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Combinatorial optimization problems are characterized for having discrete
decision variables, but an objective function and constraints that can take
any form (i.e., linear or nonlinear) [50]. Such problems have been studied for
several years in mathematics and computer science where they have attracted
a lot of attention, mainly because of their wide applicability (e.g., for planning
and scheduling tasks, which are very common in everyday life). However,
because of their complexity (combinatorial optimization problems tend to
be NP-hard or NP-complete), the use of approximation algorithms (mainly
metaheuristics4) to solve them has become relatively popular in the last few
years [20].

On the other hand, many real-world problems have two or more objectives
(often conflicting) which we aim to optimize at the same time (e.g., we aim
to minimize the time to complete a task, but simultaneously, we wish the
task to be as cheap as possible, which is an objective that normally opposes
to the previous one). These problems are called “multi-objective”, and their
solution involves finding not a single solution, but several, that represent the
best possible trade-offs among all the objectives that we aim to optimize.
Numerous mathematical programming techniques exist to deal with multi-
objective optimization problems [17, 49]. However, the use of metaheuristics
in this field has become increasingly popular [8, 11].

4 A metaheuristic is a high-level strategy for explosing the search space of a prob-
lem using a variety of methods [7]. Typically, a metaheuristic consists of both a
diversification (i.e., mechanisms to explore the search space) and an intensification
(i.e., mechanisms that exploit previously found solutions) procedure.
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This chapter deals with the use of metaheuristics for solving multi-
objective combinatorial optimization problems, and aims to provide a short
introduction to the field, which can be used for the rest of the book. It is worth
noting, however, that no effort is made to be comprehensive, since excellent
surveys of this field already exist (see for example [19, 20]).

The remainder of this chapter is organized as follows. Section 1.1 provides
some basic definitions required to understand the rest of the chapter. Then, a
brief discussion on the incorporation of user’s preferences is provided in Sec-
tion 1.2. Some of the most commonly adopted multi-objective evolutionary
algorithms used for multi-objective optimization are briefly discussed in Sec-
tion 1.3. The most commonly adopted approaches to assess the performance
of multi-objective metaheuristics and some possible methodologies to provide
a statistical validation of their results are discussed in Section 1.4. Finally,
our conclusions are provided in Section 1.5.

1.1 Basic Definitions

It is worth noting that some of the definitions provided next are used both
in single- and multi-objective combinatorial optimization, but others are spe-
cific to the latter (in multi-objective optimization, the notion of optimality is
different).

1.1.1 Multi-Objective Combinatorial Optimization Problem

A Multi-Objective Combinatorial Optimization Problem (MOCOP) is defined
as:

(MOP )

{

Optimize F (x) = (f1(x), f2(x), . . . , fn(x))
with x ∈ D

(1.1)

where n is the number of objectives (n ≥ 2), x = (x1, x2, . . . , xk) is the
vector of decision variables, D is the set of feasible solutions and each objective
function fi(x) has to be optimized (i.e. minimized or maximized). The bound
of each decision variable xi constitutes a decision variable space often denoted
as D. In multi-objective optimization, the objective functions F constitute a
multi-dimensional space that is often called Z. For each solution x in deci-
sion variable space (or decision space), there exists a point in objective space
defined by F (x). The mapping takes place between a k-dimensional solution
vector and an n-dimensional objective vector (see Fig. 1.1).

Unlike single-objective optimization, the solution of a MOCOP is not
unique, but is composed instead of a set of solutions representing the best
possible trade-offs among the objectives. Such solutions are contained in the
so-called Pareto optimal set (PO). When plotting the objective function
values corresponding to the solutions stored in the Pareto optimal set, we
obtain the Pareto front of the problem.
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Fig. 1.1. Mapping from decision space to objective space.

1.1.2 Dominance and Pareto Optimality

In multi-objective optimization, there is a different notion of optimality than
in single-objective optimization, since in this case, we are interested in find-
ing good compromises (or trade-offs) among the objectives that we wish to
optimize. The notion of optimality most commonly adopted is that origi-
nally proposed by Francis Ysidro Edgeworth in 1881 [14] and later (in 1896)
generalized by Vilfredo Pareto [51]. Although some authors call this notion
the Edgeworth-Pareto optimality, the most commonly accepted term is
Pareto optimality.

