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This chapter provides the basic concepts necessary to understand the
rest of this book. The introductory material provided here includes some
basic mathematical definitions related to multi-objective optimization, a
brief description of the most representative multi-objective evolutionary
algorithms in current use and some of the most representative work on
performance measures used to validate them. In the final part of this
chapter, we provide a brief description of each of the chapters contained
within this volume.

1.1. Introduction

Early analogies between the mechanism of natural selection and a learning
(or optimization) process led to the development of the so-called “evo-
lutionary algorithms” (EAs)?, in which the main goal is to simulate the
evolutionary process in a computer. The use of EAs for optimization tasks
has become very popular in the last few years, spanning virtually every
application domain??:44:25:4,

From the several emergent research areas in which EAs have become in-
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creasingly popular, multi-objective optimization has had one of the fastest
growing in recent years'?. A multi-objective optimization problem (MOP)
differs from a single-objective optimization problem because it contains
several objectives that require optimization. When optimizing a single-
objective problem, the best single design solution is the goal. But for multi-
objective problems, with several (possibly conflicting) objectives, there is
usually no single optimal solution. Therefore, the decision maker is required
to select a solution from a finite set by making compromises. A suitable solu-
tion should provide for acceptable performance over all objectives*’. Many
fields continue to address complex real-world multi-objective problems us-
ing search techniques developed within computer engineering, computer
science, decision sciences, and operations research'®?. The potential of evo-
lutionary algorithms for solving multi-objective optimization problems was
hinted as early as the late 1960s by Rosenberg?’. However, the first ac-
tual implementation of a multi-objective evolutionary algorithm (MOEA)
was produced until the mid-1980s*®°. Since then, a considerable amount
of research has been done in this area, now known as evolutionary multi-
objective optimization (EMOQO)!2. The growing importance of this field is
reflected by a significant increment (mainly during the last ten years) of
technical papers in international conferences and peer-reviewed journals,
special sessions in international conferences and interest groups in the In-
ternetP.

The main motivation for using EAs to solve multi-objective optimization
problems is because EAs deal simultaneously with a set of possible solu-
tions (the so-called population) which allows us to find several members of
the Pareto optimal set in a single run of the algorithm, instead of having
to perform a series of separate runs as in the case of the traditional math-
ematical programming techniques*®. Additionally, EAs are less susceptible
to the shape or continuity of the Pareto front (e.g., they can easily deal
with discontinuous and concave Pareto fronts), whereas these two issues
are known problems with mathematical programming techniques?>!8:12:61,

This monograph attempts to present an extensive variety of high-
dimensional MOPs and their acceptable statistical solutions using MOEAs
as exercised by numerous researchers. The intent of our discussion then is
to promote a wider understanding and an ability to use MOEAs in order

PThe first author maintains an EMOO repository with over 1700 bibliograph-
ical entries at: http://delta.cs.cinvestav.mx/"ccoello/EMO0, with a mirror at
http://www.lania.mx/"ccoello/EMO0/
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to find “good” solutions in a wide spectrum of high-dimensional real-world
applications.

1.2. Basic concepts

In order to provide a common basis for understanding the rest of this book,
we provide next a set of basic definitions normally adopted both in single-
objective and in multi-objective optimization'?:

Definition 1 (Global Minimum): Given a function f: Q C S =R" —
R, Q # 0, for € Q the value f* 2 f(#*) > —oc is called a global minimum
if and only if

VEeQ: f(Z) < f(D). (1)

Then, &* is the global minimum solution(s), f is the objective function, and
the set Q is the feasible region (0 C S). The problem of determining the
global minimum solution(s) is called the global optimization problem.
O

Although single-objective optimization problems may have a unique op-
timal solution, MOPs (as a rule) present a possibly uncountable set of solu-
tions, which when evaluated, produce vectors whose components represent
trade-offs in objective space. A decision maker then implicitly chooses an
acceptable solution (or solutions) by selecting one or more of these vectors.
MOPs are mathematically defined as follows:

Definition 2 (General MOP): In general, an MOP minimizes F'(Z) =
(f1(®),..., fr(@)) subject to g;(Z) < 0, i = 1,...,m, £ € Q. An MOP
solution minimizes the components of a wvector F(Z¥) where ¥ is an n-

dimensional decision variable vector (¥ = x1,...,xy,) from some universe
Q. O
Definition 3 (Pareto Dominance): A vector @ = (uy,...,ug) is said

to dominate ¥ = (vy,...,v;) (denoted by @ < T) if and only if u is partially
less than v, i.e., Vi € {1,... k}, u; <v; ANJi € {1,... k}:u; <v;. O

Definition 4 (Pareto Optimality): A solution x € Q is said to be
Pareto optimal with respect to 0 if and only if there is no ' € Q for which
v=F(z') = (fi(z"),..., fe(z")) dominates @ = F(x) = (f1(z),..., fx(z)).
The phrase “Pareto optimal” is taken to mean with respect to the entire
decision variable space unless otherwise specified. O
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Definition 5 (Pareto Optimal Set): For a given MOP F(x), the Pareto
optimal set (P*) is defined as:

