Non-Pareto Techniques

Aggregating approaches
— VEGA
— Lexicographic ordering

— The e-constraint method

Target-vector approaches

— Game theory
m Pareto-based Techniques

— Pure Pareto ranking
- MOGA
— NSGA
— NPGA

— Non-generational approaches



» Recent Approaches

— PAES
— SPEA
— Micro-Genetic Algorithm

5. Non-Pareto Techniques

Under this category, we will consider approaches that do not incor-
porate directly the concept of Pareto optimality (or Pareto dominance).
The approaches discussed in this section are all very efficient (computa-
tionally speaking), but most of them are incapable of producing certain
portions of the Pareto front. Others could be appropriate to handle only
a few objectives. However, their simplicity and efficiency has made them
popular among a certain sector of researchers.

5.1 Aggregating approaches

Perhaps the most straightforward approach to handle multiple objec-
tives with any technique is to use a combination of all the objectives
into a single one using either an addition, multiplication or any other
combination of arithmetical operations that we could think of. These
techniques are normally known as “aggregating functions”, because they
combine (or “aggregate”) all the objectives of the problem into a single
one. In fact, aggregating approaches are the oldest mathematical pro-
gramming methods for multiobjective optimization, since they can be
derived from the Kuhn-Tucker conditions for nondominated solutions
[89].

An example of this approach is a sum of weights of the form:

k
min Y w; fi(Z) (1.4d)
i=1
where w; > 0 are the weighting coefficients representing the relative

importance of the k£ objective functions of our problem. It is usually
assumed that

k
1=1

Aggregating functions have been used with evolutionary algorithms
in a number of occasions, with relative success in problems in which the
behavior of the objective functions is more or less well-known.
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It is normal practice in aggregating approaches to vary the weight-
ing coeflicients used, so that different portions of the Pareto front can
be generated. However, it is important to realize that the weighting
coefficients do not reflect proportionally the relative importance of the
objectives (unless a proper scaling of the objectives takes place), but
are only factors which, when varied, locate elements from the Pareto
optimal set.

5.1.1 Advantages and disadvantages. The main advantages
of this method are its simplicity (it is easy to implement and use) and
its efficiency (computationally speaking). Its main disadvantage is the
difficulty to determine the appropriate weight coefficients to be used
when we do not have enough information about the problem (this is
an important concern, particularly in real-world applications). Also, a
proper scaling of the objectives requires a considerable amount of extra
knowledge about the problem. To obtain this information could be a very
expensive process (computationally speaking). A more serious drawback
of this approach is that it cannot generate certain portions of the Pareto
front when its shape is concave, regardless of the weights combination
used [30]. Nevertheless, aggregating functions could be very useful to
get a preliminary sketch of the Pareto front of a certain problem, or to
provide prior information to be exploited by another approach.

5.1.2 Some applications.
»  Water quality control [15].
= Controller design [40].
» Design of optical filters for lamps [46].

» Improvement of wire-antenna geometries [166).

5.2 VEGA

This is the first actual implementation of an evolutionary multiobjec-
tive optimization technique, which was made by Schaffer [137, 138] in
the mid-1980s. The approach was called the Vector Fvaluated Genetic
Algorithm (VEGA), and it basically consisted of a simple genetic algo-
rithm (GA) with a modified selection mechanism. At each generation, a
number of sub-populations were generated by performing proportional
selection according to each objective function in turn. Thus, for a prob-
lem with k objectives, k sub-populations of size N/k each would be gen-
erated (assuming a total population size of N). These sub-populations



Generation (t) Generation (t+1)
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Figure 1.1a. Scheme of VEGA'’s selection mechanism. It is assumed that the popu-
lation size is N and that there are M objective functions.

would then be shuffled together to obtain a new population of size IV,
on which the GA would apply the crossover and mutation operators in
the usual way. This process is illustrated in Figure 1.1a. Schaffer real-
ized that the solutions generated by his system were nondominated in
a local sense, because their nondominance was limited to the current
population, and while a locally dominated individual is also globally
dominated, the converse is not necessarily true [138]. An individual
which is not dominated in one generation may become dominated by an
individual who emerges in a later generation. Also, he noted a problem
that in genetics is known as “speciation” (i.e., we could have the evolu-
tion of “species” within the population which excel on different aspects
of performance). This problem arises because this technique selects in-
dividuals who excel in one dimension of performance, without looking at
the other dimensions. The potential danger doing that is that we could
have individuals with what Schaffer called “middling” performance? in
all dimensions, which could be very useful for compromise solutions,
but which will not survive under this selection scheme, since they are
not in the extreme for any dimension of performance (i.e., they do not
produce the best value for any objective function, but only moderately
good values for all of them). Speciation is undesirable because it is op-
posed to our goal of finding a compromise solution. Schaffer suggested

3By “middling”, Schaffer meant an individual with acceptable performance, perhaps above
average, but not outstanding for any of the objective functions.
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some heuristics to deal with this problem. For example, to use a heuris-
tic selection preference approach for nondominated individuals in each
generation, to protect our “middling” chromosomes. Also, crossbreeding
among the “species” could be encouraged by adding some mate selection
heuristics instead of using the random mate selection of the traditional

GA.

5.2.1 Advantages and disadvantages. VEGA is very simple
and easy to implement, since only the selection mechanism of a tradi-
tional GA has to be modified. However, the shuffling and merging of
all the sub-populations that VEGA does corresponds to averaging the
fitness components associated with each of the objectives [60]. Since
Schaffer used proportional fitness assignment [58], these fitness compo-
nents were in turn proportional to the objectives themselves [53]. There-
fore, the resulting expected fitness corresponded to a linear combination
of the objectives where the weights depended on the distribution of the
population at each generation as shown by Richardson et al. [128].
This means that VEGA has the same problems as the aggregating ap-
proaches (i.e., it is not able to generate concave portions of the Pareto
front). Nevertheless, VEGA has been found useful in other domains
such as constraint-handling, where its biased behavior can be of great
help [154, 22].

5.2.2 Some applications.
= Groundwater pollution containment [129].

»  Optimum placement of aerodynamic actuators for aircraft control
[131, 130].

» Design of combinational circuits at the gate-level [22].

m  Constraint-handling in evolutionary algorithms used for single-
objective optimization [21, 154, 153].

5.3 Lexicographic ordering

In this method, the user is asked to rank the objectives in order of
importance. The optimum solution £* is then obtained by minimizing
the objective functions, starting with the most important one and pro-
ceeding according to the assigned order of importance of the objectives.

