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Abstract

In this paper, we propose a multi-objective evolutionary algorithm (MOEA)

for structural optimization. The proposed approach emphasizes efficiency
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and has been found to be competitive with respect to other MOEAs in cur-

rent use. One example is used to illustrate the way in which the approach

works.

1 Introduction

Evolutionary algorithms have become an increasingly popular design and opti-

mization tool in the last few years, with a constantly growing development of new

algorithms and applications [1]. Despite this considerably large volume of re-

search, new areas remain to be explored with sufficient depth. One of them is the

use of evolutionary algorithms to solve multiobjective optimization problems. In

nature, most problems are multiobjective, but we normally tend to restate them as

single-objective optimization in problems by transforming all the objectives, but

one into constraints. However, such an assumption keeps us from producing de-

signs that represent better trade-offs among the original objectives of the problem

and therefore limit the quality of our designs.

Evolutionary algorithms seem also particularly desirable for solving multi-

objective optimization problems because they deal simultaneously with a set of

possible solutions (the so-called population) which allows us to find several mem-

bers of the Pareto optimal set in a single run of the algorithm, instead of having to
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perform a series of separate runs as in the case of the traditional mathematical pro-

gramming techniques. Additionally, evolutionary algorithms are less susceptible

to the shape or continuity of the Pareto front (e.g., they can easily deal with dis-

continuous and concave Pareto fronts), whereas these two issues are a real concern

for mathematical programming techniques [3].

In this paper, we propose an evolutionary multiobjective optimization algo-

rithm that has been found to be efficient and relatively easy to implement. We

also present one example to illustrate the way in which our approach works.

2 Basic Concepts

We want to solve multiobjective optimization problems (MOPs) of the form:

minimize
���

������	��
 � ������
��
�������
 ��� ����	��� (1)

subject to the � inequality constraints:

��� ����
����� ����� 
�!"
#������
 � (2)

and the $ equality constraints:
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� � ����
� � � � � � 
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����#��
 $ (3)

where � is the number of objective functions
� �������	� � . We call �� �

� � � 
 � � 
��#���#
 � � ��
 the vector of decision variables. We wish to determine from

among the set � of all numbers which satisfy (2) and (3) the particular set ��
 � 
 ��
� 
�������
 ��
�
which yields the optimum values of all the objective functions.

2.1 Pareto optimality

It is rarely the case that there is a single point that simultaneously optimizes all

the objective functions. Therefore, we normally look for “trade-offs”, rather than

single solutions when dealing with multiobjective optimization problems. The

notion of “optimality” is therefore, different in this case. The most commonly

adopted notion of optimality is called Pareto optimality. We say that a vector of

decision variables ���
�� � is Pareto optimal if there does not exist another ���� �
such that

� � ����
��� � � �����
�� for all ����� 
����#�#
 � and
��� ����
��� ��� � ���
�� for at least one � .

Unfortunately, the concept of Pareto optimality almost always gives not a sin-

gle solution, but rather a set of solutions called the Pareto optimal set. The vectors

���
 correspoding to the solutions included in the Pareto optimal set are called non-
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dominated. The plot of the objective functions whose nondominated vectors are

in the Pareto optimal set is called the Pareto front.

3 Description of our approach

The term micro-genetic algorithm (micro-GA) refers to a small-population genetic

algorithm with reinitialization where computational efficiency is emphasized. The

approach proposed in this paper is the first attempt to use a micro-GA for multiob-

jective optimization. The proposed technique incorporates concepts that represent

the state-of-the-art in evolutionary multiobjective optimization, namely elitism

(implemented using an external or secondary memory to retain nondominated

individuals found along the evolutionary process) and Pareto ranking (i.e., non-

dominated individuals are favored by the selection process). Despite the various

efforts to use evolutionary multiobjective optimization algorithms in structural op-

timization problems (see [3] for a survey), few of those efforts have used Pareto

ranking. Aggregating functions are still very popular in structural optimization

despite their well-known limitations (e.g., they cannot generate non-convex por-

tions of the Pareto front). The main emphasis of the work reported in this paper

is precisely to show what can be achieved by using a “true” evolutionary multi-
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objective optimization algorithm (i.e., an algorithm that uses Pareto ranking and

elitism).

The way in which our technique works is illustrated in Figure 1. First, a ran-

dom population is generated. This random population feeds the population mem-

ory, which is divided in two parts: a replaceable and a non-replaceable portion.

