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Abstract

This paper provides a short review of some of the main topicghich the
current research in evolutionary multi-objective optiatipn is being focused. The
topics discussed include new algorithms, efficiency, edieforms of dominance,
scalability, and alternative metaheuristics. This disgurs motivates some further
topics which, from the author’s perspective, constitutedypotential areas for
future research, namely, constraint-handling techniguesrporation of user's
preferences and parameter control. This information isetqul to be useful for
those interested in pursuing research in this area.

1 Introduction

Evolutionary algorithms (EAs) are a population-based imetaistic inspired on the
“survival of the fittest” principle, whose use has becomeeéasingly popular over
the last three decades, mainly for optimization and clasdifin tasks [64, 48]. This
popularity has given rise to a series of subdisciplinesiwithe so-called evolutionary
computation area. One of the subdisciplines that has expegt one of the fastest
growth is evolutionary multi-objective optimization (ENJQwhich refers to the use of
EAs for solving multi-objective problems (MOPs). A MOP hagtor more (usually
conflicting) objective functions that we wish to optimizensiltaneously. Because of

*The author is also associated to the UMI-LAFMIA 3175 CNRS.



their nature, MOPs normally have several solutions rathan ta single orfe(like in
global optimization). Thus, the use of the population todiaet the search presents the
advantage of allowing us to generate several solutions afengle run. Additionally,
because of their heuristic nature, EAs are less suscepttiiiee specific features of
a MOP (e.g., continuity) than mathematical programmindpmégues, and therefore
their increasing popularity within different domains, migi during the last 15 years
[21, 31, 17, 112].

The firstimplementation of a multi-objective evolutionatgorithm (MOEA) dates
back to the mid-1980s[136, 137]. Since then, many other M®E#ve been proposed,
and an important number of publications have been releaRehders interested in the
historical development of this field, should refer to [19].

After 23 years of existence, EMO is now experiencing growpagns. With no
doubt, this is a very popular discipline, but at the same tiingeems less friendly to
newcomers. Producing original contributions has appérdr@come harder (e.g., at
the level of a PhD thesis), and a lot of “work by analogy” is noemmonly seen in a
number of publications. This has led to some EMO researdbemise an important
guestion: will we continue to do research in EMO during the next few yeas?
This is precisely the focus of this paper, in which we willdjly discuss some of the
topics that are currently the main focus of research in EM®thaat, from the author’s
perspective, represent promising research venues foeiws yo come. Thus, the main
hypothesis of this paper is that there still exist enougkaesh topics for both novice
and advanced researchers, if one looks carefully withir{logr overwhelming) EMO
literature. The main goal of this paper is precisely to pg@some hints to get relatively
quickly to these promising research topics.

The remainder of this paper is organized as follows. SeQipnesents some ba-
sic concepts on multi-objective optimization, which areypded in order to make this
paper self-contained. The topics that, from the authorisppective, are more repre-
sentative of the current research trends in the area aresisd in Section 3. Section 4
presents some additional topics that we believe that aréhwexploring in the future.
Finally, Section 5 presents our conclusions.

2 Basic Concepts

We are interested in solving problems of the §pe

—

minimize f(Z) := [f1(2), f2(Z), .- ., [1(Z)] (1)

subject to:

1A MOP will have a single solution only if the objectives have eonflict among them, in which case
there is no need to use any sort of special approach, sinsetjuential optimization of each of the objectives,
considered separately, will lead us to this single solution

2The author maintains the EMO repository, which currentiyitains over 3400 bibliographical refer-
ences, plus public-domain software, and a small databag&M@ researchers. The EMO repository is
located athttp://delta.cs.cinvestav.mx/"ccoello/EMOO

Swithout loss of generality, we will assume only minimizatiproblems.
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wherer = [xl,xg,...,l‘n]T is the vector of decision variableg; : R" — R,
i =1,..., k are the objective functions anggl, b, : R" - R,i=1,...,m,j=1,...,p
are the constraint functions of the problem.

Now, we will provide some definitions that are required inertb make this paper
more understandable.
Definition 1. Given two vectorsi, 7 € RF, we say thati < @ if u; < v; for
1=1,...,k,and thati < 7if & < v andd # .

Definition 2. Given two vectorsi, 7 € R*, we say thati dominates (denoted by
u < 0) iff 4 < .