P i={reQ|-32' €0 F(2') < F(z)}. 2)
O

Definition 6 (Pareto Front): For a given MOP F(z) and Pareto op-
timal set P*, the Pareto front (PF*) is defined as:
PF :={d=F(z)=(fi(x),..., fe(x)) |z € P"}. (3)
O
The Pareto optimal solutions are ones within the search space whose
corresponding objective vector components cannot be improved simultane-
ously. These solutions are also known as non-inferior, admissible, or efficient
solutions, with the entire set represented by P* or Pj.,.. Their correspond-
ing vectors are known as nondominated; selecting a vector(s) from this
vector set (the Pareto Front set PF* or PFy.,.) implicitly indicates ac-
ceptable Pareto optimal solutions (genotypes). These are the set of all so-
lutions whose vectors are nondominated; these solutions are classified based
on their phenotypical expression. Their expression (the nondominated vec-
tors), when plotted in criterion (phenotype) space, is known as the Pareto
front®®58. With these basic MOP definitions, we are now ready to delve into
the structure of MOPs and the specifics of various MOEAs.

1.3. Basic operation of a MOEA

The objective of a MOEA is to converge to the true Pareto front of a prob-
lem which normally consists of a diverse set of points. MOPs (as a rule)
can present an uncountable set of solutions, which when evaluated produce
vectors whose components represent trade-offs in decision space. During
MOEA execution, a “local” set of Pareto optimal solutions (with respect
to the current MOEA generational population) is determined at each EA
generation and termed Ppyrrent (t), where ¢ represents the generation num-
ber. Many MOEA implementations also use a secondary population, storing
all/some Pareto optimal solutions found through the generations®®. This
secondary population is termed Pppoun (), also annotated with ¢ (repre-
senting completion of ¢ generations) to reflect possible changes in its mem-
bership during MOEA execution. Pppoun (0) is defined as §) (the empty set)
and Pgpown alone as the final, overall set of Pareto optimal solutions re-
turned by a MOEA. Of course, the true Pareto optimal solution set (termed
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Pirye) is not explicitly known for MOPs of any difficulty. Py, is defined by
the functions composing an MOP; it is fixed and does not change.

Povrrent(t), Penown, and P, are sets of MOEA genotypes where each
set’s phenotypes form a Pareto front. We term the associated Pareto front
for each of these solution sets as PFeyrrent(t), PFrnown, and PFy.,e. Thus,
when using a MOEA to solve MOPs, one implicitly assumes that one of
the following conditions holds: PFypnouwn € PFimye or that over some norm
(Euclidean, RMS, etc.), PFinown € [PFiue, PFiye + €], where € is a small
value.

Generally speaking, a MOEA is an extension on an EA in which two
main issues are considered:

e How to select individuals such that nondominated solutions are
preferred over those which are dominated.

e How to maintain diversity as to be able to maintain in the popu-
lation as many elements of the Pareto optimal set as possible.

Regarding selection, most current MOEAs use some form of Pareto
ranking. This approach was originally proposed by Goldberg?® and it sorts
the population of an EA based on Pareto dominance, such that all nondom-
inated individuals are assigned the same rank (or importance). The idea is
that all nondominated individuals get the same probability to reproduce
and that such probability is higher than the one corresponding to individ-
uals which are dominated. Although conceptually simple, several possible
ways exist to implement a MOEA using Pareto ranking!®:12.

The issue of how to maintain diversity in an EA as been addressed by
a extensive number of researchers®®27. The approaches proposed include

54,65 use of geographically-based
32,16

fitness sharing and niching!'?, clustering
schemes to distribute solutions?®6-14:13
others. Additionally, some researchers have also adopted mating restriction
schemes®!53:41 More recently, the use of relaxed forms of Pareto dominance
has been adopted as a mechanism to encourage more exploration and, there-

, and the use of entropy , among

fore, to provide more diversity. From these mechanisms, e-dominance has
become increasingly popular, not only because of its effectiveness, but also
because of its sound theoretical foundation?®.

In the last few years, the use of elitist schemes has also become com-
mon among MOEA researchers. Such schemes tend to consist of the use
of an external archive (normally called “secondary population”) that may
interact in different ways with the main (or “primary”) population of the
MOEA. Despite storing the nondominated solutions found along the evo-
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lutionary process, secondary populations have also been used to improve
the distribution of the solutions®® and to regulate the selection pressure
of a MOEA®®. Alternatively, a few algorithms use a plus (+) selection
mechanism by which parents are combined with their offspring in a single
population from which a subset of the “best” individuals is retained. The
most popular from these algorithms is the Nondominated Sorting Genetic
Algorithm-TT (NSGA-TT)?".

1.4. Classifying MOEAs

There are several possible ways to classify MOEAs. The following taxonomy
is perhaps the most simple and is based on the type of selection mechanism
adopted:

o Aggregating Functions
e Population-based Approaches
e Pareto-based Approaches

We will briefly discuss each of them in the following subsections.