A feasible solution x∗ ∈ D is called Pareto optimal (also called efficient or
nondominated) if and only if there is no solution x ∈ D such that x dominates
x∗.

A solution y = (y1, y2, . . . , yk) dominates a solution z = (z1, z2, . . . , zk),
in a minimization context, iff ∀i ∈ [1 . . . n], fi(y) ≤ fi(z) and ∃i ∈ [1 . . . n]
such that fi(y) < fi(z).

In this context, any solution of the Pareto optimal set may be considered
as optimal, since no improvement may be found for an objective without
degrading another objective value.

In the case of a bi-ojective minimization problem, the Pareto front of
the efficient solutions obtained may be easily plotted (see the thick line in
objective space from Fig. 1.1).
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1.1.3 Ideal, Nadir and Utopian Points

In order to have reference points that may help to discuss the interest of the
solutions found, some specific points have been defined in objective function
space [49]. These points may represent either feasible or infeasible solutions.

Fig. 1.2. Graphical representation of the ideal, nadir and utopian points.

First, the ideal point zI represents the point that has, for each objective
function, the optimal value (obtained by optimizing separately such objective).
Formally, it is defined as:

zIsuch that ∀i ∈ [1...n], fi(z
I) = optx∈Dfi(x) (1.2)

This point does not correspond to a feasible solution; otherwise, this would
indicate that the absence of conflict among the objectives. Should that be the
case, optimizing the objectives separately would generate this single solution
and no need for Pareto optimality would arise.

From this ideal point may be defined the utopian point zU as follows:

zU = zI − ǫ U (1.3)
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where ǫ > 0 and U is the unitary vector (U = (1, . . . , 1) ∈ ℜn). This point
is, by definition, not feasible.

Finally, the Nadir point may be defined in the bi-objective context as:

zNsuch that ∀i ∈ [1...2], fi(z
N ) = optx∈D/fj(x)=fj(zI)fi(x) with j 6= i (1.4)

This corresponds to affect to each objective of the nadir point the best
possible value among solutions optimizing the other criterion.

These points are graphically displayed in Fig. 1.2.

1.2 Decision Making

Solving a multi-objective combinatorial problem leads to the determination of
a set of Pareto optimal solutions, and it is often necessary to ask a (human)
decision maker to express his/her preferences in order to obtain a single final
solution.

Hence, before starting to solve a multi-objective combinatorial optimiza-
tion problem, a decision must be made regarding the way in which such pref-
erences from the decision maker are to be incorporated. There are three forms
of incorporating user’s preferences into the search:

• A priori approaches: The decision maker gives indications regarding the
relative importance of the different criteria before the optimization process
takes place. A single optimization is required to obtain the wanted solution.
This method may be fast, but the time necessary for the modelling has
to be considered. Moreover, the decision maker may not be satisfied with
the solution found and may want to do another optimization expressing a
different compromise among the objectives.

• Progressive approaches: The decision maker participates during the
optimization process, expressing his/her preferences, which are then used
to guide the search. This approach allows to take into account the prefer-
ences of the decision maker in a very accurate manner, but requires a lot
of interaction throughout the search.

• A posteriori approaches: In this third category of methods, the decision
maker is presented a set of (nondominated) solutions generated by an
optimization method and he/she has to chooce from them those that he
considers the most appropriate. In this case, the preferences do not need to
modelled ahead of time (a task that can be very difficult to achieve) but the
approaches within this category normally require a lot of computational
effort.

Each of these types of approaches have advantages and disadvantages and
the choice of one of them in particular depends on the decision maker and
on the problem itself. It is worth emphasizing, however, that multi-objective
metaheuristics have been traditionally adopted as a posteriori approaches [8].
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1.3 Algorithms for Solving MOCOPs

Most MOCOPs are NP-hard. Hence, exact methods can be used only for
small-scale problems and approximation methods is the most common choice
to deal with large instances. Within such approximation methods we can find
both algorithms that produce an approximation with a guaranteed quality
[50] and metaheuristics [18, 16, 20].

As far as exact methods are concerned, as indicated before, they are limited
to small problems often having only two objectives. The two-phase method
proposed by B. Ulungu et J. Teghem is an interesting example [59]. This
method has been improved in [52] and in [42] for flowshop problems. More-
over, another method called PPM has been proposed for two [43] and more
objectives [44].

