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Abstract

This paper presents a very short introduction to multi-ctbje evolutionary
algorithms, including their basic concepts and their maimgponents. The dis-
cussion focuses on algorthmic design and, therefore, suessdiscussed include
selection mechanisms, diversity maintenance mechaniatheldgism in a multi-
objective context.

1 Introduction

In the real world, many problems have two or more (conflictinbjectives which
we would like to optimize at the same time. The solution ofsteulti-objective
optimization problemgVOPSs) has raised a lot of interest within Operations Retear
during the last 35 years [12]. However, and in spite of thatinetly large number
of mathematical programming approaches currently availits solving MOPs, their
limitations (related, for example, to the specific featusethe problem being solved)
have motivated the development of alternative techniqueb as the metaheuristics
from which evolutionary algorithms (EAs) are, with no doutbte most popular [4].

The firstimplementation of a multi-objective evolutionatgorithm (MOEA) dates
back to 1985 [13]. However, this area, which is now calledotationary multi-
objective optimization,” or EMO, has experienced a very amant growth, mainly
in the last 15 years [4).

2 Basic Concepts

MOPs are problems of the tyfie

*The author is also associated to the UMI-LAFMIA 3175 CNRS.at® acknowledges support from
CONACYyT project no. 103570.

1A metaheuristic is a high level strategy for exploring search spaces by udifigrent methods [2].
Metaheuristics have two main procedures: one for divesdifio (i.e., exploration of the search space) and
one for intensification (i.e., exploitation of the accumethsearch experience).

2The author maintains the EMOO repository, which currentiytains over 5800 bibliographic ref-
erences related to evolutionary multi-objective optirtima The EMOO repository is located at:
http://delta.cs.cinvestav.mx/"ccoello/EMOO/ .

Swithout loss of generality, we will assume only minimizatiproblems.
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minimize (&) = [f1(Z), f2(&), ..., fr(@)]" €y

subject to:
gi(%) <0 i=1,2,...,m (2
hi(Z)=0 i=1,2,....p (3)
wherer = [xl,xg,...,l‘n]T is the vector of decision variableg; : R" — R,

i = 1,2,..,k are the objective functions ang,h; : R" — R, i = 1,...,m,
j=1,2,...,pare the constraint functions of the problem.

i =1,...,k, and that' dominatesy (denoted byt < ¥) if ¥ < ¢ andz # v.

Definition 1. Given two vectors?,j € RF, we say thatt < 7 if 2; < v; for

Definition 2. We say that a vector of decision variabléss X C R"Js nondomi-
natedwith respect tot, if there does not exist anoth&r € X' such thatf (z’) < f(Z).

Definition 3. We say that a vector of decision variabigse F c R™ (F is the feasi-
ble region) isPareto-optimal if it is nondominated with respect t6.

Definition 4. ThePareto Optimal SetP* is defined by:

P* = {& € F|Zis Pareto-optimal
Definition 5. ThePareto Front PF* is defined by:

PF* = {f(¥) € R*|Z € P*}
The aim is thus to determine the Pareto optimal set from th& & all the decision

variable vectors that satisfy (2) and (3). Note howeverithptactice, not all the Pareto
optimal set is normally desirable or achievable.

3 Multi-Objective Evolutionary Algorithms

EAs offer two main advantages with respect to mathematicgramming techniques,
when dealing with MOPs: (1) since they rely on the use of a gblutions at each
iteration, they can find several elements of the Pareto @b8et in a single run, instead
of only one at a time; and (2) EAs tend are normally less sugidegdo the shape or
continuity of the Pareto front than mathematical prograngnechniques.

MOEAs extend a traditional evolutionary algorithm in twoimaspects:

e Selection Mechanism:In MOEAs, the aim is to select nondominated solutions
and not the solutions with the highest fitness. Additionalhd according to the
definition of Pareto optimality, all the nondominated swos in a population
are normally considered as equally good.