Let the subscripts of the objectives indicate not only the objective
function number, but also the priority of the objective. Thus, f1(%) and
fx(Z) denote the most and least important objective functions, respec-
tively. Then the first problem is formulated as
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Minimize f;(Z) (1.6f)

subject to
and its solution #} and fy = (#7) is obtained. Then the second

problem is formulated as

Minimize fo(Z) (1.8h)

subject to
6@ <0 j=12...m (1.9)
H@) =1 (1.10)

and the solution of this problem is obtained as =3 and f5 = fa(z3).
This procedure is repeated until all £ objectives have been considered.
The ith problem is given by

Minimize f;(Z) (1.113)

subject to
g;(%) <0; j=1,2,...,m (1.12)
f@=fr 1=12,...,i-1 (1.13)

The solution obtained at the end, ie., zj is taken as the desired
solution z* of the problem.

Fourman [55] suggested a selection scheme based on lexicographic
ordering. In a first version of his algorithm, objectives are assigned
different priorities by the user and each pair of individuals are compared
according to the objective with the highest priority. If this resulted in
a tie, the objective with the second highest priority was used, and so
on. In another version of this algorithm (that apparently worked quite
well), an objective is randomly selected at each run.

5.3.1 Advantages and disadvantages. This technique ex-
plores objective space unequally, in the sense that priority is given to
solutions performing well in one objective over another(s). Or, in other
words, one objective is optimized at all costs. This approach appears
most suitable only when the importance of each objective (in comparison
to the others) is clearly known.
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Selecting randomly an objective (as in the case of Fourman [55]) is
equivalent to a weighted combination of objectives, in which each weight
is defined in terms of the probability that each objective has of being
selected. However, the use of tournament selection with this approach
makes an important difference with respect to other approaches such as
VEGA, because the pairwise comparisons of tournament selection will
make scaling information negligible [53]. This means that this approach
may be able to see as convex a concave trade-off surface, although that
really depends on the distribution of the population and on the problem
itself. Its main weakness is that this approach will tend to favor cer-
tain objectives when many are present in the problem, because of the
randomness involved in the process, and this will have the undesirable
consequence of making the population to converge to a particular part
of the Pareto front rather than to delineate it completely [27]. The main
advantage of this approach is its simplicity and computational efficiency.
These two properties make it highly competitive with other non-Pareto
approaches such as a weighted sum of objectives or VEGA.

5.3.2 Some applications.
= Symbolic layout compaction [55].

m Tuning of a fuzzy controller for the guidance of an autonomous
vehicle in an elliptic road [56].

5.4 The e-constraint method

This method is based on minimization of one (the most preferred
or primary) objective function, and considering the other objectives as
constraints bound by some allowable levels ;. Hence, a single objective
minimization is carried out for the most relevant objective function f;
subject to additional constraints on the other objective functions. The
levels ¢; are then altered to generate the entire Pareto optimal set. The
method may be formulated as follows:

1 Find the minimum of the rth objective function, i.e. find £* such
that

fr(f*) = I;g}lfr(i) (1-14j)

subject to additional constraints of the form

filZ) <g fori=1,2,...,k andi#r (1.15k)
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where ¢; are assumed values of the objective functions which we
do not wish to exceed.

2 Repeat (1) for different values of ¢;. The information derived from
a well chosen set of €; can be useful in making the decision. The
search ends when the user finds a satisfactory solution.

It may be necessary to repeat the above procedure for different indices
T.

To get adequate g; values, single-objective optimizations are normally
carried out for each objective function in turn by using mathematical
programming techniques (or independent EAs). For each objective func-
tion f; (1 =1,2,...,k), there is an optimal solution vector Z; for which
fi(Z¥) is a minimum. Let f;(Z¥) be the lower bound on ¢;, i.e.

&> fi(@) i=1,2,....r—1,r+1,...k (1.161)

and f;(Z}) be the upper bound on ¢;, i.e.

e < fi(@) i=1,2,...,r—1r+1,...k (1.17m)

When the bounds ¢; are too low, there is no solution and at least one
of these bounds must be relaxed.

This technique has been hybridized with EAs on several occasions.
The idea is to use only one objective function at a time as the fitness
function of the EA, and keep the others constant (constrained to a single
value). Then, the EA is run several times varying the constrained values,
so that the Pareto front of the problem can be generated.

5.4.1 Advantages and disadvantages. The main disadvan-
tage of this approach is its (potentially high) computational cost. Also,
the encoding of the objective functions may be extremely difficult or even
impossible for certain applications, particularly if there are too many ob-
jectives. Nevertheless, the relative simplicity of the technique (its main
advantage) has made it popular among some researchers (particularly in
engineering).

5.4.2 Some applications.
» Preliminary design of a marine vehicle [94].
=  Groundwater pollution containment problems [149].

m  Fault tolerant system design [139].
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5.5 Target-vector approaches

This category encompasses methods in which we have to define a set
of goals (or targets) that we wish to achieve for each objective function
under consideration. The EA in this case will then try to minimize the
difference between the current solution generated and the vector of de-
sirable goals (different metrics can be used for this purpose). Although
target vector approaches can be considered as another aggregating ap-
proach, we decided to discuss them separately because these techniques
can generate (under certain conditions) concave portions of the Pareto
front, whereas approaches based on simple weighted sums cannot.

The most popular techniques included here are hybrids of EAs with:
Goal Programming [32, 170, 135], Goal Attainment [171, 177], and the
min-max algorithm [67, 23].

5.5.1 Advantages and disadvantages. The main advantage
of these methods is their simplicity and their efficiency (computation-
ally speaking) because they do not require a Pareto ranking procedure.
However, their main disadvantage is the definition of the desired goals
which requires some extra computational effort. Some target vector ap-
proaches have additional problems. For example, Wilson and MacLeod
[171] found that goal attainment could generate, under certain circum-
stances, a misleading selection pressure. For example, if we have two
candidate solutions which are the same in one objective function value
but different in the other, they will still have the same goal-attainment
value for their two objectives, which means that for the EA neither of
them will be better than the other.

An additional problem with these techniques is that they will yield
a nondominated solution only if the goals are chosen in the feasible
domain, and such conditions may certainly limit their applicability.

5.5.2 Some applications.
» Design of multiplierless IIR filters [171].
»  Structural optimization [135, 67].

=  Optimization of the counterweight balancing of a robot arm [25].