Nevertheless, for medium and large size problems, it is necessary to use
metaheuristics. Multi-objective metaheuristics can be classified into three
classes:

• Scalar approaches: Transform the problem into one or several single-
objective problem(s). Among them, we have aggregation methods [33], the
ǫ-constraint method [32], weighted metrics, goal programming, achieve-
ment functions, goal attainment, etc. These methods require a priori

knowledge of the problem in order to define preferences among objectives,
and, most of the time, they produce a single solution per run.

• Population-based approaches: They exploit the population adopted
by several metaheuristics (e.g., evolutionary algorithms) to combine sev-
eral scalar search procedures in a single run. The typical example within
this group is the Vector Evaluated Genetic Algorithm proposed by Schaf-
fer [56], which consists of a simple genetic algorithm that uses as many
sub-populations as objectives are in the problem. Each subpopulation se-
lects the best individuals based on a single objective. Then, all the sub-
populations are merged and shuffled, and crossover and mutation is applied
as usual. The idea is that by recombining individuals that are good in one
objective good trade-offs will be generated. Such sort of approach, how-
ever, contradicts the notion of Pareto optimality and is rarely adopted
these days [8].

• Pareto-based approaches: In this case, the selection mechanism incor-
porates the concept of Pareto optimality. Typical approaches within this
class adopt a ranking of solutions based on Pareto optimality originally
proposed by David E. Goldberg [29]. Most multi-objective evolutionary
algorithms are based on Pareto ranking, although several variations are
available: dominance rank (MOGA [23]), dominance depth (NSGA-II [13]),
and dominance count (SPEA [66] and SPEA2 [65]).

• Indicator based approaches: In this case, instead of using Pareto rank-
ing, a performance assessment measure [67] is adopted to select solutions.
Typical methods within this class are the Indicator-based Evolutionary Al-



1 Multi-Objective Combinatorial Optimization: Problematic and Context 7

gorithm (IBEA) [64, 2, 3] and the S metric selection EMOA (SMS-EMOA)
[21, 5]).

1.3.1 Nature Inspired Metaheuristics for Solving MOCOPs

In recent years, an overwhelming number of multi-objective metaheuristics
designed for solving multi-objective combinatorial optimization problems have
been proposed [8]. Next, we will limit ourselves to discuss some of the multi-
objective evolutionary algorithms most commonly used nowadays. However,
the interested reader should refer to [8, 11] for more information on this topic.

Nondominated Sorting Genetic Algorithm II (NSGA-II)

The Nondominated Sorting Genetic Algorithm II was proposed by Deb et al.
[12, 13] and is probably the most commonly adopted multi-objective evolu-
tionary algorithm in the current literature. At each generation, solutions from
the current population are ranked into several classes. Individuals mapping
to vectors from the first front all belong to the best efficient set; individuals
mapping to vectors from the second front all belong to the second best effi-
cient set, and so on. Two values are then assigned to population members.
The first one corresponds to the rank the corresponding solution belongs to,
and represents the quality of the solution in terms of convergence. The second
one, called crowding distance, consists of estimating the density of solutions
surrounding a particular point of the objective space, and represents the qual-
ity of the solution in terms of diversity. A solution is said to be better than
another one if it has a better rank value, or, in case of equality, if it has a
better crowding distance. The selection strategy is a deterministic tournament
between two randomly selected solutions. At the replacement step, only the
best individuals survive with respect to a predefined population size.

Indicator-Based Evolutionary Algorithm (IBEA)

The Indicator-Based Evolutionary Algorithm was introduced in [64] and is a
framework that allows any performance indicator to be incorporated into the
selection mechanism of a multi-objective evolutionary algorithm. The main
idea behind IBEA is to introduce a total order among solutions by means of
a binary quality indicator. Its fitness assignment scheme is based on a pair-
wise comparison of solutions from the current population with regards to an
arbitrary indicator I. To each individual x is assigned a fitness value F (x)
measuring the “loss in quality” if x was removed from the current popula-
tion P , i.e. F (x) =

∑

x′∈P\{x}(−e−I(x′,x)/κ), where κ > 0 is a user-defined
scaling factor. Different indicators can be used for such a purpose, such as the
binary additive ǫ-indicator (Iǫ+) as defined in [64] or the hypervolume [63].
Selection for reproduction consists of a binary tournament between randomly
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chosen individuals. Selection for replacement consists of iteratively removing
the worst solution from the current population until the required population
size is reached; fitness information of the remaining individuals is updated
each time there is a deletion.