Definition 3. We say that a vector of decision variablése F (F is the feasible re-
gion) isPareto optimumif there does not exist anothgre F such thatf (Z) < f(z*).

Definition 4. ThePareto Optimal SetP* is defined by:

P* = {Z € F|Zis Pareto optimurp

The vectorse™ corresponding to the solutions included in the Pareto cgdtgat are
callednondominated

Definition 5. ThePareto Front PF* is defined by:

—

PF*={f(Z) e R"|Z e P*}

We thus wish to determine the Pareto optimal set from theFsef all the decision
variable vectors that satisfy (2) and (3).

3 Some of the Current Research Trends

Based on an analysis of a sample of the specialized litevatue have selected the
following list of topics, which seem to be representativeted main current research
trends in EMO:

New algorithms

Efficiency

1.
2.
3. Relaxed forms of dominance
4. Scalability

5.

Alternative metaheuristics

Each of these topics will be briefly discussed next.



3.1 New Algorithms

In the early days of EMO, the design of new algorithms was ddpit. However, from
the many MOEASs that have been proposed in the specializgdtitre since Schaffer's
Vector Evaluated Genetic Algorith(!EGA) [137] (published in 1985), few have be-
come widely used in the EMO community. The most popular ritséIMOEAs were:
Multi-Objective Genetic Algorithm (MOGA) [58], Niched-Peto Genetic Algorithm
(NPGA) [73], and Nondominated Sorting Genetic AlgorithmrS§GA) [142].

Although some notions of elitism had already been contetaglay some EMO
researchers since the mid-1990s (see for example [75,,1i2@&xs until the publica-
tion of the Strength Pareto Evolutionary Algorithm (SPEAB®] in the late 1990s,
that elitist MOEAs became common. Although several elMEAs exist, few have
become widely used (see for example [92, 167]), and from ttwera has become ex-
tremely popular: the Nondominated Sorting Genetic Aldgetlt(NSGA-II) [36]. In
fact, the popularity of this algorithm has created a newdresithin EMO to propose
mechanisms that improve (e.g., for a certain class of prob)dts performance (see
for example [6, 82, 120, 94]).

It is important to note that MOEAs normally modify EAs in twoaws: (1) they
incorporate a selection mechanism based on Pareto opmetid (2) they adopt a
diversity preservation mechanism that avoids that the@pibpulation converges to
a single solution (as would normally occur because of thehststic nature of EAS).
Diversity preservation mechanisms have also evolved tneyeéars, from naive fithess
sharing schemes in which an individual is penalized forisigathe same “niche” with
other individuals from the population (a niche is definedh@itin decision or in ob-
jective function space by adopting a certain niche radiomfeach individual, whose
value is normally defined by the user) [65, 33]. Over the yeatiser (more elabo-
rate) schemes have been proposed: clustering [169], thatieelgrid [92, 89], the
crowded-comparison operator [36], and entropy [27, 52, &8Jong others.

In spite of the previously indicated trends within this grtb& design of algorithms
is still an active area of research, although it is now muds leopular than before.
One of the current trends within this area is to adopt a selechechanism based on
some performance measure. For example, the IndicatordEas®utionary Algorithm
(IBEA) [166] is intended to be adapted to the user’s prefeesrby formalizing such
preferences in terms of continuous generalizations of tireidance relation. This is
a nice idea, since it avoids the need to provide an explieg@rdity preservation mech-
anism. In order to achieve this, the optimization goal of BE defined in terms
of a binary performance measure (e.g., the additiuedicator [171]). Recently, the
same authors introduced the Set Preference Algorithm fdtidjective Optimization
(SPAM) [170], which consists of a hillclimber based on thensaidea of IBEA, but
which turns out to be more general, since it is not restritted single binary perfor-
mance measure (several of such performance measures caedéisequence, and
any type of set preference relation is acceptable). Withginalar line of thought,

4Elitism is an operator that retains the best solution froengbpulation of an EA and passes it intact to the
next generation. In EMO, elitism, however, involves ALL thendominated solutions from the population,
and is normally implemented using an external archive thatgisolutions, such that only solutions that are
nondominated with respect to all the previously evaluategupations are retained.



but without explicitly considering the incorporation ofars preferences, the S Metric
Selection Evolutionary Multiobjective Optimization Algthm (SMS-EMOA) [49, 9]
adopts a selection operator based on the hypervolume nee@dsio known as S met-
ric [168, 165]). There have also been multi-objective egiens of successful single-
objective evolutionary optimizer, such as CMA-ES [76, &vhich is invariant to rota-
tion in its two versions (single- and multi-objective).