The non-replaceable portion of the population memory will never change during

the entire run and is meant to provide the required diversity for the algorithm. In

contrast, the replaceable portion will experience changes after each cycle of the

micro-GA. The population of the micro-GA at the beginning of each of its cycles

is taken (with a certain probability) from both portions of the population memory

so that we can have a mixture of randomly generated individuals (non-replaceable

portion) and evolved individuals (replaceable portion). During each cycle, the

micro-GA undergoes conventional genetic operators (binary representation is used

in our implementation): tournament selection, two-point crossover, uniform mu-

tation, and elitism (only one nondominated vector is arbitrarily selected at each

generation and copied intact to the following one). After the micro-GA finishes

one cycle, we choose two nondominated vectors from the final population and

compare them with the contents of the external memory (this memory is initially

empty). If either of them (or both) remains as nondominated after comparing it

6



against the vectors in this external memory, then they are included there (i.e., in

the external memory). This is our historical archive of nondominated vectors.

To keep diversity along the Pareto front, we use a modified version of the adap-

tive grid proposed by Knowles & Corne [5] (see Figure 2). The idea is that once

the archive that stores nondominated solutions has reached its limit, we divide

the objective search space that this archive covers, assigning a set of coordinates

to each solution. Then, each newly generated nondominated solution will be ac-

cepted only if the geographical location to where the individual belongs is less

populated than the most crowded location.

Note that although our approach requires several parameters that have to be

defined by the user, we have suggested in previous work default values that can

be adopted when nothing is known about the problem to be solved (see [2] for

details).

4 An Example

We have compared our micro-GA against some of the most competitive multi-

objective evolutionary algorithms in current use (i.e., the NSGA-II [4] and PAES

[5]), obtaining very good results (see [2] for details). Due to space limitations, in
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this paper we will only present one engineering design example, and results will

be compared with respect to the true Pareto front of the problem (generated by

enumeration). Obviously, in more complex problems the true Pareto front cannot

be found by enumeration. However, we adopted this methodology just to illustrate

that our technique is able to approximate the true Pareto front of a problem with a

very good accuracy in a short period of time.

4.1 Design of a welded beam

This problem was originally proposed by Reklaitis et al. [6] and was transformed

into a bi-objective problem by Wu [7]. A beam A is to be welded to a rigid

support member B. The welded beam is to consist of 1010 steel is to support a

force of 6000lb. The two design objectives are to simultaneously minimize the

beam cost and minimize the end deflection. There are constraints on shear stress,

normal stress and buckling load. The independent design variables in this case,

which are all continuous, are the dimensions and (see Figure 3). The length �

is assumed to be specified at 14 inches. The parameters used by our micro-GA

are the following: size of the external memory = 100, nominal convergence =

2 iterations, size of the population memory = 50, population size (of the micro-

GA) = 4, number of subdivisions of the adaptive grid = 25, crossover rate = 0.8,
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mutation rate = 1.0/ � ( � = length of the chromosome), replacement cycle = 50,

percentage of non-replaceable memory = 0.3, maximum number of generations =

3500. The true Pareto front of the problem (generated by enumeration) compared

to the solution generated by our micro-GA are shown in Figure 4. The average

running time of the micro-GA for this problem was of 1.475 seconds (on a PC

with an Athlon XP 1500+ processor, running at 1.3 GHz and 256Mb of RAM).

As can bee seen in Figure 4, our micro-GA produces a very good approximation

of the Pareto front of this problem.

5 Conclusions and Future Work

We have presented a multiobjective evolutionary algorithm that has been succes-

fully applied to solve structural optimization problems. The algorithm is concep-

tually simple and very efficient.1 The results obtained show that our algorithm

can produce reasonably good approximations of the Pareto front of a problem at

an affordable computational cost. Our main goal is to encourage engineers to

get involved in evolutionary multiobjective optimization and to use this or other

algorithms currently available in the specialized literature (see [3]). As part of

1A public-domain version of the algorithm is available at:
http://delta.cs.cinvestav.mx/ ccoello/EMOO/EMOOsoftware.html
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our future work, we plan to introduce on-line adaptation of the parameters of our

micro-GA so that no parameters fine-tuning is required.
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Figure 3: Welded beam used for the second example.
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