Strength Pareto Evolutionary Algorithm 2 (SPEA2)

The Strength Pareto Evolutionary Algorithm 2 [65] was proposed as an exten-
sion of the Strength Pareto Evolutionary Algorithm (SPEA) [66], introduced
by the same authors. The main improvements are related to the use of an
improved fitness assignment strategy. SPEA2 intrinsically handles an internal
archive of fixed size that is used during the selection step to create offspring
solutions. Also, an external archive that stores the nondominated solutions
generated during the search is adopted. At a given iteration of SPEA2, to
each population and archive member x is assigned a strength value S(x) rep-
resenting the number of solutions it dominates. Then, the fitness value F (x)
of solution x is calculated by summing up the strength values of all individuals
to which solution x currently dominates. Additionally, a diversity preservation
strategy, based on a nearest neighbor technique, is incorporated. The selection
step consists of a binary tournament with replacement applied on the internal
archive only.

Simple Elitist Evolutionary Algorithm (SEEA)

If evaluating a solution in objective function space is not too much time con-
suming, computing fitness values and diversity information are generally the
most computationally expensive steps of a multi-objective evolutionary al-
gorithm. Based on this observation, Liefooghe et al. [45] proposed a simple
search method for which none of these phases is required. The resulting evo-
lutionary algorithm, called Simple Elitist Evolutionary Algorithm (SEEA for
short), is detailed in Algorithm 1. In SEEA, an archive of potentially efficient
solutions is updated at each generation, and the individuals contained in the
main population are generated by applying variation operators to randomly
chosen archive members. The replacement step is a generational one, i.e. the
parent population is replaced by the offspring population. Note that the initial
population can, for instance, be filled with random solutions. Then, as pro-
posed in [66] (among other authors), the archive is not only used as an external
storage, but it is integrated into the optimization process during the selection
phase of the multi-objective evolutionary algorithm. The preservation of the
nondominated solutions generated during the search is called elitism, and its
use is of great importance in multi-objective optimization, since it is required
in order to guarantee convergence from a theoretical point of view [54, 55, 41].
SEEA is somehow related to other elitist multi-objective evolutionary al-
gorithms such as the Pareto Archived Evolution Strategy (PAES) [38], the
Pareto envelope-based Selection Algorithm for multi-objective optimization
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(PESA) [10] and the Simple Evolutionary Algorithm for Multi-Objective Op-
timization (SEAMO) [60]. But, contrary to other approaches, no strategy to
preserve diversity or to manage the size of the archive is involved here, as
solutions are selected randomly and the archive is unbounded5. The biggest
advantage of this approach is that the population (or the population size, if so-
lutions are randomly initialized) is the only problem-independent parameter.
If non-dominated solutions are relatively close to each other in decision vari-
able space and if the archive is not too small compared to the main population,
SEEA may converge to a good approximation of the efficient set requiring a
short CPU time. However, in some cases, this method may prematurely con-
verge or may appear inefficient if promising solutions are far from each other.

Algorithm 1 Simple Elitist Evolutionary Algorithm (SEEA)

Input: P Initial population
Output: A Efficient set approximation

Step 1: Initialization. A← non-dominated individuals of P ; N ← |P |; P ′ ← ∅.
Step 2: Selection. Repeat until |P ′| = N : randomly select an individual from A

and add it to the offspring population P ′.
Step 3: Variation. Apply crossover and mutation operators to individuals of the

offspring population P ′.
Step 4: Replacement. P ← P ′; P ′ ← ∅.
Step 5: Elitism. A← non-dominated individuals of A ∪ P .
Step 6: Termination. If a stopping criteria is satisfied return A, else go to Step

2.

In general, it can be seen that modern multi-objective evolutionary algo-
rithms require three main components: (1) a mechanism to select solutions
that are nondominated in a Pareto sense, (2) a mechanism to maintain di-
versity in order to promote convergence to the entire Pareto front and (3)
an elitist mechanism that ensures that the global nondominated solutions are
preserved throughout the search.