Obviously, other types of MOEAs may also be developed ireshifor example,
on concepts from mathematical programming (see for exathgld&ash Genetic Al-
gorithm [140] and the-constraint Cultural Differential Evolution [98]), or orxist-
ing (single-objective) EAs (see for example the Multioltiye Cellular Genetic Al-
gorithm [117, 118] and the micro Genetic Algorithm for Malbjective Optimization
[23, 150]). Clearly, much remains to be done regarding dtlgor design, and a new
generation of MOEASs is expected to arise in the future.

3.2 Efficiency

Several EMO researchers have addressed efficiency fsgessfor example [73, 92,
36, 79]). If focused on algorithm design, one gets the ingicesthat little can be done
to improve efficiency, since the computational efficiencyibds of nondominance
checking have been known for over thirty years [96]. Newadhs, this is normally
assumed by researchers, but few detailed studies of MOHgsithmic complexity
and of the algorithms used to extract nondominated solsititom a set are currently
available in the specialized literature (see for examp8a[161]).

Interestingly, most EMO researchers have focused on arrapihaeasier way of
increasing efficiency: the reduction of the number of indixals that are used for de-
termining nondominance. Perhaps the first attempt to retihéceumber of individuals
involved in the Pareto ranking process of a MOEA is the s@aanechanism of the
Niched-Pareto Genetic Algorithm (NPGA) [73]. The NPGA ubé@zary tournament
selection. However, instead of comparing fithess directiydeen two individuals (ran-
domly chosen from the population), in this case a small samfthe population is ran-
domly chosen (e.g., 10% of the total population size). Tkanh of the two individuals
participating in the tournament are compared with respettie sample. If one of them
turns out to be nondominated (with respect to the sample}f@dther is dominated,
then the nondominated individual wins the tournament arsgtiscted as a parent. In
any other case (i.e., both individuals are nondominateatr are dominated), the in-
dividual with less neighbors in its niche wins. Since the pemrandomly chosen is
smaller than the total population size, the NPGA never ramkigsidividual with respect
to the entire population. This results in a faster algoritimother remarkable work in
the same direction of the NPGA is the improved ranking procegroposed by Jensen
[79], which significantly reduces the computational comjileof the NSGA-II [36].
However, this approach is based on an algorithm that, asateti before, is sensitive
to the number of objectives [79]. There have also been padp@swhich a very small
population size is adopted, based on the concept of the rgenetic algorithm [95],

5By efficiency we refer here to any sort of process that reduces the nunifliestaictions performed in
an algorithm (a MOEA in our case), without modifying the artee produced by such algorithm.



in which no more than five individuals are used in the popafafR3]. This sort of
MOEA requires, however, of clever reinitialization schesie order to avoid getting
stuck during the search.

Nowadays, a more common research trend has been to focusatestign of
MOEAs that reduce the number of objective function evabraiperformed, under
the assumption that such evaluations may be very expemssame real-world appli-
cations (clearly, much more expensive than a Pareto rarddhgme). For that sake,
EMO researchers have been adopting techniques such aga@rmodels, which have
long been used in engineering (see for example [159, 83,8854,26]). The main idea
of surrogate models is to build an approximate model of tlodi@m, which is cheap
(computationally speaking) to evaluate. Their main probie that these models evi-
dently have errors with respect to the original function ¢éodptimized and, sometimes,
such an error may be very significant. Also, some of the ctiivDEAs that adopt this
sort of scheme can only be applied to problems of low dimevaity (e.g., parEGO
[88]). Another possible approach is to use previously gath&nowledge (e.g., based
on previous evaluations of the fithess function), in ordexdtapt the recombination and
mutation operators so that we can sample offspring in primgiareas of the search
space (this is the idea of cultural algorithms [130], whigvér been scarcely consid-
ered for multi-objective optimization [22]). Knowledge jpédist evaluations can also be
used to build an empirical model that approximates the fitffeaction to optimize.
This approximation can then be used to predict promising s@Wtions at a smaller
evaluation cost than that of the original problem (see famegle [88, 80]). It is also
possible to use fitness inheritance in order to reduce thebeuof evaluations of the
objective functions. Fitness inheritance [141] works doWs: when assigning fit-
ness to an individual, sometimes the objective functiorvauated as usual, but the
rest of the time, the fitness of an individual is assigned asatlerage of the fithesses
of its parents, thus avoiding a fitness function evaluatiaseld on the assumption of
similarity of the individual to its parents. Fitness inttarice has been extended for
multi-objective optimization by a few researchers (seeeieimple [15, 128]). For a
more thorough discussion on the different knowledge incafion schemes that have
been adopted in MOEAS, the interested reader is referre@ido [