5.6 Game theory

We can analyze this technique with reference to a simple optimization
problem with two objectives and two design variables whose graphical
representation is shown in Figure 1.1b. Let fi(z1,22) and fo(x1,x2)
represent two scalar objectives and z; and z9 two scalar variables. It
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is assumed that one player is associated with each objective. The first
player wants to select a variable x1 which will minimize his objective
function fi, and similarly the second player seeks a variable zo which
will minimize his objective function fo. If f; and fy are continuous,
then the contours of constant values of f; and fy appear as shown in
Figure 1.1b. The dotted lines passing through O; and O, represent
the loci of rational (minimizing) choices for the first and second player
for a fixed value of x5 and z1, respectively. The intersection of these
two lines, if it exists, is a candidate for the two objective minimization
problem, assuming that the players do not cooperate with each other
(non-cooperative game). In Figure 1.1b, the point N(z7,z3) represents
such an intersection point. This point, known as a Nash equilibrium
solution, represents a stable equilibrium condition in the sense that no
player can deviate unilaterally from this point for further improvement
of his own criterion [110].
This point has the characteristic that

fi(zl,23) < fi(z1,25) (1.18n)

and

fa(al,23) < folal, z2) (1.190)

where 21 may be to the left or right of z] in (1.18m) and z2 may lie
above or below z4 in (1.19n).

5.6.1 Advantages and disadvantages. The main advantage
of this approach is that it is very efficient (computationally speaking).
However, under certain circumstances, it could generate a single non-
dominated vector instead of a set of them (as in [117]). Nevertheless,
it is possible to extend this approach to k players (where k is the num-
ber of objectives of a problem), and to have several Nash equilibrium
points, with which the entire Pareto front of a problem can actually be
found, although a cooperative game may be preferred in that case over
a mon-cooperative approach [124, 123].

5.6.2 Some applications.

= Truss optimization [37, 125].

»  Minimization of the backscattering of aerodynamic reflectors [116,
117].
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6. Pareto-Based Techniques

The idea of using Pareto-based fitness assignment was first proposed
by Goldberg [58] to solve the problems of Schaffer’s approach [138].
He suggested the use of nondominated ranking and selection to move
a population toward the Pareto front in a multiobjective optimization
problem. The basic idea is to find the set of strings in the population
that are Pareto nondominated by the rest of the population. These
strings are then assigned the highest rank and eliminated from further
contention. Another set of Pareto nondominated strings are determined
from the remaining population and are assigned the next highest rank.
This process continues until the population is suitably ranked. Goldberg
also suggested the use of some kind of niching technique to keep the GA
from converging to a single point on the front [34]. A niching mechanism
such as sharing [60] would allow the EA to maintain individuals all along
the nondominated frontier.

6.1 Pure Pareto ranking

Although several variations of Goldberg’s proposal have been pro-
posed in the literature (see the following subsections), several authors
have used what we call “pure Pareto ranking”. The idea in this case is
to follow Goldberg’s proposal as stated in his book [58].

6.1.1 Advantages and disadvantages. The main weakness
of Pareto ranking in general is that there is no efficient algorithm to check
for nondominance in a set of feasible solutions (the conventional process
is O(kM?), where k is the number of objectives and M is the popu-
lation size). Therefore, any traditional algorithm to check for Pareto
dominance exhibits a serious degradation in performance as we increase
the size of the population and the number of objectives. Also, the use
of sharing requires to estimate the value of the sharing factor, which is
not easy, and the performance of the method relies a lot on this value.
However, Pareto ranking is the most appropriate way to generate an
entire Pareto front in a single run of an EA and its main advantage is
that the approach is less succeptible to the shape or continuity of the
Pareto front, whereas these two issues are a serious concern for tradi-
tional mathematical programming techniques.

6.1.2 Applications.

m Optimal location of a network of groundwater monitoring wells
[18].
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= Pump scheduling [141, 136].
»  Feasibility of full stern submarines [158].

= Optimal planning of an electrical power distribution system [121].

6.2 MOGA

Fonseca and Fleming [52] proposed a scheme called “Multi-Objective
Genetic Algorithm” (MOGA), in which the rank of a certain individual
corresponds to the number of chromosomes in the current population
by which it is dominated. Consider, for example, an individual* z;

at generation ¢, which is dominated by pgt) individuals in the current
generation. Its current position in the individuals’ rank can be given by

[52]):

rank(z;,t) =1 —I—pz(-t) (1.20p)

All nondominated individuals are assigned rank 1, while dominated
ones are penalized according to the population density of the correspond-
ing region of the trade-off surface.

Fitness assignment is performed in the following way [52]:

1 Sort population according to rank.

2 Assign fitness to individuals by interpolating from the best (rank
1) to the worst (rank n < N) in the way proposed by Goldberg
[568], according to some function, usually linear, but not necessarily.

3 Average the fitnesses of individuals with the same rank, so that all
of them will be sampled at the same rate. This procedure keeps the
global population fitness constant while maintaining appropriate
selective pressure, as defined by the function used.

As Goldberg and Deb [59] point out, this type of blocked fitness as-
signment is likely to produce a large selection pressure that might pro-
duce premature convergence. To avoid that, Fonseca and Fleming [52]
used a niche-formation method to distribute the population over the
Pareto-optimal region, but instead of performing sharing on the param-
eter values, they have used sharing on the objective function values [150].

4An individual encodes the decision variables of the problem.
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6.2.1 Advantages and disadvantages. It has been indicated
in the literature [150, 31] that the main drawback of MOGA is that it
performs sharing on the objective value space, which implies that two
different vectors with the same objective function values can not exist
simultaneously in the population under this scheme. This is apparently
undesirable, because these are precisely the kind of solutions that the
user normally wants. However, nothing in the algorithm precludes it
from performing sharing in decision variable space, and apparently this
choice has been taken in some of the applications reported below.

The main advantage of MOGA is that it is efficient and relatively
easy to implement [27, 162]. Its main weakness is that, as all the other
Pareto ranking techniques, its performance is highly dependent on an
appropriate selection of the sharing factor. However, it is important to
add that Fonseca and Fleming [52] have developed a good methodology
to compute this value for their approach.

6.2.2 Some applications.
»  Co-synthesis of hardware-software embedded systems [39].
» Design of active magnetic bearing controllers [140].
» Fault Diagnosis [100, 101, 99].

= Plane truss optimization [109, 3].