1.4.1. Aggregating Functions

Perhaps the most straightforward approach to deal with multi-objective
problems is to combine them into a single scalar value (e.g., adding them
together). These techniques are normally known as “aggregating functions”,
because they combine (or “aggregate”) all the objectives of the problem into
a single one. An example of this approach is a fitness function in which we
aim to solve the following problem:

k
min Z w; fi (%) (4)
i=1

where w; > 0 are the weighting coefficients representing the relative
importance of the k objective functions of our problem. It is usually assumed
that

Aggregating functions may be linear (as the previous example) or
nonlinear?%-5%:26 " Aggregating functions have been largely underestimated
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by MOEA researchers mainly because of the well-known limitation of lin-
ear aggregating functions (i.e., they cannot generate non-convex portions
of the Pareto front regardless of the weight combination used'”). Note how-
ever that nonlinear aggregating functions do not necessarily present such
limitation'2, and they have been quite successful in multi-objective combi-

natorial optimization3°.

1.4.2. Population-based Approaches

In this type of approach, the population of an EA is used to diversify the
search, but the concept of Pareto dominance is not directly incorporated
into the selection process. The classical example of this sort of approach is
the Vector Evaluated Genetic Algorithm (VEGA), proposed by Schaffer®®.
VEGA basically consists of a simple genetic algorithm with a modified se-
lection mechanism. At each generation, a number of sub-populations are
generated by performing proportional selection according to each objective
function in turn. Thus, for a problem with & objectives, k sub-populations of
size M /k each are generated (assuming a total population size of M). These
sub-populations are then shuffled together to obtain a new population of
size M, on which the genetic algorithm applies the crossover and mutation
operators. VEGA has several problems, from which the most serious is that
its selection scheme is opposed to the concept of Pareto dominance. If, for
example, there is an individual that encodes a good compromise solution
for all the objectives (i.e., a Pareto optimal solution), but it is not the best
in any of them, it will be discarded. Schaffer suggested some heuristics to
deal with this problem. For example, to use a heuristic selection preference
approach for nondominated individuals in each generation, to protect indi-
viduals that encode Pareto optimal solutions but are not the best in any
single objective function. Also, crossbreeding among the “species” could
be encouraged by adding some mate selection heuristics instead of using
the random mate selection of the traditional genetic algorithm. Neverthe-
less, the fact that Pareto dominance is not directly incorporated into the
selection process of the algorithm remains as its main disadvantage.

One interesting aspect of VEGA is that despite its drawbacks it remains
in current use by some researchers mainly because it is appropriate for
problems in which we want the selection process to be biased and in which
we have to deal with a large number of objectives (e.g., when handling
constraints as objectives in single-objective optimization® or when solving
problems in which the objectives are conceptually identical'').
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1.4.3. Pareto-based Approaches

Under this category, we consider MOEAs that incorporate the concept of
Pareto optimality in their selection mechanism. A wide variety of Pareto-
based MOEAs have been proposed in the last few years and it is not the
intent of this section to provide a comprehensive survey of them since such
a review is available elsewhere!'2. In contrast, this section provides a brief
discussion of a relatively small set of Pareto-based MOEAs that are repre-
sentative of the research being conducted in this area.

Goldberg’s Pareto Ranking: Goldberg suggested moving the popu-
lation toward PF},... by using a selection mechanism that favors solutions
that are nondominated with respect to the current population®”. He also
suggested the use of fitness sharing and niching as a diversity maintenance

mechanism!?.

Multi-Objective Genetic Algorithm (MOGA): Fonseca and
Fleming?® proposed a ranking approach different from Goldberg’s scheme.
In this case, each individual in the population is ranked based on how
many other points dominate them. All the nondominated individuals in
the population are assigned the same rank and obtain the same fitness, so
that they all have the same probability of being selected. MOGA uses a
niche-formation method in order to diversify the population, and a rela-
tively simple methodology is proposed to compute the similarity threshold
(called ogpare) required to determine the radius of each niche.

The Nondominated Sorting Genetic Algorithm (NSGA): This
method®? is based on several layers of classifications of the individuals as
suggested by Goldberg?®. Before selection is performed, the population is
ranked on the basis of nondomination: all nondominated individuals are
classified into one category with a dummy fitness value, which is propor-
tional to the population size, to provide an equal reproductive potential
for these individuals. To maintain the diversity of the population, these
classified individuals are shared with their dummy fitness values. Then this
group of classified individuals is ignored and another layer of nondominated
individuals is considered. The process continues until all individuals in the
population are classified. Stochastic remainder proportionate selection is
adopted for this technique. Since individuals in the first front have the
maximum fitness value, they always get more copies than the rest of the
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population. An offshoot of this approach, the NSGA-IT?', uses elitism and
a crowded comparison operator that ranks the population based on both
Pareto dominance and region density. This crowded comparison operator
makes the NSGA-II considerably faster than its predecesor while producing
very good results.

Niched Pareto Genetic Algorithm (NPGA): This method em-
ploys an interesting form of tournament selection called Pareto domination
tournaments. Two members of the population are chosen at random and
they are each compared to a subset of the population. If one is nondomi-
nated and the other is not, then the nondominated one is selected. If there
is a tie (both are either dominated or nondominated), then fitness sharing
decides the tourney results>®.

Strength Pareto Evolutionary Algorithm (SPEA): This method
attempts to integrate different MOEAs%®. The algorithm uses a “strength”
value that is computed in a similar way to the MOGA ranking system.
Each member of the population is assigned a fitness value according to the
strengths of all nondominated solutions that dominate it. Diversity is main-
tained through the use of a clustering technique called the “average linkage
method.”

