
Using a New GA-based Multiobjective Optimization

Technique for the Design of Robot Arms

�

Carlos A. Coello Coello Alan D. Christiansen Arturo Hern�andez Aguirre

Department of Computer Science

Tulane University

New Orleans, LA 70118

Abstract: This paper presents a hybrid approach to optimize the counterweight balancing of a robot arm. A

new technique that combines the genetic algorithm (GA) and the weighted min-max multiobjective optimization

method is proposed. This new approach is compared to several mathematical programming and GA-based techniques

used for multiobjective optimization. These techniques are included in a system developed by the authors, called

MOSES, which is intended to be used as a tool for engineering design optimization. The results presented here

show how the new proposed technique can get better trade-o� solutions and a more accurate Pareto front for

this highly non-convex problem using an ad-hoc
oating point representation and traditional genetic operators.

Finally, a methodology to compute the ideal vector using a genetic algorithm is presented. It is shown how with a

very simple dynamic approach to adjust the parameters of the GA, it is possible to obtain better results than those

previously reported in the literature for this problem.

1 Introduction

The use of industrial robots in di�erent �elds of technology is becoming more common every day, making it more

important to be able to improve their e�ciency in terms of energy consumption and working accuracy. The proper

balancing of a robot manipulator is one way to improve such e�ciency. There are two main methods of balancing

a robot manipulator:

1

1) by spring mechanisms, and 2) by counterweights. The second approach, which is the

one selected for this work, has been frequently used in the literature for establishing better mass distributions of

mechanisms and its use on robot manipulators involves the minimization of driving forces or torques as well as

the support reactions at joints. Since these two criteria have to be satis�ed at the same time, a multiobjective

optimization approach has to be taken. The lengths and masses of balancing mechanisms of the robot arm are

used as design variables, and several constraints derived from the allowable movements of the arm are imposed.

The optimization model used for this work is based on the rigid-body dynamics of the PUMA-560 robot

2

.

3

A

hybrid approach was used to solve this problem, using a combination of a genetic algorithm with the min-max

method to get the Pareto optimal set, which corresponds to several possible robot designs from which the decision

maker has to choose the most appropriate. This set was obtained by varying the importance of each of the four

objective functions derived from the optimization model|two torques and two reactions|. This new approach

is compared to a more traditional min-max technique in which a combination of random and sequential search is

used to generate the Pareto optimal solutions. This problem has a highly non-convex search space, which implies

the presence of several local minima. On the other hand, the large amount of CPU time required to evaluate the

di�erent objectives arise some interesting issues on the use of genetic algorithms in this kind of application.

�

This work was supported in part by EPSCoR grant: NSF/LEQSF (1992-93)-ADP-04.

1

Figure 1: PUMA-560 robot arm and schematic representation of coordinate angles �

i

.

2 Statement of the Problem

Consider the PUMA-560 shown in Figure 1. Koski and Osyczka

1

present a multiobjective optimization model of

such arm based on its rigid-body dynamics. By using angular coordinates for the PUMA-560 robot, it is possible

to calculate the generalized torques at each joint applying the following equation:

M

ti

=

d

dt

�

@L

@

_

�

i

�

�

@L

@�

i

(1)

where �

i

is the rotation at joint i and

_

�

i

is the corresponding angular velocity. The term

L = T � V (2)

represents the Lagrangian function of the mechanical system. Here, T is the total kinetic energy of the system

and V is the total potential energy. The application of Equation (1) to a fully articulated robot arm results in

the following nonlinear second-order system of di�erential equations

A

�

� +B

_

�

2

+ c�m = 0 (3)

Here, the vector of angular accelerations is given by

�

� = (

�

�

1

;

�

�

2

; : : : ;

�

�

N

)

T

(4)

and the vector of squared angular velocities by

_

�

2

= (

_

�

1

_

�

1

;

_

�

1

_

�

2

; : : : ;

_

�

1

_

�

N

j

_

�

2

_

�

1

;

_

�

2

_

�

2

; : : : ;

_

�

2

_

�

N

j : : :

_

�

k

_

�

1

;

_

�

k

_

�

2

; : : : ;

_

�

k

_

�

N

j : : :

_

�

N

_

�

1

;

_

�

N

_

�

2

; : : : ;

_

�

N

_

�

N

)

T

where N is the number of joints. The corresponding matrices are

A =

2

6

6

6

4

D

11

D

12

: : : D

1N

D

21

D

22

: : : D

2N

.

.

.