6.3 NSGA

Srinivas and Deb [150] proposed the “Nondominated Sorting Genetic
Algorithm” (NSGA). This algorithm is based on several layers of classi-
fications of the individuals as shown in Figure 1.1c. Before selection is
performed, the population is ranked on the basis of nondomination: all
nondominated individuals are classified into one category (with a dummy
fitness value, which is proportional to the population size, to provide an
equal reproductive potential for these individuals). To maintain the di-
versity of the population, these classified individuals are shared with
their dummy fitness values. Then this group of classified individuals
is ignored and another layer of nondominated individuals is considered.
The process continues until all individuals in the population are classi-
fied. A stochastic remainder proportionate selection was adopted by the
authors. Since individuals in the first front have the maximum fitness
value, they always get more copies than the rest of the population. This
allows to search for nondominated regions, and results in convergence
of the population toward such regions. Sharing, by its part, helps to
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distribute the population over this region (i.e., the Pareto front of the
problem).

6.3.1 Advantages and disadvantages. Some researchers
have reported that NSGA has a lower overall performance than MOGA,
and it seems to be also more sensitive to the value of the sharing fac-
tor than MOGA [27, 162]. Other authors [180] report that the NSGA
performed quite well in terms of “coverage” of the Pareto front (i.e., it
spreads in a more uniform way the population over the Pareto front)
when applied to the 0/1 knapsack problem, but in these experiments no
comparisons with MOGA were provided.

In any case, Deb et al. [33] have recently proposed a new version of
this algorithm, called NSGA-II, which is more efficient (computationally
speaking), uses elitism and a crowded comparison operator that keeps di-
versity without specifying any additional parameters. The new approach
has not been extensively tested yet, but it certainly looks promising.

6.3.2 Some applications.
»  Computational fluid dynamics [98].

» Design of multilayer microwave absorbers [169], and thinned an-
tenna arrays with digital phase shifters [168].

= Robust trajectory tracking problems [8].

» Design of optimal earth orbiting satellite constellations [103].

6.4 NPGA

Horn and Nafpliotis [77, 78] proposed a tournament selection scheme
based on Pareto dominance. Two individuals randomly chosen are com-
pared against a subset from the entire population (typically, around 10%
of the population). When both competitors are either dominated or non-
dominated (i.e., there is a tie), the result of the tournament is decided
through fitness sharing [60].

The pseudocode for Pareto domination tournaments assuming that
all of the objectives are to be maximized is presented below [77]. S is an
array of the N individuals in the current population, random_pop_index
is an array holding the N indices of S, in a random order, and 4., is
the size of the comparison set.

function selection /* Returns an individual from the current population S */
begin
shuffle(random_pop_index); /* Re-randomize random index array */
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candidate_1 = random_pop_index|[1];
candidate_2 = random_pop_index|[2];
candidate_1_dominated = false;
candidate_2_dominated = false;
for comparison_set_index = 3 to t4y, + 3 do
/* Select tgo, individuals randomly from S */
begin
comparison_individual = random_pop_index[comparison_set_index];
if S[comparison_individual] dominates S[candidate_1]
then candidate_1_dominated = true;
if S[comparison_individual] dominates S[candidate_2]
then candidate_2_dominated = true;
end /* end for loop */
if ( candidate_1_dominated AND - candidate_2_dominated )
then return candidate_2;
else if ( - candidate_1_dominated AND candidate_2_dominated )
then return candidate_1;
else
do sharing;

end

Horn and Nafpliotis [77, 78] also arrived at a form of fitness sharing
in the objective domain, and suggested the use of a metric combining
both the objective and the decision variable domains, leading to what
they called equivalent class sharing.

6.4.1 Some applications.
»  Fault tolerant system design [139)].
= Planning of a traffic route [64].
»  Analysis of experimental spectra and monochromatic images [62].

m  Partitioning and allocation of objects in heterogeneous distributed
environments [17].

6.4.2 Advantages and disadvantages. Since this approach
does not apply Pareto selection to the entire population, but only to a
segment of it at each run, its main advantage is that it is very fast and
that it produces good nondominated fronts that can be kept for a large
number of generations [27, 162]. However, its main disadvantage is that
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besides requiring a sharing factor, this approach also requires a good
choice of the size of the set against which the two reference individuals
will be compared (i.e., the tournament size), in order to perform well.
This adds an extra parameter to the EA, which is also subject to certain
fine tuning. Also, the NPGA has normally been used with population
sizes considerably larger than usual with other approaches so that the
noise of the selection method can be tolerated by the emerging niches in
the population [53].

6.5 Non-generational approaches

Valenzuela-Rend6n and Uresti-Charre [161] proposed a GA that uses
non-generational selection and in which the fitness of an individual is cal-
culated incrementally. The idea comes from Learning Classifier Systems
(LCS),? in which it has been shown that a simple replacement of the
worst individual in the population followed by an update of fitnesses of
the rest of the population works better than a traditional (generational)
GA. In the context of multiobjective optimization, what the authors did
was to transform the problem with N objectives into another one with
only two objectives: the minimization of domination count (weighted
average of the number of individuals that have dominated this individ-
ual so far) and the minimization of the moving niche count (weighted
average of the number of individuals that lie close according to a cer-
tain sharing function). Then, this biobjective optimization problem is
transformed into a single objective optimization problem by performing
a linear combination of these two objectives.

More recently, Borges & Barbosa [9] proposed another non-generational
GA that reduces all the objectives of the problem to two measures related
to dominance and population distribution. Such measures, however, are
different in this case. The domination measure expresses the state of
domination of a certain individual with respect to the current popula-
tion. The neighbor density measure represents the size of the niche in
which a certain individual is in. Fitness is then computed using a combi-
nation of these two measures. This approach presents several differences
with respect to the previous one. For example, the dominance and neigh-
borhood measures in this case consider the entire population instead of
using a sampling of the population (as in the previous approach). Also,
the several parameters required by the previous approach become unnec-

5 A classifier system is a machine learning system that learns syntactically simple string rules
to guide its performance in an arbitrary environment [58].
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essary. This approach also compared well with respect to other EMOO
techniques in several test functions.