A revision of this method, called SPEA262, adjusts slightly the fitness
strategy and uses nearest neighbor techniques for clustering. In addition,
archiving mechanism enhancements allow for the preservation of boundary
solutions that are missed with SPEA.

Multi-Objective Messy Genetic Algorithm (MOMGA): This
method extends the mGA2° to solve multi-objective problems. The
MOMGA?S is an explicit building block GA that produces all building
blocks of a user specified size. The algorithm has three phases: Initializa-
tion, Primordial, and Juxtapositional. The MOMGA-II algorithm was
developed by Zydallis as an extension of the MOMGAS7. Tt was developed
in order to expand the state of the art for explicit building-block MOEAs.
While there has been a lot of research done for single objective explicit
building-block EAs, this was a first attempt at using the concept for MOPs.
Exponential growth of the population as the building block size grows may
be a disadvantage of this approach in some applications.
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Multi-Objective Hierarchical Bayesian Optimization Algo-
rithm (hBOA): This search technique is a conditional model builder. It
expands the idea of the compact genetic algorithm and the stud genetic
algorithm. The hBOA defines a Bayesian model that represents “small”
building blocks (BBs) reflecting genotypical epistasis using a hierarchical
Bayesian network®®. The mhBOA?! is in essence a linkage learning algo-
rithm that extends the hBOA and attempts to define tight and loose link-
ages to building blocks in the chromosome over a Pareto front. In particular,
this method uses a Bayesian network (a conditional probabilistic model) to
guide the search toward a solution. A disadvantage of this algorithm is the
time it takes to generate results for a relatively small number of linkages.

Pareto Archived Evolution Strategy (PAES): This method, for-

34 uses a (1+1) evolution strategy, where

mulated by Knowles and Corne
each parent generates one offspring through mutation. The method uses
an archive of nondominated solutions to compare with individuals in the
current population. For diversity, the algorithm generates a grid overlaid
on the search space and counts the number of solutions in each grid. A dis-

advantage of this method is its performance on disconected Pareto Fronts.

Micro-Genetic Algorithm for Multi-Objective Optimization:
The micro-genetic algorithm was introduced by Coello Coello and Toscano
Pulido'® and, by definition, has a small population requiring a reinitial-
ization technique. An initial random population flows into a population
memory which has two parts: a replaceable and a non-replaceable portion.
The non-replaceable part provides the population diversity. The replaceable
portion of course changes at the end of each generation where this popu-
lation undergoes crossover and mutation. Using various elitism selection
operators, the non-dominated individuals compose the replaceable portion.

General Multi-Objective Program (GENMOP): This method is
a parallel, real-valued MOEA initially used for bioremediation research?®?.
This method archives all previous population members and ranks them.
Archived individuals with the highest ranks are used as a mating pool to
mate with the current generation. The method uses equivalence class shar-
ing for niching to allow for diversity in the mating pool. A disadvantage
of this algorithm is the Pareto ranking of the archived individuals at each
generation.



August 10, 2004 8:14 Master File for Review Volume - 9in x 6in moea-appls

An Introduction to MOEAs and their Applications 11

Other researchers have combined elements of these MOEAs to develop
unique MOEASs for their specific problem domain with excellent results.

1.5. MOEA Performance Measures

The use of performance measures (or metrics) allows a researcher or compu-
tational scientist to assess (in a quantitative way) the performance of their
algorithms. The MOEA field is no different. MOEA performance measures
tend to focus on the phenotype or objective domain as to the accuracy of
the results. This is different to what most operations researchers do. They
tend to use metrics in the genotype domain. But since there is an explicit
mapping between the two, it doesn’t really matter in which domain you
define your metrics'?°7.

MOEA metrics can be used to measure final performance or track the
generational performance of the algorithm. This is important because it
allows the researcher to manage the algorithm convergence process during
execution. This section presents a variety of MOEA metrics, yet, no at-
tempt is made to be comprehensive. For a more detailed treatment of this
topic, the interested reader should consult additional references!?:69:66,

Error Ratio (ER): This metric reports the number of vectors in
PFinown that are not members of PFj,.,.. This metric requires that the
researcher knows PF},.,.. The mathematical representation of this metric
is shown in equation 6:

ERZ Y1 € (6)
n
where n is the number of vectors in PF},, 0w, and e; is a zero when the g
vector is an element of PFj,.,. or a 1if i is not an element. So when ER = 0,
the PFlnown 1S the same as PFj.,.; but when ER = 1, this indicates that
none of the points in PFjpown are in PFy .

Two Set Coverage (CS): This metric®® compares the coverage of
two competing sets and outputs the percentage of individuals in one set
dominated by the individuals of the other set. This metric does not require
that the researcher has knowledge of PF},,.. The equation for this metric
is shown in equation 7:

ala" € X" Va' € X' :a' = a"|
B | X"

CS(X', X" (7)
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where X', X" C X are two sets of phenotype decision vectors, and (X', X")
are mapped to the interval [0, 1]. This means that C'S = 1 when X' domi-
nates or equals X"

Generational Distance (GD): This metric was proposed by Van
Veldhuizen and Lamont®®. It reports how far, on average, PFppnown is from
PFjrye. This metric requires that the researcher knows P Fj,q.. It is math-
ematically defined in equation

o (L, d)”
N n

GD (8)
where n is the number of vectors in PFj,own, p = 2, and D; is the Eu-
clidean distance between each member and the closest member of PFj,.,.,
in the phenotype space. When GD = 0, PFjpown = PFirye-

Hyperarea and Ratio (H,HR): These metrics, introduced by Zitzler
& Thiele®, define the area of coverage that PFj,0wy, has with respect to
the objective space. This would equate to the summation of all the areas
of rectangles, bounded by the origin and (f (%), f2(¥)), for a two-objective
MOEA. Mathematically, this is described in equation 9:

HE {U ailv; € PF,mown} (9)

k3

where v; is a nondominated vector in PFj,0un and a; is the hyperarea cal-
culated between the origin and vector v;. But if PFj,.y 1S not convex, the
results can be misleading. It is also assumed in this model that the origin
is (0,0).