D

N1

D

N2

: : : D

NN

3

7

7

7

5

(5)

and

2

x

y

m

m

m

L

x

e

e

1

1
1

1

1

2

2

2
3

L2

x2m5

θ2

θ1

m 4

θ1

Figure 2: Mechanical model of the robot arm used for optimization.

B =

2

6

6

6

4

D

1

11

D

1

12

: : : D

1

1N

j D

2

11

D

2

12

: : : D

2

1N

D

1

21

D

1

22

: : : D

1

2N

j D

2

21

D

2

22

: : : D

2

2N

.

.

. j

.

.

.

D

1

N1

D

1

N2

: : : D

1

NN

j D

2

N1

D

2

N2

: : : D

2

NN

j D

N

11

D

N

12

: : : D

N

1N

j D

N

21

D

N

22

: : : D

N

2N

j

.

.

.

j D

N

N1

D

N

N2

: : : D

N

NN

3

7

7

7

5

where it is assumed that each joint has one degree of freedom. The elements of matrix A are the inertia

terms, and the elements of matrix B represent the centripetal and Coriolis terms. All these terms depend on the

position of the arm|i.e., D

ij

= D

ij

(�

i

)|. Vector c = (D

1

;D

2

; : : : ;D

N

)

T

includes the gravitational termsD

i

and

m = (m

1

;m

2

;m

3

;m

4

;m

5

) is the vector of torques. Kinetic Equations (1),(2) and (3) represent the rigid-body

motion of the arm, and they are geometrically nonlinear because of large rotations of �

i

.

The manipulator is an isostatic structure, and thus it is possible to get explicit expressions for all forces and

moments in the system. The friction in the joints as well as the
exibility of the arm are not included in the

following design model. For the application of optimizationmethods, a two-member robot arm, which corresponds

to the two links of the PUMA-560 robot in a plane motion, is considered. This arm is assumed to move in the

xy-plane only (corresponding angular coordinates �

i

are shown in Figure 2). The masses of the members are m

1

and m

2

. They are located as point masses at distances e

1

and e

2

from the joints. The external load is represented

by the point mass m

3

. In the model used by Koski and Osyczka, only the counterweight masses m

4

and m

5

, as

well as their distances from the joints x

1

and x

2

are treated as design variables, whereas all the other quantities

are �xed.

3

The torques of this two-member link are obtained from the Equation (1) and are expressed as follows:

M

t1

= D

11

�

�

1

+D

12

�

�

2

+D

1

11

_

�

2

1

+D

2

12

_

�

2

2

+ (D

1

12

+D

2

11

)

_

�

1

_

�

2

+D

1

M

t2

= D

21

�

�

1

+D

22

�

�

2

+D

1

21

_

�

2

1

+D

2

22

_

�

2

2

+ (D

1

22

+D

2

21

)

_

�

1

_

�

2

+D

2

(6)

The coe�cients for torque M

t1

are:

D

11

= m

1

e

2

1

+m

4

x

2

1

+m

2

e

2

2

+m

3

L

2

2

+m

5

x

2

2

+

+(m

2

+m

3

+m

5

)L

2

1

+ 2m

2

e

2

L

1

cos �

2

+ 2m

3

L

1

L

2

cos �

2

� 2m

5

x

2

L

1

cos �

2

+ J

1

+ J

2

D

12

= m

2

e

2

2

+m

3

L

2

2

+m

5

x

2

2

+m

2

e

2

L

1

cos �

2

+m

3

L

1

L

2

cos �

2

�m

5

x

2

L

1

cos �

2

+ J

2

D

1

11

= �m

5

x

2

L

1

[sin(�

0

+ �

1

) + sin �

2

] +m

5

x

2

2

sin 2�

0

D

2

12

= �m

2

e

2

L

1

sin �

2

�m

3

L

1

L

2

sin �

2

�m

5

x

2

L

1

sin(�

0

+ �

1

) +m

5

x

2

2

sin 2�

0

D

1

12

+D

2

11

= �2m

2

e

2

L

1

sin �

2

� 2m

3

L

1

L

2

sin �

2

� 2m

5

x

2

L

1

sin(�

0

+ �

1

) + 2m

5

x

2

2

sin 2�

0

D

1

= m

1

ge

1

cos �

1

�m

4

gx

1

cos �

1

+m

2

ge

2

cos �

0

+m

3

gL

2

cos �

0

�m

5

gx

2

cos �

0

+ (m

2

+m

3

+m

5

)gL

1

cos �

1

Coe�cients for torque M

t2

are:

D

21

= m

2

(L

1

e

2

cos �

2

+ e

2

2

) +m

3

(L

1

L

2

cos �

2

+ L

2

2

)�m

5

(L

1

x

2

cos �

2

� x

2

2

) + J

2

D

22

= m

2

e

2

2

+m

3

L

2

2

+m

5

x

2

2

+ J

2

D

1

21

= m

2

L

1

e

2

sin �

2

+m

3

L

1

L

2

sin �

2

+m

5

(2x

2

2

sin �

0

cos �

0

� L

1

x

2

sin �

2

)

D

2

22

= 2m

5

x

2

2

sin �

0

cos �

0

(7)

D

1

22

+D

2

21

= 4m

5

x

2

2

sin �

0

cos �

0

(8)

D

2

= m

2

ge

2

cos �

0

+m

3

gL

2

cos �

0

�m

5

gx

2

cos �

0

(9)

where J

1

and J

2

are the rotary inertias of members 1 and 2, respectively. Notation �

0

= �

1

+ �

2

is used for

convenience.

In addition to the torques, the joint forces are considered in the optimization process. In this application

the most convenient way of solving them is to use the force equilibrium conditions in both coordinate directions

x and y. For this purpose, the free-body diagrams of both members have been depicted in Figure 3. The

4

R

F

m

J

x

R y

m4 g

m4 a 4y

m4 a 4x

M t1
1

1 a 1y

m1 a 1x

m1 g
x

Fy

M t 2

m3 g
3 xa3m

m3 a 3 y2m g

J 2

m

m

2

2

a

a 2 x

2 y

M t 2
Fx

Fy

m5 g

m5 a 5 x

m5 a 5 y

(

Θ1

..

Θ1 Θ)
2

....
+

a r m
f o r e a r m

Figure 3: Free-body diagrams of the robot arm.

positive directions in this �gure are associated with the global xy-axes, and the positive rotation direction is

counterclockwise. By computing the accelerations from the well-known kinematic equation

a

p

= a

Q

+ � � r

p=Q

+ ! � (! � r

p=Q

) (10)

analytic expressions for a

i

(1; : : : ; 5) can be obtained. Here, a

Q

is the acceleration vector of the comparison

point, � the angular acceleration vector of the member, r

p=Q

the position vector from point Q to point P along

the member, and ! the angular velocity of the member. For member 1, point Q is the support point and

� = (0; 0;

�

�

1

)

T

, ! = (0; 0;

_

�

1

)

T

. For member 2, point Q is at the joint and � = (0; 0;

�

�

0

)

T

, ! = (0; 0;

_

�

0

)

T

where �

0

= �

1

+ �

2

. Vector r

p=Q

depends on the 5 selected calculation points. Here, the detailed expressions

for the accelerations are presented separately, and they also appear as part of the terms in Equation (6). The

corresponding inertia forces m

i

a

i

(i = 1; : : : ; 5) and the moments J

j

�

j

(j = 1; 2) with the complete free-body

diagrams are shown in Figure 3.

The accelerations of the points at which the point masses are located have the following explicit expressions:

a

1

=

�

�

1

e

1

�

� sin �

1

cos �

1

�

�

_

�

2

1

e

1

�

cos �

1

sin �

1

�

(11)

a

2

=

�

�

1

L

1

�

� sin �

1

cos �

1

�

�

_

�

2

1

L

1

�

cos �

1

sin �

1

�

+ e

2

�

�

0

�

� sin �

0

cos �

0

�

+ e

2

_

�

2

0

�

� cos �

0

� sin �

0

�

a

3

=

�

�

1

L

1

�

� sin �

1

cos �

1

�

�

_

�

2

1

L

1

�

cos �

1

sin �

1

�

+ L

2

�

�

0

�

� sin �

0

cos �

0

�

+ L

2

_

�

2

0

�

� cos �

0

� sin �

0

�

a

4

=

�

�

1

x

1

�

sin �

1

� cos �

1

�

+

_

�

2

1

x

1

�

cos �

1

sin �

1

�

(12)

a

5

=

�

�

1

L

1

�

� sin �

1

cos �

1

�

�

_

�

2

1

L

1

�

cos �

1

sin �

1

�

+ x

2

�

�

0

�

sin �

0

cos �

0

�

+ x

2

_

�

2

0

�

cos �

0

� sin �

0

�

Here again the notations �

0

= �

1

+ �

2

,

_

�

0

=

_

�

1

+

_

�

2

and

�

�

0

=

�

�

1

+

�

�

2

have been used. By applying the force

equilibrium conditions in the coordinate directions, the following joint reactions (see Figure 3) to member 2 are

obtained:

5

R

2x

= m

2

a

2x

+m

3

a

3x

+m

5

a

5x

R

2y

= m

2

a

2y

+m

3

a

3y

+m

5

a

5y

+ (m

2

+m

3

+m

5

)g

(13)

The torque M

t2

at the joint can be calculated from the moment equilibrium condition. By applying the same

routine to member 1, it is possible to derive expressions for the support reactions:

R

1x

= m

1

a

1x

+m

2

a

2x

+m

3

a

3x

+m

4

a

4x

+m

5

a

5x

R

1y

= m

1

a

1y

+m

2

a

2y

+m

3

a

3y

+m

4

a

4y

+m

5

a

5y

+

(m

1

+m

2

+m

3

+m

4

+m

5

)g

(14)

The torque M

t1

is obtained again from the moment equilibrium condition. Corresponding to the Lagrangian

approach, the torques M

t1

and M

t2

must be the same as those computed from Equation (6). The resulting

support reactions are:

R

1

= (R

2

1x

+ R

2

1y

)

1

2

; R

2

= (R

2

2x

+R

2

2y

)

1

2

(15)

The torques M

ti

and the forces R

i

are chosen as criteria in the optimization model. It is important to present

the detailed expressions forM

ti

and R

i

because the choice of the design variables as well as the general complexity

of the optimization problem are associated with these formulas.

Given the previous information, the optimization problem can now be formulated. The objective is to �nd

such massesm

4

and m

5

for the counterweights and such joint distances x

1

and x

2

which will minimize the chosen

four design criteria. Consequently, the design variable vector is:

�x = (x

1

; x

2

; x

3

; x

4

)

T

(16)

where the �rst two are the distances shown in Figure 2, x

3

= m

4

and x

4

= m

5

. The upper and lower limits

for all these four design variables can be given in the form

x

l

i

� x

i

� x

u

i

; i = 1; : : : ; 4 (17)

The torquesM

t1

and M

t2

at the arm joints are chosen as the �rst two criteria of the vector objective function.

Their minimization is important because it is then possible to use smaller motors, and the energy consumption

is lower if the variation ranges of the torques are small.

1

In the explicit expressions of Equation (6), terms m

4

x

1

,

m

4

x

2

1

, m

5

x

2

, and m

5

x

2

2

appear, and thus it is reasonable to choose the design variables in the way presented.

The torques do not depend on the design variables alone, but also on the position of the robot arm (�

1

; �

2

). On

the angular velocities (

_

�

1

;

_

�

2

) and on the angular accelerations (

�

�

1

;

�

�

2

). Usually, the working space of the robot

arm is restricted, and thus constraints of the form:

�

l

i

� �

i

� �

u

i

; i = 1; 2 (18)

are needed. Here, �

l

i

and �

u

i

are the lower and the upper limits of the angles �

i

. In each position of the arm,

the angular velocities and accelerations may be di�erent. In order to optimize the performance of the robot, the

torques should be as small as possible at all working positions and at all existing angular velocity acceleration

combinations. Thus, the �rst two criteria are chosen as follows:

f

1

(�x) =

max

�

1

max

�

2

max

_

�

i

;

�

�

i

M

t1

f

2

(�x) =

max

�

1

max

�

2

max

_

�

i

;

�

�

i

M

t2

(19)

where notation

_

�

i

,

�

�

i

is associated with the chosen angular velocity pro�le. This is shown in Figure 4 where a

trapezoidal pro�le, typical of robot applications, has been depicted for both members. The corresponding angular

accelerations are also presented in this Figure.

The construction of joints, especially with the choice of bearings, depends largely on the reaction forces at the

joints. Thus, it seems reasonable to choose the maximum values of the joint forces as two additional criteria. By

6

θ

θ θ

θ

θ

θ

θ

θ

t

t

t

1 max

2 max

2 max

1 2

1

1 min

2 min

t

1 max

θ

..

..

.

..

..

.

.

..

rad
s

rad
s2

θ2

..

20

4

-20

10

-10

2

.

b)a)

Figure 4: Angular velocities and corresponding angular accelerations of the robot arm.