6.5.1 Advantages and disadvantages. The approach pro-
posed by Valenzuela-Rendén and Uresti-Charre (1997) is really a more
elaborate version of the weighted ranking techniques used by Bentley
and Wakefield [6] (particularly the technique that they called weighted
average ranking—WAR). The main advantage of this approach is that
it seems to provide good distributions in an efficient manner using well-
known techniques taken from LCS. However, its main disadvantage is
that it does not seem feasible to incorporate in this approach prefer-
ences of the objectives defined by the decision maker, which may be a
drawback in real-world applications. Also, it does not seem clear how to
define the six additional parameters (two more are fixed by the authors)
required by this algorithm, which apparently require an empirical fine
tuning as the other normal parameters of the GA (e.g., crossover and
mutation rates).

The approach proposed by Borges & Barbosa [9] eliminates most
of the drawbacks of Valenzuela-Rendén and Uresti-Charre’s technique.
However, the use of this approach has not been too widespread and we
are not aware of its performance with a larger amount of objectives and
in constrained search spaces.

6.5.2 Some applications.

= Structural optimization [10].

7. Recent approaches

Recently, several new EMOO approaches have been developed. We
consider important to discuss briefly at least two of them: PAES and
SPEA. Also, we will discuss some of our recent work regarding the use
of a micro-genetic algorithm for multiobjective optimization.

7.1 PAES

The Pareto Archived Evolution Strategy (PAES) was introduced by
Knowles & Corne [85]. The idea of the approach is very simple. A
(141) evolution strategy (i.e., a single parent that generates a single
offspring) is used in combination with a historical archive that records
all nondominated solutions previously found. This archive is used as a
reference set against which each mutated individual will be compared.
This is analogous to the tournament competitions held with the NPGA

[78].
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PAES also uses a novel approach to keep diversity, which consists of a
crowding procedure that divides objective space in a recursive manner.
Each solution is placed in a certain grid location based on the values
of its objectives (which are used as its “coordinates” or “geographical
location”). A map of this grid is maintained, indicating the number
of solutions that reside in each grid location. Since the procedure is
adaptive, no extra parameters are required (except for the number of
divisions of the objective space). Furthermore, the procedure has a
lower computational complexity than traditional niching methods [85].

Since PAES is a very recent approach, only a few applications of it
have been reported in the literature, all of them related to telecommu-
nications problems [84, 85, 86].

7.2 SPEA

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced
by Zitzler & Thiele [181]. This approach was conceived as a way of
integrating different EMOO techniques. SPEA uses an archive con-
taining nondominated solutions previously found (the so-called external
nondominated set). At each generation, nondominated individuals are
copied to the external nondominated set. For each individual in this
external set, a strength value is computed. This strength is similar to
the ranking value of MOGA, since it is proportional to the number of
solutions to which a certain individual dominates. The fitness of each
member of the current population is computed according to the strengths
of all external nondominated solutions that dominate it. Additionally,
a clustering technique called “average linkage method” [107] is used to
keep diversity.

SPEA has been used to explore trade-offs of software implementations
for programmable digital signal processors (PDSP) [179] and to solve 0/1
knapsack problems [181].

7.3 A micro-GA for multiobjective optimization

Currently, we have been experimenting with a a micro-GA (a GA with
small population and a reinitialization mechanism [88]) for multiobjec-
tive optimization [26]. This approach uses two memories: the population
memory, which is used as the source of diversity of the approach, and
the external memory, which is used to archive members of the Pareto
optimal set. Population memory is divided in two parts: a replaceable
and a non-replaceable portion (the percentages of each can be regulated
by the user).
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The way in which this technique works is illustrated in Figure 1.1d.
First, an initial random population is generated. This population feeds
the population memory, which is divided in two parts as indicated before.
The non-replaceable portion of the population memory will never change
during the entire run and is meant to provide the diversity required by
the algorithm. The initial population of the micro-GA at the beginning
of each of its cycles is taken (with a certain probability) from both
portions of the population memory as to allow a greater diversity.

During each cycle, the micro-GA undergoes conventional genetic op-
erators: tournament selection, two-point crossover, uniform mutation,
and elitism (regardless of the amount of nondominated vectors in the
population only one is arbitrarily selected at each generation and copied
intact to the following one).

This approach uses three types of elitism. The first is based on the
notion that if we store the nondominated vectors produced from each cy-
cle of the micro-GA, we will not lose any valuable information obtained
from the evolutionary process. The second is based on the idea that if we
replace the population memory by the nominal solutions (i.e., the best
solutions found when nominal convergence is reached), we will gradually
converge, since crossover and mutation will have a higher probability of
reaching the true Pareto front of the problem over time. This notion
was hinted at by Goldberg [58]. Nominal convergence, in this case, is
defined in terms of a certain (low) number of generations (typically, two
to five in our case). However, similarities among the strings (either at
the phenotypical or genotypical level) could also be used as a criterion
for convergence. The third type of elitism is applied at certain intervals
(defined by a parameter called “replacement cycle”). We take a certain
amount of points from all the regions of the Pareto front generated so
far and we use them to fill in the replaceable memory. Depending on
the size of the replaceable memory, we choose as many points from the
Pareto front as necessary to guarantee a uniform distribution. This pro-
cess intends to use the best solutions generated so far as the starting
point for the micro-GA, so that we can improve them (either by get-
ting closer to the true Pareto front or by getting a better distribution).
This also avoids that the content of the replaceable memory becomes
homogeneous.

To keep diversity in the Pareto front, the micro-GA uses an approach
similar to the adaptive grid proposed by Knowles & Corne [85]. The idea
is that once the archive that stores nondominated solutions has reached
its limit, the search space that this archive covers is divided, assigning
a set of coordinates to each solution. Then, each newly generated non-
dominated solution will be accepted only if the geographical location to
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where the individual belongs is less populated than the most crowded
location. Alternatively, the new nondominated solution could also be
accepted if the individual belongs to a location outside the previously
speficied boundaries. In other words, the less crowded regions are given
preference so that the spread of the individuals on the Pareto front can
be more uniform.

This approach allows the regulation of the amount of points from the
Pareto front that the user wishes to find through the size of the external
memory. Our preliminary results indicate that our micro-GA is able
to generate the Pareto front of difficult test functions (i.e., disconnected
and concave Pareto fronts) that have been previously adopted to evaluate
EMOO techniques. Furthermore, the approach seems to exhibit a lower
computational cost than the NSGA II and PAES while obtaining Pareto
fronts of similar quality. However, it also requires certain additional
parameters and the sensitivity of the approach to them is still subject
of ongoing research [26].