It is worth noting, however, that other approaches are ptessby using hybrid
schemes. For example, in [71], a MOEA is used to produce arapgroximation of
the Pareto front, and then a local search scheme based dmsetsgheory is adopted to
rebuild the missing portions of the Pareto front. In [133jmilar scheme is proposed,
but using scatter search as the local search engine, instézatly, the use of powerful
local search schemes hybridized with MOEAs that can produegh approximations
of the Pareto front with a reduced number of evaluations J1&7with MOEAs that
use special operators to accelerate convergence [2, 3]vé&yapromising research
topic.

3.3 Relaxed Forms of Dominance

In recent years, some researchers have proposed the uskvaddorms of Pareto
dominance as a way of regulating convergence of a MOEA [98)mRhese propos-
als, the most popular is the so-calledlominance, which was introduced in [102].



This mechanism acts as an archiving strategy to ensure bopiegies of convergence
towards the Pareto optimal set and properties of diversitgrag the solutions found.
The idea is to use a set of boxes to cover the Pareto front.ethersize of such boxes
is defined by a user-defined parameter (catledVithin each box, it is only allowed a
single nondominated solution to be retained (e.g., the tsest to the lower lefthand
corner, if both objectives are being minimized). Thus, byngs large value o€, the
user can speed up convergence, but at the sake of sacrifi@mguglity of the Pareto
front approximation obtained. Conversely, if a high-gtyadipproximation of the front
is required, then a small value emust be adopted instead. The definitiorz g6 then,
quite important. Unfortunately, it is not straightforwaia find the most appropriate
value ofe that produces a certain (required) number of nondominaikdisn within
an archive, when nothing is known in advance about the shiape areto front. Also,
to correlate the number of nondominated solutions desiiig thve value ofe chosen
is not easy, and normally some preliminary runs are requiveatder to estimate the
appropriate value. This makes difficult to compare appreathat adopt with respect
to MOEAs that do not use this concept. Additionally, becaafdés nature, this mech-
anism eliminates certain portions of the Pareto front (eafjnost straight segments
and the extremes of the Pareto front), which may be unddsimalsome cases [153].
This, however, can be (at least partially) compensated mgugeometrical assump-
tions about the possible shapes of the Pareto front, andiaddymxes of varying size
(see for example [72]).

Several modern MOEAs have adopted the concepttiminance (see for example
[34, 113, 35, 134]), and, mainly because of its nice mathigagiroperties, its use has
become relatively popular in the last few years. Howevercimoore work on this
topic is expected to be developed in the years to come, bah &rpragmatic and from
a theoretical point of view.

3.4 Scalability

For several years, most EMO research focused on solving M@R®nly two or three
objectives, and it was assumed that scaling such MOEAs tggarlaumber of objec-
tives would be straightforward. However, several EMO reslears have found this
assumption to be wrong [87, 74, 155]. One of the reasons i®idhthat the proportion
of nondominated solutions in a population increases rapiith the number of objec-
tives. Indeed, in [54], it is shown that this number goes fimity when the number of
objectives approaches to infinity. This implies that in thegence of many objectives
the selection of new solutions is carried out almost at ramdmce a large number of
the solutions are equally good in the Pareto sense [91]. Ad8smade scalability an
important research topic [125, 124, 37, 38].

Currently, there are mainly two approaches to deal with |gnmis involving many
objectives: 1) to adopt relaxed forms of Pareto optimalifypboposing an optimality
relation that yields a solution ordering finer than thatgesl by Pareto optimality (see
for example [54, 55, 37, 144]) and 2) to reduce the number aiives of the original
MOP, thus lowering the dimensionality to a reasonable viha¢ can be handled by
standard MOEAs [135, 13]. Although the second of these typepproaches seems
to be an attractive choice, the difficulties commonly asstec with dimensionality



reductions has made relaxed forms of Pareto optimality rpopular in the literature
[106]. Because of its relevance, an important increase séaech in this area is ex-
pected to occur in the coming years.