The hyperarea ratio metric definition can be seen in equation 10:

HRZ 7' (10)

where H;p is the PFinown hyperarea and Hs is the hyperarea of PFj. ..
This results in HR > 1 for minimization problems and HR < 1 for max-
imization problems. For either type of problem, PFj,own = PFirye when
HR = 1. This metric requires that the researcher knows P Fj,...
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Spacing (S): This metric was proposed by Schott®® and it measures the
distance variance of neighboring vectors in P Fj,0un- Equation 11 defines
this metric.

A 1 - )
= —d; 11
$= .| ;m di) (11)
and
di = min; (| fi(#) - @) + |3(F) - L)) (12)
where i, =1...,n, d is the mean of all d;, and n is the number of vectors

in PFlpown- When S = 0, all members are spaced evenly apart. This metric
does not require the researcher to know P Fj,. .

Overall Nondominated Vector Generation Ratio (ONVGR):
This metric measures the total number of nondominated vectors during
MOEA execution and divides it by the number of vectors found in PF},..
This metric is defined as shown in equation 13:

A PFfalse
ONVE = ———
PFtrue

When ONVGR = 1 this states only that the same number of points
have been found in both PFj,.,.. and PFj,own- It does not infer that
PFirye = PFrpown. This metric requires that the researcher knows P Fy,.ye.

(13)

Progress Measure RP: For single-objective EAs, Biick® defines a
metric that measures convergence velocity. This single-objective metric is
applied to multi-objective MOEAs®®, and is reflected in equation 14:

G
Gr
where (G; is the generational distance for the first generation and G is the
distance for generation 7'. Recall that generational distance was defined in
equation 8 and it measures the average distance from PF},.,e t0 PFipown-
This metric requires that the researcher knows PFjpe.

RPEn (14)
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Generational Nondominated Vector Generation (GNVG): This
is a simple metric, introduced by Van Veldhuizen® that lists the number
of nondominated vectors produced for each generation. This is defined in
equation 15

GNVG 2 |PFoyrent(t)] (15)

This metric does not require the researcher knows P Fj,...

Nondominated Vector Addition (NVA): This metric, introduced
by Van Veldhuizen®®, calculates the number of nondominated vectors gained
or lost from the previous PFj,oun generation. Equation 16 defines this
metric.

NV A é |PFknmun(t)‘ B |PFk”m‘m’(t o 1)| (16)

But this metric can be misleading when a new vector dominates two
or more vectors from the previous generation. In addition, this metric may
remain static over the course of several generations while new points are
added that dominate others from the previous generation. This metric does
not require the researcher knows P Fj,qe-

As to what metrics are appropriate, it of course depends upon the
MOEA application to the given MOP. Since in real-world applications, the
true Pareto Front is unknown, relative metrics are usually selected. It is also
worth observing that recent research has shed light on the limitations of
unary metrics (i.e., performance measures that assign each approximation
of the Pareto optimal set a number that reflects a certain quality aspect)%6.
Such study favors the use of binary metrics. As a consequence of this study,
it is expected that in the next few years MOEA researchers will eventually
adopt binary metrics on a regular basis, but today, the use of unary metrics
(such as error ratio and many of the others discussed in this section) is still
common.

1.6. Design of MOEA Experiments

To conduct a thorough evaluation of the performance of any MOEA, a
design of experiments or methodology should be common practice prior
to testing and evaluating the search results. The main goal of MOEA re-
search is the creation of an effective and efficient algorithm that renders
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good solutions. But to achieve that goal, several smaller goals need to be
addressed. These goals can be classified under two categories: effectiveness
goals and efficiency goals. Effectiveness goals should list the effectiveness
goals and the experimental design employed to validate that these goals
are met. Efficiency Goals should list the experimental design employed to
validate the efficiency goals. Also, a section on the Computing Environment
should indicate the computing environment for ease of repeatability. Find-
ing good solutions is the top priority for any MOEA application research.
Therefore one has to validate that their algorithm does indeed find good
solutions. Benchmarks can also used. In addition, comparison with current
MOP designs is appropriate for validation. Once a baseline set of runs are
completed and analyzed, algorithm parameters can be tweaked to possibly
improve effectiveness. The various application chapters in this text have at-
tempted to adhere to such an experimental design and follow the reporting
techniques of the next section.