8. Diversity

Due to stochastic errors associated with its genetic operators, evolu-
tionary algorithms tend to converge to a single solution when used with
a finite population [34]. As long as our goal is to find the global optimum
(or at least a very good approximation of it), this behavior is accept-
able. However, there are certain applications in which we are interested
in finding not one, but several solutions. Multiobjective optimization is
certainly one of those applications, because we want to find the entire
Pareto front of a problem, and not only a single nondominated solution.
The question is then how to keep the EA from converging to a single
solution.

Early evolutionary computation researchers identified this convergence
phenomenon of EAs, called genetic drift [36], and found that it hap-
pens in Nature as well. They correctly stated that the key to solve this
problem is to find a way of preserving diversity in the population, and
several proposals, modelled after natural systems were made. Holland
[76] suggested the use of a “crowding” operator, which was intended
to identify situations in which more and more individuals dominate an
environmental niche, since in those cases the competition for limited re-
sources increases rapidly, which will result in lower life expectancies and
birth rate. DeJong [36] experimented with such a crowding operator,
which was implemented by having a newly formed offspring to replace
the existing individual more similar to itself. The similarity between
two individuals was measured in the genotype by counting the number
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of bits along each chromosome that were equal in the two individuals
being compared. DeJong used two parameters in his model: generation
gap (G) and crowding factor (CF) [34]. The first parameter indicates the
percentage of the population that is allowed to reproduce. The second
parameter specifies the number of individuals initially selected as can-
didates to be replaced by a particular offspring [36]. Therefore, CF=1
means that no crowding will take place, and as we increase the value of
CF, it becomes more likely that similar individuals replace one another
[36].

Goldberg and Richardson [60] used a different approach in which the
population was divided in different subpopulations according to the sim-
ilarity of the individuals in two possible solution spaces: the decoded pa-
rameter space (phenotype) and the gene space (genotype). They defined
a sharing function ¢(d;;) as follows [60]:

_ ﬂL)“ g
¢(dij) = ! (Ush . dij < Oshare (1.21q)
0, otherwise
where normally o = 1, d;; is a metric indicative of the distance be-
tween designs i and 7, and ogpqpe 1S the sharing parameter which controls
the extent of sharing allowed. The fitness of a design i is then modified
as:

fi
Ejjvi1 ¢(dij)

where M is the number of designs located in vicinity of the i-th design.

Deb and Goldberg [34] proposed a way of estimating the parame-
ter ospere in both phenotypical and genotypical space. In phenotypical
sharing, the distance between 2 individuals is measured in decoded pa-
rameter space, and can be calculated with a simple Euclidean distance in
a p-dimensional space, where p refers to the number of variables encoded
in the GA; the value of d;; can then be calculated as:

foi = (1.22r)

P
2
dij = E (37k,i — mk,j) (1.238)
k=1
where x1;,24,...,%p; and x1 4, T24,...,%p,; are the variables de-

coded from the EA.
To estimate the value of ogpere, Deb and Goldberg [34] proposed to
use the expression:
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where r is the volume of a p-dimensional hypersphere of radius ospare
and ¢ is the number of peaks that we want the EA to find.

In genotypical sharing, d;; is defined as the Hamming distance be-
tween the strings and ogpqre is the maximum number of different bits
allowed between the strings to form separate niches in the population.
The experiments performed by Deb and Goldberg [34] showed sharing
as a better way of keeping diversity than crowding, and indicated that
phenotypic sharing was better than genotypic sharing.

It should be added that much further work has been done regard-
ing keeping the diversity in the population. Deb and Goldberg [34]
suggested the use of restrictive mating with respect to the phenotypic
distance. The idea is to allow two individuals to reproduce only if they
are very similar (i.e., if their phenotypic distance is less than a factor
called ogpqre)- This is intended to produce distinct “species” (mating
groups) in the population [106]. Other researchers such as Eshelman
[47] and Eshelman & Schaffer [48] did exactly the opposite: they did not
allow mating between individuals that were too similar (they said to be
“preventing incest”).

Smith et al. (1993) [148] proposed an approach, modelled after the
immune system, that can maintain the diversity of the population with-
out the use of an explicit sharing function. This approach has been
actually used by Hajela et al. [66, 68] to handle constraints in structural
optimization problems.

Poloni and Pediroda [119] proposed an interesting alternative to pre-
serve diversity. They called their approach “local Pareto selection”, and
it basically consists of placing the population on a toroidal grid and
choosing the members of the local tournament by means of a random
walk in the neighborhoods of the given grid point.

Kita et al. [83] proposed the so called “Thermodynamical Genetic
Algorithm” (TDGA) to maintain diversity when using a Pareto ranking
technique for multiobjective optimization. The TDGA is inspired by the
principle of minimal free energy used in simulated annealing [82]. The
idea is to select the individuals for a new generation in such a way that
the free energy F' is minimized, and

(1.24t)

F=(E)—HT (1.25u)

where (E) is the mean energy of the system, H is the entropy and
T is the temperature. The diversity of the population is controlled by
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adjusting T' according to a certain schedule (as in simulated annealing).
Presumably, T is less sensitive to the population size and to the size of
the feasible region than traditional sharing functions [156].

Goldberg & Wang [61] proposed a coevolutionary adaptive niching
scheme inspired on the economic model of monopolistic competition.
The idea is to create two populations, one of businessmen and another
one of customers. The population of customers is in fact the population
of solutions to our problem (e.g., members of the Pareto optimal set) that
will try to maximize a certain set of criteria, whereas the businessmen
will try to locate themselves in such a way that their “profit” can be
maximized. Customers will create niches according to their own criteria
being optimized. Businessmen will then have to adapt to the current
fitness landscape so that they can serve as many customers as possible.
By enforcing a competition between these two populations, a uniform
spread of the population of customers is expected to emerge.

Tan et al. [157] proposed the use of a dynamic sharing distance.
The idea is to approximate the curvarture of the trade-off curve formed
by the nondominated solutions in objective space. The procedure then
attempts to perform a uniform distribution of points along the Pareto
front without requiring any prior parameters (the information required
to bias the search is obtained from the evolutionary process itself).

Deb et al. [33] proposed the use of a crowding distance measure which
represents the amount of solutions that lie within a certain neighborhood
(in objective space). This approach is more efficient (computationally
speaking) than traditional fitness sharing and does not require an extra
parameter (i.e., Tspare)-

Several other proposals exist (see [96] for a more detailed review of
approaches to keep diversity). In fact, some researchers tend to develop
their own variation of a certain technique or (in a few cases) to design
an entirely new approach.