It is worth noting, however, that until recently, the focufssoalability studies has
been high dimensionality in objective function space, lwatability in decision vari-
able space is also worth studying [43, 119].

3.5 Alternative Metaheuristics

Relatively recently, several other biologically-insplmetaheuristics have been adapted
to solve MOPs [21, 26]:

e Artificial Immune Systems: From a computational perspective, our immune
system can be seen as a distributed intelligent system,hwihiable to learn
and retrieve knowledge previously acquired, in order tovsakcognition and
classification tasks [116]. Because of these featuresarelsers have developed
computational models of our immune system and have used fineanvariety
of tasks, including classification, pattern recognitiamg @ptimization [29, 116,
121]. Several multi-objective extensions of artificial imne systems have been
proposed in the specialized literature (see for exampl&,[107, 20, 59, 16]).
Also, combinations of artificial immune systems and anotiipe of approach
have been proposed, aiming to solve specific types of MOBs (248, 147], in
which the aim is to solve bi-objective flowshop schedulingtipems). However,
from the author’s perspective, the potential of multi-aliyee artificial immune
systems for solving classification and pattern recognipiayblems has not been
fully exploited yet [163].

e Ant Colony Optimization : This is a metaheuristic inspired on the foraging be-
havior of real ants. It is a distributed, stochastic seardtg@dure based on the
indirect communication of a set (called “colony”) of artifit ants, which me-
diate using artificial pheromone trails. These pheromoaistcan be seen as
distributed information which is used by the ants to corddttheir solutions to
the problem at hand. Such pheromone trails are modified gtina algorithm’s
execution, such that they reflect the search experiencéraddwy the ants. This
metaheuristic is intended for solving difficult (both statind dynamic) com-
binatorial optimization problems, in which solutions caa deenerated through
the use of a construction procedure [25, 41, 10, 42]. Thezesaveral multi-
objective extensions of ant colony optimization (ACO) altfons (see for ex-
ample [132, 78, 7, 66, 39, 40, 61]), but as multi-objectivenbnatorial opti-
mization becomes more attractive for EMO researchers [@}h,ibis expected
that more multi-objective ACO approaches (and hybrids o@2gorithms with
MOEAs and other metaheuristics) are proposed in the neardut

e Particle Swarm Optimization: This metaheuristic is inspired on the choreogra-
phy of a bird flock which aim to find food [84, 86]. It can be sesraalistributed
behavioral algorithm that performs (in its more generaki@r) a multidimen-
sional search. The implementation of the algorithm adomgtspaulation of par-



ticles, whose behavior is affected by either the best local, (within a certain
neighborhood) or the best global individual. Particle swaptimization (PSO)
has been successfully used for both continuous nonlinebdianrete binary op-
timization [44, 85, 86, 50, 51]. An important number of mdbjective versions
of PSO currently exist (see for example [114, 105, 24, 14324, 129]). How-
ever, until relatively recently, most of the research hadosmtrated on produc-
ing new variations of existing algorithms, rather than aimdging other (more
interesting) topics, such as the role of the main componehBBSO in multi-
objective optimization. Some recent research in that tdoacas shown that
certain components that had been traditionally disregh(dey., the leader se-
lection mechanism and the parameters of the flight formula) p key role in
the performance of a multi-objective PSO algorithm [12,]19his opens new
paths for future research within this area.

e Scatter Search This approach was originally conceived as an extension of a
heuristic called surrogate constraint relaxation, whiaswlesigned for solving
integer programming problems [62]. The main idea of thisrapph is to adopt
a series of different initializations to generate solusioA reference set of solu-
tions (the best found so far) is adopted, and then such sakitire “diversified”
in order to generate new solutions within the neighborhddbdecontents of the
reference set. This sort of simple procedure is repeatabnanturther improve-
ments to the contents of the reference set are detectede imith1990s, some
further mechanisms were added to the original scatter Begorithm, which
allowed its extension to solve nonlinear, binary and peatioim optimization
problems [63]. These new applications triggered an impdréanount of re-
searchin the last few years [97, 109]. Multi-objective esiens of scatter search
are relatively recent, but have been steadily increasi6g,[b, 8, 119]. Scatter
search has a lot of potential for hybrid approaches, suchemmeatic MOEAS
[90], since it can act as a powerful local search engine fekg¢auch as gener-
ating missing parts of a Pareto front [133]. Because of itdlfity and ease of
use, scatter search is expected to become more commonltieadophe near fu-
ture, particularly when designing hybrid MOEASs that relyakidy on good local
search engines.