1.6.1. Reporting MOEA Computational Results

Before the advent of the “Scientific Method”, many engineers and scientists
merely used the trial and error method in an attempt to gain insight into a
particular problem. The scientific method is the process by which engineers
and scientists, collectively and over time, endeavor to construct an accurate
(that is, reliable, consistent and non-arbitrary) representation of the world
or the problem which they study. Recognizing that personal and cultural
beliefs influence both our perception and our interpretation of natural phe-
nomena, we aim through the use of standard procedures and criteria to
minimize those influences when developing a conjecture or a theory or a
qualification. In summary, the scientific method attempts to minimize the
influence of bias or prejudice in the experimenter.

Each application chapter reporting computational experiments attempt
to follow the above objective since they use computer generated evidence to
compare or rank competing MOEA software techniques and Pareto Front
solutions. Chapter authors consider various classical references that can
direct computational experimentation®15:2?. According to Jackson, et al.2?,
the researcher should always keep in mind various elements identified as to
“What to Keep In Mind When Testing:”

e Are the results presented statistically sufficient to justify the claims
made?
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e Is there sufficient detail to reproduce the results?

e When should a statistically-based experiment be done usually
when a claim such as “this method is better (i.e. faster, more ac-
curate, more efficient, easier-to-use, etc.)”?

e Are the proper test problems being used?

e Are all possible performance measures (efficiency, robustness, reli-
ability, ease-of-use, etc.) addressed?

e Is enough information provided with respect to the architecture of
the hardware being used?

One should organize the design of experiments. For example, one should
discuss input and output data, the identification of all parameters available
during testing (for all tests the parameters are the same unless otherwise
indicated), a discussion of the random number generators and seeds and
other topics that are pertinent to the set of experiments. Following the
general information, each individual experiment is presented with the ob-
jective and methodology of the experiment identified. For each experiment
any parameter settings or environmental settings that differ from the gen-
eralized discussion are duly noted. Various statistical methods should be
addressed such as mean, average, max, min, student ¢-test, Kruskal-Wallis
test, and others as appropriate for the computational experiment.

1.7. Layout of the Book

After presenting some basic concepts, terminology and a brief discussion
on methodological aspects related to the use of MOEAs, we devote this
last section to discuss briefly each of the remaining chapters that are inte-
grated into this book or monograph. As indicated in the preface, these 29
chapters are divided in four application collections. The specific chapters
that compose each of these parts are summarized in the following subsec-
tions. Note that many authors use specific MOEAs that are summarized
in Section 1.4. Also, observe that some of the various metrics discussed
in Section 1.5 are employed in statistical MOEA evaluation employing the
experimental testing techniques of Section 1.6.

1.7.1. Part I: Engineering Applications

Considering that the use of MOEAs in engineering has been very extensive,
this first part is the largest in the book, as it includes chapters from 2 to
13.
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In Chapter 2, Ray adopts a scheme that handles objectives and con-
straints separately. Nondominance is used not only for selecting individuals
but also to handle constraints. The MOEA adopted in this work is the
NSGA®? with elitism. The approach is applied to some engineering design
problems (a welded beam, a bulk carrier and an airfoil).

Farina and Di Barba apply in Chapter 3 several approaches to the design
of industrial electromagnetic devices (the case studies consist of a magnetic
reactor and an inductor for transverse-flux heating of a metal strip). The
authors consider the use of the Non-dominated Sorting Evolutionary Strat-
egy Algorithm® (NSESA), a Pareto Gradient Based Algorithm (PGBA), a

Pareto Evolution Strategy Algorithm (PESTRA), and a Multi Directional
Evolution Strategy Algorithm (MDESTRA). At the end, they decide to
adopt hybrid approaches in which NSESA is combined with both a deter-
ministic and a local-global strategy.

Reed & Devireddy use in Chapter 4 the NSGA-II?! enhanced with the
e-dominance archiving and automatic parameterization techniques®® to op-
timize groundwater monitoring networks. The authors indicate that the use
of e-dominance not only eliminated the empirical fine-tuning of parameters
of their MOEA | but also reduced the computational demands by more than
70% with respect to some of their previous work.

In Chapter 5, Herndndez Luna and Coello Coello use a particle swarm
optimizer with a population-based selection scheme (similar to VEGA?)
to design combinational logic circuits. One of the relevant aspects of this
work is that the problem to be solved is actually mono-objective. However,
the use of a multi-objective selection scheme improves both the robustness
and the quality of the results obtained.

Furukawa et al. present in Chapter 6 the application of two MOEAS to
the sensor and vehicle parameter determination for successful autonomous
vehicles navigation. The MOEAs adopted are: (1) the Multi-objective
Continuous Evolutionary Algorithm (MCEA) and (2) the Multi-Objective
Gradient-based Method (MOGM). Due to space limitations, only the re-
sults produced by the MCEA are presented in the chapter, although the
authors indicate that both MOEAs reach the same final results. It is worth
noticing the use of the so-called Center-of-Gravity Method (CoGM) to se-
lect a single solution from the Pareto optimal set produced by the MCEA.

In Chapter 7, Tan and Li use a MOEA to design optimal unified linear
time-invariant control (ULTIC) systems. The proposal consists of a method-

¢This algorithm is a variation of the NSGA®53,
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ology for performance-prioritized computer aided control system design in
which a MOEA toolbox previously designed by the authors is used as an
optimization engine. An interesting aspect of this work is that the user is
allowed to set his/her goals on-line (without having to restart the entire de-
sign cycle) and can visualize (in real-time) the effect of such goal setting on
the results. The proposed methodology is applied to a non-minimal phase
plant control system.