¢ Diversity Maintenance: MOEAs require a mechanism that preserves diversity
and avoids convergence to a single solution (this will exvelty happen because
of stochastic noise, if an EA is run for a sufficiently long &jm

Regarding selection, there are several possible mecharils can be used to
solve MOPs:

e Aggregating functions In this case, the objectives are normally combined in
some form (using either linear or nonlinear schemes), suatéa single (scalar)
value is generated. This scalar value is adopted as theditradse of the EA.
These approaches were very popular in the early days of MQgaicularly
linear aggregating functions) [4]. Today, the use of nadinaggregating func-
tions that provide a ranking of solutions has become pogagdain, since they
seem to work better than Pareto ranking in problems havingian 3 objec-
tives [11]. Aninteresting type of aggregating approachésgo-calledcalariza-
tion, in which a MOP is transformed into several single-objextyptimization
problems. This sort of approach has been adopted by sevé&&Ad (see for
example [10]). However, the most popular of these appraaisfdOEA/D [15],
in which the optimization of the scalar subproblems gereraty a decomposi-
tion approach is done in a very efficient way.

e Pareto-based selection The most popular scheme within this group is called
Pareto ranking, and its main idea is to sort the populatioaroEA based on
Pareto dominance, such that all nondominated individualassigned the same
rank (or importance). The aim is that all nondominated iftligals get the same
probability of being selected, and that such probabilityigher than the one cor-
responding to individuals which are dominated. Althoughezptually simple,
this sort of selection mechanism allows for a wide varietpadsible implemen-
tations [4]. That is the reason why several MOEAs based oet®aanking have
been proposed (e.g., SPEA [18] and NPGA [8]). From them, thleddminated
Sorting Genetic Algorithm-11 (NSGA-II) [7] remains as theost popular in the
current literature.

¢ Indicator-based Selection The idea in this case is to adopt a performance mea-
sure to select solutions. This concept attracted attentioen thelndicator-
Based Evolutionary AlgorithniIBEA) was proposed [16]. Within a similar
line of thought, but without explicitly considering the mrporation of user’s
preferences (as in IBEA), th8 Metric Selection Evolutionary Multiobjective
Optimization Algorithm(SMS-EMOA) [1] adopts a selection operator based on
the hypervolume measure [17]The design of hypervolume-based MOEAs has
triggered an important amount of research, because suchagpes scale better
than Pareto ranking when increasing the number of objecti#®wever, com-
puting the hypervolume is a computationally expensive,tasH this has limited
its use.

4TheHypervolume (also known as th€ metric or the Lebesgue Measure) of a set of solutions mesasure
the size of the portion of objective space that is dominatethbse solutions collectively.



Regarding diversity maintenance, there have been seveabgals in the special-
ized literature. The most popular approaches are: fithesinghand niching [6], clus-
tering [14], crowding [7], geographically-based schen®sdnd the use of entropy [5].
In all of them, the main idea is to favor the exploration ofioeg of search space in
which there are less solutions. The density of solutionsdbeameasured either in deci-
sion variable space or in objective function space (or endroth). Additionally, some
researchers have proposed the use of mating restrictiemseshas a way of preserving
diversity [18].

A third component of modern MOEAs ditism, which normally consists of using
an external archive (called a “secondary population”) tteat (or cannot) interact in
different ways with the main (or “primary”) population ofdfMOEA. The main pur-
pose of this archive is to store all the nondominated satstigenerated throughout the
search process, while removing those that become domitzézdn the search (called
local nondominated solutions). The approximation of theefeeoptimal set produced
by a MOEA is thus the final contents of this archive. The uselitif® is impor-
tant, since this mechanism is required to guarantee coameggof a MOEA, from a
theoretical perspective [4].

The high number of publications on EMO currently availablekes evident that
this research areais still very active. Current publicetieeport not only a wide variety
of new applications (see for example [3]), but also impdrégorithmic developments,
as well as research on more specialized topics (e.g., incatipn of user’s preferences,
surrogate methods, theoretical foundations, approachegfling with problems hav-
ing many objectives, new ranking methods, new constraamidling techniques, use
of alternative metaheuristics, etc.) [4]. Neverthelessl m spite of the (somewhat
intimidating) high number of existing publications, thasestill plenty of room for
newcomers (either students or researchers) as well as fiag pmactitioners. In fact,
the main aim of this paper is precisely to attract the intesésnore people towards
this research area which is not only exciting, but also wi@glplicable.
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