Finally, it is worth noting the use of other metaheuristics (different from
evolutionary algorithms) in multi-objective optimization (particularly when
dealing with combinatorial optimization problems). Approaches such as sim-
ulated annealing [46], tabu search [26], scatter search [4], ant colony optimiza-
tion [27], particle swarm optimization [53], differential evolution [48] and artifi-
cial immune systems [25] have all been used to solve multi-objective optimiza-
tion problems. The use of hybrid approaches (e.g., multi-objective memetic

5 Note that in the continuous case, due to limited computing and memory resources,
the archive is usually bounded.
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algorithms [36, 28]) has also become popular in the last few years, since the
use of local search is quite evident when dealing with multi-objective combina-
torial optimization problems. However, the discussion of these approaches is
beyond the scope of this chapter. The interested reader should refer to [8, 20]
for more information on this topic.

1.4 Performance Assessment

An important task when validating a multi-objective metaheuristic is to be
able to assess its performance with respect to other approaches. In order to
assess performance of two different methods, two sets of solutions have to
be compared. This is not an easy task, since the two algorithms compared
generate sets of solutions rather than a single value, but several performance
indicators have been proposed in order to perform this task (for more details
on performance assessment of multi-objective metaheuristics and some of their
caveats, see [31, 35, 67]).

Performance indicators can be classified according to different features
[58]:

• Unary/Binary Indicators: Binary indicators allow us to compare di-
rectly two approximations of the true Pareto front, whereas unary indi-
cators assign to each approximation of the Pareto optimal set a scalar
value.

• Requirement of the True Pareto front: Some performance indicators
require that the user provides the true Pareto front of the problem, which,
in many cases, is unknown.

• Need of Extra Information: Some quality indicators require the defi-
nition of several values that may be difficult to obtain in some cases (e.g.,
the ideal vector, the Nadir point, a reference solution set, etc.).

A lot of performance indicators are currently available, but their use is not
only standardized, but it is debatable in several cases. Usually, more than one
performance indicator is adopted in order to assess performance of a multi-
objective metaheuristic, and different indicator exist for different goals:

• Convergence-Based Indicators: Provide the closeness of the obtained
approximation with respect to the true Pareto front. Examples of this
sort of indicator are: contribution [47], generational distance [61, 62], ǫ-
indicator [67].

• Diversity-Based Indicators: Provide information about the uniformity
of the distribution of the obtained solutions along the Pareto front6. Ex-
amples of this sort of indicator are: spacing [57, 62], spread [11, 13] and
entropy [22].

6 Note that diversity-based indicators can be applied both in decision variable space
and objective variable space, but the latter is the most commonly adopted.
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• Hybrid Indicators: They attempt to combine, in a single value, the
performance on both, convergence and diversity. Examples of this class of
indicators are: hypervolume [63], and the R-metrics [31, 35].

In the following sections, A and B will denote the approximation set found
by a multi-objective metaheuristic, Z⋆

N will denote the Pareto optimal set,
assuming it is known or it was produced from the union of all the previously
obtained approximations.

1.4.1 Convergence-Based Indicators

These indicators evaluate the closeness of the obtained approximation with
respect to the true Pareto front.

Contribution

The contribution indicator [62, 47] is a cardinality-based measure. Let A and B
be two Pareto approximation sets, Z⋆

N be the set of Pareto optimal solutions
from A ∪ B, AB be the set of solutions in A ∩ B, W be the number of
solutions from A that dominate some solutions from B, and N be the number
of incomparable solutions from A. The contribution is defined as follows:

C(A/B) =
|AB|

2 + |W | + |N |

|Z⋆
N |

(1.5)

Let us remark that C(A/B) + C(B/A) = 1.

Generational Distance

This performance measure computes the average distance from the approxi-
mation A (obtained by a metaheuristic) to Z⋆

N (i.e., the true Pareto front of
the problem). It is defined as follows:

GD(A, Z⋆
N ) =

(
∑|A|

i=1 dp
i )

1/p

|A|
(1.6)

For p = 2, d is the euclidean distance in objective function space between
solution i ∈ A and the nearest member of Z⋆

N .

ǫ-Indicator

The unary additive ǫ-indicator (I1ǫ+) gives the minimum factor by which an
approximation A has to be translated in objective function space in order to
weakly dominate7 the reference set Z⋆

N where N is the number of objectives.