Gaspar-Cunha and Covas in Chapter 8 apply a MOEA to solve polymer
extrusion problems. The authors optimize the performance of both single-
screw and co-rotating twin-screw extruders. The MOEA adopted is called
Reduced Pareto Set Genetic Algorithm with Elitism (RPSGAe) and was
previously proposed by the same authors?*. An interesting aspect of this
work is that the RPSGAe uses a clustering technique not to maintain di-
versity as is normally done, but to reduce the number of Pareto optimal
solutions. The problems solved are formulated as multi-objective traveling
salesperson problems (i.e., they are actually dealing with multi-objective
combinatorial optimization problems).

In Chapter 9, Hernandez Aguirre and Botello Rionda propose an exten-
sion of the Pareto Archived Evolution Strategy (PAES)?® which is able to
deal with both single-objective and multi-objective optimization problems.
The proposed approach is called Inverted and Shrinkable Pareto Archived
Evolutionary Strategy (ISPAES), and is used to solve several truss opti-
mization problems (a common problem in structural and mechanical en-
gineering). The main differences between ISPAES and PAES are in the
selection mechanism and the implementation of the adaptive grid. The test
problems adopted include both single and multiple objective problems as
well as discrete and continuous search spaces.

Balling presents in Chapter 10 an interesting application of MOEAs
to city and regional planning. The MOEA adopted uses the maximin fit-
ness function previously proposed by the author®. The approach has been
applied to plan the Wasatch Front Metropolitan Region in Utah (in the
USA). An interesting aspect of this work is the discussion presented by the
author regarding the reluctance from the authorities to actually implement
some of the plans produced by the MOEA. The author attributes this re-
luctance both to the high number of (nondominated) plans produced (no

8 was adopted by Balling) and to

scheme to incorporate user’s preferences
the psychological impact that this sort of (radically new) approach has on
people.

Jozefowiez et al. present in Chapter 11 a MOEA to solve the bi-objective
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covering tour problem. The MOEA adopted is the NSGA-II?!, and the re-
sults are compared with respect to an exact algorithm based on a branch-
and-bound approach which can be applied only to relatively small instances
of the problem. The chapter also presents a thorough review of multi-
objective routing problems reported in the specialized literature.

Chapter 12, by Kiinzli et al., presents a benchmark problem in computer
engineering (the design space exploration of packet processor architectures).
Besides describing several details related to the proposed benchmark prob-
lem, the authors also refer to the text-based interface developed by them
which is platform and programming language independent. This aims to
facilitate the use of different MOEAs (across different platforms) to solve
such problem.

In the last chapter of the first part (Chapter 13), Obayashi and Sasaki
present the use of a MOEA for aerodynamic design of supersonic wings.
The MOEA adopted is the Adaptive Range Multiobjective Genetic Algo-
rithm (ARMOGA), which is based on an approach originally developed
by Arakawa and Hagiwara?. The multi-objective extensions are based on
MOGA?Z, An interesting aspect of this work is the use of Self-Organizing
Maps (SOMs) both to visualize trade-offs among the objectives of the prob-
lem and to perform some sort of data mining of the designs produced.

1.7.2. Part II: Scientific Applications

The second part of the book, which focuses on scientific applications of
MOEAs, includes chapters from 14 to 19.

In Chapter 14, Ray presents the use of a MOEA to optimize gas-solid
separation devices used for particulate removal from air (namely, the design
of cyclone separators and venturi scrubbers). The author used the NSGA®?,
mainly because of her previous experience with such algorithm.

Mancini et al. present in Chapter 15 the use of a MOEA for an appli-
cation in Physics: the spectroscopic data analysis of inertial confinement
fusion implosion cores based on the self-consistent analysis of simultaneous
narrow-band X-ray images and X-ray line spectra. The MOEA adopted is
the Niched-Pareto Genetic Algorithm (NPGA)?8.

Chapter 16, by Lahanas, presents a survey of the use of MOEAs in
medicine. The types of problems considered include medical image process-
ing, computer-aided diagnosis, treatment planning, and data mining.

In Chapter 17, Kumar describes the use of a MOEA in the solution of
high-dimensional and complex domains of machine learning. The MOEA
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is used as a pre-processor for partitioning these complex learning tasks
into simpler domains that can then be solved using traditional machine
learning approaches. The MOEA adopted is the Pareto Converging Genetic
Algorithm (PCGA), which was proposed by the author37.

Romero Zaliz et al. describe in Chapter 18 an approach for identify-
ing interesting qualitative features in biological sequences. The approach is
called Generalized Analysis of Promoters (GAP) and is based on the use
of generalized clustering techniques where the features being sought corre-
spond to the solutions of a multiobjective optimization problem. A MOEA
is then used to identify multiple promoters occurrences within genomic reg-
ulatory regions. The MOEA adopted is a Multi-Objective Scatter Search
(MOSS) algorithm.

Lamont et al. present in Chapter 19 an application of the multi-objective
messy genetic algorithm-1T (MOMGA-IT) to two NP-complete problems: the
multi-objective Quadratic Assignment Problem (mQAP) and the Modified
Multi-objective Knapsack Problem (MMOKP).