4 What Else Remains to be Done

Other topics that, from the author’s perspective, are werploring within the next
few years are the following:

1. Constraint-handling: One of the research areas that has attracted a lot of inter-
est in recent years has been the use of multi-objective gg#iion concepts
to design constraint-handling mechanisms for (singlecidje) EAs (see for
example [145, 70, 160, 156, 111]). Interestingly, howevelatively few re-
search has been done regarding the design of constraidtihgimechanisms
for MOEAs (see for example [67, 123, 158, 69]), in spite of itmportance of
constraints in real-world applications of MOEAs. Most oétburrent work has



focused on extending the Pareto optimality relation in otdéncorporate con-
straints (e.g., giving preference to feasibility over doamce, such that an infea-
sible solution is discarded even if it is nondominated).cAlhe use of penalty
functions that “punish” a solution for not being feasible @asy to incorporate
into a MOEA [18]. However, topics such as the design of camstrhandling
mechanisms for dealing with equality constraihtéie design of scalable test
functions that incorporate constraints of different tyfiasear, nonlinear, equal-
ity, inequality), and the study of mechanisms that allow Hiicient exploration
of constrained search spaces in MOPs remain practicallyploesd.

. Incorporation of user’s preferences In practical applications of MOEAS, users
are normally not interested in a large number of nondomahatdutions. In-
stead, they are usually only interested in a few types ofeti@ifs among the
objectives (e.g., perhaps only the solutions around theékiof the Pareto front
are of interest to the user). Thus, if such user’s prefereree incorporated
into the selection mechanism of a MOEA, the search can be rmaie ef-
ficient (e.g., one can zoom in a certain region of the Paraintfand evolve
the population only towards the area of interest) and theltemore meaning-
ful. Although some research has been done in this direc8er for example
[28, 81, 156, 11]), it is still relatively uncommon to repoesults of a MOEA
that incorporates user’s preferences. It is thus impottaait EMO researchers
get closer to the extensive work done in Operations Reseéalttiis regard (see
for example [57]).

. Parameter control: The design of mechanisms that allow an automated con-
trol of the parameters of a MOEA (by using, for example, omladaptation
[46, 47] or self-adaptation [110], so that the MOEA can ad&pparameters
without any human intervention) has been scarcely exploydeMO researchers
[100, 146, 14, 1, 164, 150, 32]. This is clearly a very chalieg topic, due to
the high nonlinear interaction among the parameters of arf3®A The goal
of a parameterless MOEA is rarely discussed in the EMO liteea[150], and
alternative (perhaps more viable) schemes such as the irgeofal restarts (in
other words, the use of information from previous runs toriavwe performance
of subsequent runs) is also scarcely addressed [30]. Additly, studies that
show the effect of the parameters of a MOEA in its performaareestill lack-
ing in the specialized literature (see for example [1491d are a key aspect of
algorithmic design.

Several other topics that are also very promising reseaathspwill not be dis-

cussed due to obvious space limitations (for example, mstnalysis of MOEAS

6When dealing with equality constraints, the optimum liestumboundary between the feasible and the
infeasible regions. Therefore, the use of approaches Wvaya favor feasible solutions over the infeasible
ones are not effective in this case.

"Runtime analysis addresses the question of how long aretigorithm takes to find the optimal solu-
tion for a specific problem or a class of problems.
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[104, 103], archiving techniquéq115, 139, 89, 72] and convergence analy§l91,
152, 138], just to name a few), but they serve as a good irmlicia healthy research
field in which many things remain to be done.

5 Conclusions

This paper has attempted to provide a summary of the mairsdpi which EMO
researchers are currently working, and which, from the atgtperspective, provide
several interesting challenges for the years to come. Timis #& provide a quick
reference for those interested in start doing researchsrfitid, so that they can get a
very general picture of the current state of the area.

At the end of the paper, a few other topics are briefly disalis&eich topics also
offer the potential to become very popular research aretisma few more years, and
have remained relatively unexplored so far, thus offerimgartant opportunities for
newcomers. Hopefully, this general overview of the curramd future status of the
field will serve to maintain and increase the interest of aesieers and practitiones in
EMO, since such is the main goal of this paper.
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