9. Test Functions

A very important aspect of this research area that has been gener-
ally disregarded in the technical literature is the use of appropriate test
functions. In the early days of evolutionary multiobjective optimiza-
tion, many researchers tested their approaches only with the two classic
test functions provided by Schaffer in his seminal work on EMOO [138].
These functions are not only very simple (they have only two objec-
tives), but are also unconstrained and do not show any of the most
important aspects that would be interesting to analyze using an EMOO
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approach (e.g., ability of the algorithm to deal with concave or discon-
tinuous Pareto fronts).

In recent years, several researchers have addressed the design of stan-
dard benchmarks against which any EMOO algorithm can be validated.
Deb [31] has proposed ways to create controllable test problems for evo-
lutionary multiobjective optimization techniques using single-objective
optimization problems as a basis. Under this proposal, some problems
that have been of great interest in evolutionary computation could be
transformed into multiobjective optimization problems (e.g., deceptive
and massively multimodal problems). Recently, this study has been ex-
tended to constrained multiobjective optimization problems [35].

Van Veldhuizen and Lamont [164, 165] have also proposed some guide-
lines to design a test function suite for evolutionary multiobjective opti-
mization techniques (mainly combinatorial optimization problems). In
more recent work, Van Veldhuizen [162] has also summarized most of
the test functions that have been previously suggested in the specialized
literature.

Nevertheless, a more complete test suite is still required. Such a
suite should contain problems of different degrees of difficulty (both
constrained and unconstrained) and some real-world applications. If
possible, good approximations of the true Pareto front of each problem
should also be included. Furthermore, the test suite should be easily
accessible (i.e., through the Internet), so that anyone interested in using
it could use it. Such a test suite would become an important benchmark
to validate any new EMOO technique developed.

10. Metrics

Closely related to the previous issue is the importance of defining good
metrics to assess the effectiveness of an EMOO technique. The definition
of such metrics is not an easy task since it is difficult to compare two
vectors. Three are normally the issues to take into consideration to
design a good metric in this domain [178]:

1 Minimize the distance of the Pareto front produced by our algo-
rithm with respect to the true Pareto front (assuming we know its
location).

2 Maximize the spread of solutions found, so that we can have a
distribution of vectors as smooth and uniform as possible.

3 Maximize the amount of elements of the Pareto optimal set found.
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There are several interesting proposals in the specialized literature
that take into consideration at least one of these issues. The main pro-
posals will briefly be described next:

1 Enumeration: Van Veldhuizen & Lamont [164, 162] have pro-
posed the use of parallel processing techniques to enumerate the
entire intrinsic search space explored by an EA. This obviously al-
lows to obtain the Pareto front that is global with respect to the
granularity used. Knowing the global Pareto front of the problem,
we can compare results against it, and devise different metrics for
estimating how well our EA is performing.

This approach might work with relatively short binary strings (Van
Veldhuizen & Lamont [164] report success with strings < 26 bits),
but might not be suitable when using alphabets of higher cardi-
nality (e.g., real-coded GAs) or longer binary strings.

2 Spread: Srinivas and Deb [150] proposed to measure the “spread”
of points along the Pareto front using a statistical metric such as
the chi-square distribution. This metric also assumes knowledge
of the true Pareto front, and emphasizes the good distribution of
points (determined through a set of niches) rather than a direct
comparison between our Pareto front and the true Pareto front.

3 Attainment Surfaces: Fonseca and Fleming [54] proposed to
draw a boundary in objective space separating those points which
are dominated (by a certain set of points) from those which are
nondominated. Such boundary was called “attainment surface”.
This attainment surface could then be used to determine the qual-
ity and the distribution of the nondominated points found by an
EMOOQO approach. Multiple runs would then have to be performed
and standard non-parametric statistical procedures would have to
be applied to evaluate the quality of the nondominated vectors
found. Several EMOO approaches can then be compared using
this approach, but it is unclear how we can really assess how much
better a certain approach is with respect to others [178].

4 Generational Distance: Van Veldhuizen & Lamont [163] pro-
posed the use of a metric that estimates how far our current Pareto
front is from the true Pareto front of a problem. This metric uses
the Euclidean distance (measured in objective space) between each
vector and the nearest member of the true Pareto front. Similar
metrics have also been proposed by Schott [139], Rudolph [133],
and Zitzler et al. [178]. The problem with this metric is that only
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distance to the true Pareto front is considered and not uniform
spread along the Pareto front.

5 Coverage: Zitzler and Thiele [181] proposed two measures: the
first concerns the size of the objective value space area which is
covered by a set of nondominated solutions and the second com-
pares directly two sets of nondominated solutions, using as a metric
the fraction of the Pareto front covered by each of them. The first
metric combines the three issues previously mentioned (distance,
spread and amount of elements of the Pareto optimal set found)
into a single value. Therefore, sets differing in more than one cri-
terion could not be distinguished. The second metric is similar to
the attainment surfaces of Fonseca & Fleming and it also has the
same drawbacks.

In more recent work, Zitzler et al. [178] proposed several addi-
tional metrics for EMOO algorithms and also performed a detailed
comparative study using such metrics. More work in this area is,
however, still needed.

11. Applications

An analysis of the evolution of the EMOO literature reveals some
interesting facts. From the first EMOO approach published in 1985 [138]
up to the first survey of the area published in 1995 [53], the number of
published papers related to EMOO is relatively low. However, from
1995 to our days, the increase of EMOO-related papers is exponential.
Today, the EMOO repository registers over 850 papers, from which a
vast majority are applications. Given the large number of EMOO papers
that currently exist, we will not attempt to produce a detailed review of
applications in this section. Instead, we will delineate the most popular
application fields, indicating some of the specific areas within them in
which researchers have focused their efforts.

Current EMOQ applications can be roughly classified in three large
groups: engineering, industrial and scientific. Some specific areas within
each of these groups are indicated next.