7 A solution y = (y1, y2, . . . , yk) weakly dominates a solution z = (z1, z2, . . . , zk),
in a minimization context, iff ∀i ∈ [1 . . . n], fi(y) < fi(z).
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I1ǫ+ can be defined as follows:

I1
ǫ+(A) = Iǫ+(A, Z⋆

N ) , (1.7)

where

Iǫ+(A, B) = min
ǫ
{∀z ∈ B, ∃z′ ∈ A : z′i − ǫ ≤ zi, ∀1 ≤ i ≤ n} . (1.8)

1.4.2 Diversity-Based Indicators

Spacing

Schott [57] proposed a performance measure that estimates the diversity of the
Pareto front obtained by a metaheuristic by computing the relative distance
measure between consecutive solutions as follows:

S =

√

√

√

√

1

|A|

|A|
∑

i=1

(di − d̄)2 (1.9)

where di = mink∈Λ6=i

∑M
m=1 |f

i
m − fk

m| and d̄ is the mean value of the
distance.

Spread (∆) Indicator

Deb [11] proposed the spread indicator to estimate the extent of the spread
of the obtained Pareto front. It is formally defined as follows:

∆ =

∑M
m=1 de

m +
∑|A|

i=1 |di − d̄|
∑

m=1 Mde
m + |Q|d

(1.10)

where di is a neighboring distance measure, d̄ is the mean value of this
distance measure. The parameter de

m is the distance between the extreme
solutions of A and Z⋆

N corresponding to the m-th objective function.

1.4.3 Hybrid Indicators

As indicated before, these indicators evaluate both closeness to the true Pareto
front and spread along it. Next, we will briefly discuss three of them.



1 Multi-Objective Combinatorial Optimization: Problematic and Context 13

Hypervolume

The unary Hypervolume (HV [63]) reflects the volume in objective function
space covered by the members pi(i = 1, . . . , N) of a nondominated set ND
of solutions. It is defined relative to an “anti-optimal” reference point Zref ,
which can be the worst possible point in objective function space. This point
is usually not known and has to be chosen carefully [35]. It is mostly approx-
imated by the worst objective function values in each dimension from any
of the calculated Pareto fronts during the execution of the algorithm. Then,
the HV is the union of the hypercuboids (bounded by Zref ) in the Lebesgue
measure Λ which are weakly dominated by the vector pi:

HV (ND, Zref ) = Λ({∪h(pi)|pi ∈ ND, i = 1, ..., N}) (1.11)

and
h(pi) = [pi1, Zref1

] × [pi2, Zref2
] × . . . × [piM , ZrefM

] (1.12)

Thus, the larger the hypervolume is, the wider is the range of Pareto
optimal solutions. Therefore, hypervolume has to be maximized. The choice
of the reference point affects the ordering of the nondominated sets and often
the point defined as (1.05 × zmax

1 , 1.05 × zmax
2 ) is chosen to be the reference

point.
The hypervolume difference indicator (I−H) is a binary indicator that com-

putes the portion of the objective function space that is weakly dominated by
Z⋆

N and not by ND. The more this measure is close to 0, the better is the
approximation ND.

R-Metrics

There are three RR indicators that are based on a set of utility functions u
[31]. The R1 indicator [31] is based on calculating the probability that the
approximation A is better than B over an entire set of utility functions. RR

1

is R1 when it is used with a reference set—i.e., as a reference indicator. This
performance measure does then induce a total ordering on the approximation
set:

R1(A, B, U, p) =

∫

u∈U

C(A, R, u)p(u)du (1.13)

where U is a set of utility functions, and A and B are two approximations
of the Pareto set.

C(A, B, u) =







1 if u ∗ (A) > u ∗ (B)
1/2 if u ∗ (A) = u ∗ (B)
0 if u ∗ (A) < u ∗ (B)

(1.14)
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We can notice that R1(A, B, u, p) = 1−R1(B, A, u, p). If R1(A, B, u, p) >
1/2 then A is better than B.