1.7.3. Part III: Industrial Applications

The third part of the book, which focuses on real-world industrial applica-
tions of MOEASs, includes chapters from 20 to 24.

In Chapter 20, Anderson uses a MOEA to design fluid power systems.
The MOEA adopted is called multi-objective struggle genetic algorithm
(MOSGA) and was proposed by the same author!. The approach is further
extended so that it can deal with mixed variable design problems (i.e., with
both continuous and discrete variables).

Mansouri presents in Chapter 21 the application of a MOEA in cellular
manufacturing systems. The problem tackled consists of deciding on which
parts to subcontract and which machines to duplicate in a cellular man-
ufacturing system wherein some exceptional elements exist. The MOEA
adopted is the NSGA®?.

Chapter 22, by Ishibuchi and Shibata, presents the solution of flowshop
scheduling problems (both single- and multi-objective) using genetic algo-
rithms. The multi-objective instances are solved using the NSGA-II2!. The
authors recommend the use of mating restrictions and a hybridization with
local search in order to improve the performance of the MOEA adopted.

Gandibleux et al. deal in Chapter 23 with multi-objective combinatorial
optimization problems. The approach adopted in this case is peculiar, since
it is a population-based heuristic that uses three operators: crossover, path-
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relinking and a local search on elite solutions. However, this approach differs
from a MOEA in two main aspects: (1) it does not, use Pareto ranking, and
(2) it performs no direction searches to drive the approximation process.
The authors apply their approach to the bi-objective assignment problem
and to the bi-objective knapsack problem.

In Chapter 24, Watanabe and Hiroyasu apply a MOEA to the solu-
tion of the multi-objective rectangular packing problem, which is a discrete
combinatorial optimization problem that arises in many applications (e.g.,
truck packing and floor planning, among others). The MOEA adopted is the
Neighborhood Cultivation Genetic Algorithm (NCGA) which was proposed
by the authors®s.

1.7.4. Part IV: Miscellaneous Applications

The fourth and last part of the book, deals with miscellaneous applications
of MOEASs in a variety of domains, and includes chapters from 25 to 30.

Pappa et al. present in Chapter 25 the use of MOEASs to select attributes
in data mining. The authors use two approaches that were previously pro-
posed by them: (1) an elitist multi-objective genetic algorithm (which uses
Pareto dominance) in which all the nondominated solutions found pass un-
altered to the next generation?? and (2) a multi-objective forward sequential
selection method*3.

In Chapter 26, Schlottmann and Seese present a fairly detailed survey
of the use of MOEAs in portfolio management problems. The authors em-
phasize the importance of the incorporation of problem-specific knowledge
into a MOEA as to improve its performance in such financial applications.
The authors also identify some other potential applications of MOEASs in
finance.

Chapter 27, by Jin et al., describes the application of a MOEA to the
evolution of both the weights and the structure of neural networks used for
regression and prediction. The MOEA adopted is the NSGA-II?!, expanded
with Lamarckian inheritance. The authors report success of the MOEA
to generate diverse neural network ensemble members, which significantly
improves the regression accuracy, particularly in cases in which a single
network is not able to predict reliably.

In Chapter 28, Fieldsend and Singh use a MOEA to train neural net-
works used for time series forecasting. The MOEA adopted is a variation
of PAES?S. The most interesting aspect of this work is that the use of a
multi-objective approach allows the user to get a good representation of the
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complexity/accuracy trade-off of the problem being solved. This may lead
to the selection of neural networks with very low complexity.

Chapter 29, by Ducheyne et al., presents the application of MOEAs
in forest management problems (particularly forest scheduling problems).
Two MOEAs are studied by the authors: MOGA?? and the NSGA-II?!. An
interesting aspect of this work is the use of fitness inheritance®® to speed
up the optimization process.

Finally, in Chapter 30, Landa Silva and Burke propose the use of di-
versity measures to guide a MOEA’s search. Such an approach is used to
solve space allocation problems arising in academic institutions. The MOEA
adopted is called Population-based Hybrid Annealing Algorithm and was
previously proposed by the same authors. In this approach, each individual
is evolved by means of local search and a specialized mutation operator.
This MOEA combines concepts of simulated annealing, tabu search, evolu-
tionary algorithms and hillclimbing.

1.8. General Comments

As has been seen in the previous presentation, this book includes a wide
variety of applications of MOEAs. Nevertheless, if we consider the impor-
tant growth of the number of publications related to MOEAs in the last
few years, it is likely that we will see more novel applications in the near
future. As a matter of fact, there are still several areas in which applica-
tions of MOEAs are rare (e.g., computer vision, operating systems, compiler
design, computer architecture, and business activities among others).

The application of MOEAS to increasingly challenging problems is trig-
gering more research on MOEA algorithmic design as well as influencing
developmental trends. For example, the hybridization of MOEAs with other
mechanisms (e.g., local search) may become standard practice in complex
MOP application domains.

This volume constitutes an initial attempt to collect a representative
sample of contemporary MOEA applications, thus providing insight to their
efficient and effective use. Of course, it is expected that more and more spe-
cialized monographs and textbooks will include the use of MOEAs in di-
verse problem domains because of the expanding understanding and utility
of MOEA concepts in solving complex high-dimensional MOPs.
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