We will start with the engineering applications, which are, by far,
the most popular in the literature. This should not be too surprising,
since engineering disciplines normally have problems with better un-
derstood mathematical models which facilitates the use of evolutionary
algorithms. A representative sample of engineering applications is the
following (aeronautical engineering seems to be the most popular sub-
discipline within this group):
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= Electrical engineering [159, 108, 122]
» Hydraulic engineering [141, 136, 174]
» Structural engineering [95, 24, 173]
»  Aeronautical engineering [72, 111, 167]
= Robotics [41, 57, 112]
= Control [40, 97, 42]
» Telecommunications [104, 86, 175]
= Civil engineering [49, 5, 81]
» Transport engineering [120, 2, 93]

Industrial applications occupy the second place in popularity in the
EMOO literature. Within this group, scheduling is the most popular
subdiscipline. A representative sample of industrial applications is the
following;:

» Design and manufacture [63, 127, 113]
»  Scheduling [155, 4, 14]

» Management [11, 87, 43]

Finally, we have a variety of scientific applications, from which the
most popular are (for obvious reasons) those related to computer science:

= Chemistry [170, 74, 90]

» Physics [115, 117, 62]

»  Medicine [176, 145, 92]

= Computer science [147, 13, 7]

The above distribution of applications indicates a strong interest for
developing real-world applications of EMOO algorithms (something not
surprising considering that most problems are of a multiobjective na-
ture). Furthermore, the previous sample of EMOO applications should
give a general idea of the application areas that have not been explored
yet, some of which are mentioned in the following section.
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12. Future Research Paths

Despite the noticeable increment in the amount of EMOQO research in
the last few years, there are still several open research areas. Some of
them will be described next.

s New Approaches: Several new techniques have been proposed in
the last few years. However, only a fistful of them have been
adopted by a significant portion of the scientific community. In
fact, some of these techniques widely used are already undergoing
updates. MOGA [52], for example, has been recently hybridized
with neural networks to improve its efficiency [42]. The NSGA
[150] has undergone significant changes in its algorithmic struc-
ture and its diversity preservation approach, in order to make it
more efficient [33]. But this may be only the beginning. We believe
that the next few years will witness the development of many other
new approaches (and updates of those currently in use). However,
the focus of these developments will be different. Right now, for
example, efficiency is the main issue. Researchers try to defeat
the inherent inefficiency associated with Pareto ranking and with
traditional niching in order to produce new approaches whose com-
putational cost is lower and therefore more suitable to be scaled to
larger (real-world) problems. The use of local search with archival
memories [85, 79, 26] and parallel selection strategies [104, 99, 73]
are two of the alternatives currently explored, but several others
are also possible. For example, little attention has been paid to
the data structures used to store nondominated vectors in the cur-
rent EMOO literature. In contrast, operational researchers have
used efficient data structures for discrete multiobjective optimiza-
tion (e.g., domination-free quad trees where a nondominated vector
can be retrieved from the tree very efficiently). Checking if a new
vector is dominated by the vectors in one of these trees can also
be done very efficiently [65].

We also believe that multiobjective extensions of other heuristics
will become popular in the next few years [102, 71, 28, 146, 126,
160, 16], as well as the hybridization of EAs with other heuristics
(particularly to deal with multiobjective combinatorial optimiza-
tion problems) [91, 38].

m New Applications: Despite the large amount of applications re-
ported in the literature, many other domains remain practically
unexplored. For example, the coordination of distributed agents is
a problem that frequently involves globally conflicting solutions to
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multiple (local) objectives and it therefore lends itself naturally to
a multiobjective optimization approach [118]. Other domain areas
such as shape design [151] and constraint-handling [20] seem also
very appropriate for testing new EMOO techniques. Additionally,
EMOO researchers have not paid enough attention to multiob-
jective combinatorial optimization problems, which are not only
challenging, but have also been studied in great depth [45]. Few
EMOO researchers have actually used well-studied combinatorial
optimization problems such as the 0/1 knapsack problem to val-
idate EMOO approaches [181, 79, 80]. Finally, more real-world
applications of EMOO techniques are also lacking in the current
literature.

Theory: There is a noticeable lack of research in theoretical issues
related to EMOOQO. Most of the current studies available deal with
convergence issues of EMOO algorithms [133, 134, 69, 70, 163], or
with ways to compute niche sizes [52, 78]. However, many other
important areas have not been studied. It would be very inter-
esting to study, for example, the structure of fitness landscapes
in MOPs [172, 1]. Such study could provide some insights re-
garding the sort of problems that are particularly difficult for EAs
and could also provide clues regarding the design of more power-
ful EMOO techniques. Furthermore, there is a need for detailed
studies of the different aspects involved in the parallelization of
EMOO techniques (e.g., load balancing, impact on Pareto conver-
gence, performance issues, etc.), including new algorithms that are
more suitable for parallelization than those currently in use.

Benchmarks: We have mentioned some of the current work regard-
ing the design of test functions that can be properly used to vali-
date EMOO approaches. Despite these recent efforts, more work
in this area is still necessary. Other domains such as constraint-
handling in the context of single-objective optimization could be
used to validate in a more quantitative way the performance of
EMOO approaches [20, 153]. A more systematic way of designing
test functions is also required, focusing on the aspects that are
more important to evaluate from an EMOO algorithm (e.g., its
ability to deal with concave, discontinuous and highly-constrained
search spaces). Closely related to this issue is the notorious lack of
comparative studies in the current literature. Also, it is necessary
to have more in-depth studies of metrics appropriate to evaluate
the performance of EMOO techniques. Some of the efforts in that



Evolutionary Algorithms and Multiple Objective Optimization 37

direction have also been discussed in this chapter, but more work
is still required.

13. Summary

This chapter has reviewed some of the most important research
done in evolutionary multiobjective optimization. We have dis-
cussed the main EMOO techniques currently in use, together with
their advantages and disadvantages and some of their applications.
Also, we have discussed the importance of diversity in the context
of multiobjective optimization, reviewing some of the most impor-
tant proposals found in the literature. Then, we have included
a brief discussion of test functions and metrics used to validate
EMOO techniques, addressing their importance to estimate (in a
quantitative way) how good a certain technique is with respect to
others. Finally, we have provided a representative sample of the
types of applications of EMOOQO algorithms reported in the litera-
ture.

In the last section of this chapter, we have discussed some potential
research areas that would be interesting to explore in more depth
in the next few years. Some of them are already being studied, but
others have not been addressed by any EMOOQO researchers. We ex-
pect that the general view of this relatively new field presented in
this chapter can be of some use to the newcomers who want to
become familiar with the research in this area in order to identify
some possible research topic. Additionally, we also expect mature
researchers and practitioners interested in evolutionary multiob-
jective optimization to find enough pointers as to allow them to
initiate work in this area. As we mentioned before, this research
discipline still has several open areas and possible application do-
mains for those who may be interested.
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