R2 and R3 are defined as follows:

R2(A, B) =

∑

λ∈Λ u(λ, A) − u(λ, B)

|Λ|
(1.15)

and

R3(A, B) =

∑

λ∈Λ[u(λ, B) − u(λ, A)]/u(λ, B)

|Λ|
(1.16)

Attainment Surfaces

An attainment surface represent a boundary which divides the objective func-
tion space into two parts: one that was attained by the objective function value
vectors returned by the algorithm and another that was not [24]. The com-
putation of several of these surfaces through sets of objective function value
vectors obtained by several runs of the considered algorithm allows to have an
estimation of the quantiles of the attainment surfaces, i.e., the boundaries in
the objective space which are likely to be attained with the same probability.
A formal definition can be found in [30].

Fonseca and Fleming [24] performed an empirical estimation of these dis-
tributions by considering arbitrary straight lines intersecting the attainment
surfaces. They proposed to test inequality of the attainment surface by per-
forming non-parametric statistical tests. This method could then be used to
assess performance.

Knowles and Corne [39, 34] extended this approach by adopting the one-
sided Mann-Whitney test for comparing a pair of algorithms at the intersec-
tions of lines where the test indicated statistical differences. This allowed them
to say which algorithm was performing better and to identify the differences
to points or regions of the objective function space.

1.4.4 Statistical Validation

The use of statistical analyses to assess performance of metaheuristics has
become more important in recent years [1]. Such statistical validation has
also been adopted in multi-objective optimization (see for example [37]) and
has become more widespread in the last few years.

In order to perform a statistical validation of our results, the first step is
to collect descriptive statistics on each performance measure adopted, such
as the mean, the variance and the median. A common way to present these
descriptive statistics is to produce a box-plot (see Fig. 1.3) and to present
side-by-side box-plots of the different algorithms to be compared. There is



1 Multi-Objective Combinatorial Optimization: Problematic and Context 15

software available to plot them directly from data (for example, R, Excel, and
Matlab, among others).

Minimum value

+

Maximum value

75th percentile

Mean (optionnal)

50th percentile (median)
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Fig. 1.3. An example of boxplot.
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Fig. 1.4. An example of side-by-side box-
plots.

Then, several statistical tests can be carried out, depending on our goal:

• Comparison of Dominance Ranks: For this, we can adopt the Mann-
Whitney test [9] (this is a non-parametric test for comparing two groups
of data) or the Kruskal-Wallis test [9] (this is a non-parametric test for
comparing more than 2 groups of data).

• Comparison of Indicators: This can be done in two possible ways:

– By using a single indicator: In this case, the Mann-Whitney rank sum
test or Fisher’s permutation test can be adopted [15]

– By using a set of indicators: In this case, the Wilcoxon test (a non-
parametric statistical hypothesis test) or Fisher’s permutation test
could be used.

1.4.5 Public-Domain Software for Validation

There is also some public-domain software available to validate the perfor-
mance of multi-objective metaheuristics. Next, we briefly discuss two of them.

Guimoo

The Graphical User Interface for Multi-Objective Optimization (Guimoo) is a
free software dedicated to the analysis of results in multi-objective optimiza-
tion and it is available at: http://guimoo.gforge.inria.fr/.
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Its main features include the following:

•• The on-line visualization of approximate Pareto frontiers. Such informa-
tion can be used by an expert to build more efficient metaheuristics. A
Pareto frontier may be characterized by its (dis)continuity, (dis)convexity,
(multi)modality, etc.

• Some performance measures for quantitative and qualitative performance
evaluation (i.e., S-metric, R-metrics, contribution, entropy, generational
distance, spacing, size of the dominated space, coverage of two sets and
coverage difference).

PISA

The Platform and Programming Language Independent Interface for Search

Algorithms (PISA) is available at http://www.tik.ethz.ch/~sop/pisa/.
PISA includes a set of statistical tools that allow to assess and compare

the performance of several multi-objective evolutionary algorithms [6, 40].
It includes indicator modules using different quality indicators such as the
ǫ-indicator, the R-metrics and hypervolume.

1.5 Conclusions

The aim of this chapter was to present the main definitions and concepts
related to multi-objective combinatorial optimization using metaheuristics,
such that this information can be used to understand the rest of the book.

The discussion has included multi-objective optimization algorithms, in-
corporation of user’s preferences, performance measures and performance as-
sessment, and the use of statistical tools (including public-domain software)
to assess our obtained results.
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