7

Point

_

�

1

_

�

2

�

�

1

�

�

2

1 0 0

�

�

1 max

�

�

2 max

2

1

2

_

�

1 max

1

2

_

�

2 max

�

�

1 max

�

�

2 max

3

_

�

1 max

_

�

2 max

�

�

1 max

�

�

2 max

4

_

�

1 max

_

�

2 max

0 0

5

_

�

1 max

_

�

2 max

�

�

�

1 max

�

�

�

2 max

6

1

2

_

�

1 max

1

2

_

�

2 max

�

�

�

1 max

�

�

�

2 max

7 0 0 �

�

�

1 max

�

�

�

2 max

Table 1: Angular velocities and corresponding angular accelerations of the robot arm

using the �xed trapezoidal velocity pro�les (see Figure 4) and every feasible position of the arm, these criteria

can be expressed in the form

f

3

(�x) =

max

�

1

max

�

2

max

_

�

i

;

�

�

i

R

1

f

4

(�x) =

max

�

1

max

�

2

max

_

�

i

;

�

�

i

R

2

(20)

The geometrical interpretation of all these four criteria is the following:

1

a small movement at every position

(�

1

; �

2

) of the arms is performed by using the �xed trapezoidal pro�les (

_

�

1

;

_

�

2

;

�

�

1

;

�

�

2

shown in Figure 4), and the

maximum values of the torques and the joint forces during the movement are selected.

By using the design variables x

i

given in Equation (3), the criteria presented in Equations (19) and (20),

the side constraints of (17), and the state constraints of (18), it is now possible to formulate the multiobjective

optimization problem:

1

min (f

1

(�x); f

2

(�x); f

3

(�x); f

4

(�x))

T

(21)

subject to

�

l

i

� �

i

� �

u

i

i = 1; 2

x

l

i

� x

i

� x

u

i

i = 1; 2; 3; 4

(22)

The numerical design data for the design problem is given below.

1

These values are close to those for the �rst

two links of the PUMA-560 robot shown in Figure 1.

3

m

1

= 17 kg; m

2

= 6 kg; m

3

= 2 kg;

L

1

= L

2

= 0:43 m; e

1

= 0:07 m; e

2

= 0:14 m;

�

l

1

= �40

�

; �

u

1

= 220

�

; �

l

2

= �140

�

; �

u

2

= 140

�

;

_

�

1 max

= 2

rad

s

;

_

�

2 max

= 4

rad

s

;

�

�

1 max

= 10

rad

s

2

;

�

�

2 max

= 20

rad

s

2

;

x

l

1

= x

l

2

= 0; x

u

1

= x

u

2

= 0:2 m; x

l

3

= x

l

4

= 0;

x

u

3

= 35 kg; x

u

4

= 15 kg;

J

1

= 0:2619 kg �m

2

; J

2

= 0:0924 kg �m

2

(23)

3 Solution Procedure

To obtain the term

max(�)

�

1

, the procedure given by Koski and Osyckza

1

was followed:

8

1. Compute the torques and joint forces at the positions �

l

1

; �

l

1

+��

1

; �

l

1

+ 2��

1

; : : : ; �

u

1

, where the increment

��

1

was chosen to be 20 degrees.

2. Select separately the maximum value for each criterion.

3. Perform the same calculations for

max(�)

�

2

with an increment ��

2

(a value of 20 degrees was used).

4. The terms

max(�)

_

�

i

�

�

i

are computed using some chosen combinations of

_

�

i

and

�

�

i

for given �

1

and �

2

. Table 1

contains the seven points chosen for the calculations presented in this paper.

5. After calculating M

ti

and R

i

for all the rows of Table 1, the maximum values can be chosen.

Obviously, the smaller the value of ��

i

the better the accuracy achieved, but also greater the computation

time required. It was experimentally found that even an apparently large increment like the one used in this

work, did not signi�cantly a�ect the �nal result. However, in terms of time, this value made a great di�erence,

particularly when considering that using either random search or the genetic algorithm, all these computations

have to be performed a lot of times. To get an idea of the importance of this parameter, when an increment of one

degree is used, the time required to get one set of results (i.e., the �nal values of the four objective functions) is of

about 2 minutes and 20 seconds on a Sun Workstation with four 90 MHz HyperSparc CPUs. This time is reduced

to only one second when using increments of 20 degrees, without any signi�cant loss of precision (normally the

di�erences were in the decimals).

3.1 The Classical Min-Max Method

In the classical min-max method, also known as the Global Criterion method ,

4

an optimal solution is a vector

of decision variables which minimizes some global criterion. A function describing this global criterion is a

measurement of how close the decision maker can get to the ideal vector|i.e., the vector that contains the

optimal solutions of every objective function assuming that these were treated independently|, which will be

denoted by f

0

. The most common form of this function is

f(x) =

k

X

i=1

�

f

0

i

� f

i

(x)

f

0

i

�

p

(24)

where k is the number of objective functions.

For this formula Boychuck and Ovhinnikov

5

have suggested p = 1, and Salukvadze

6

has suggested p = 2, but

other values of p can also be used. Another possible measurement of \the closeness to the ideal solution" is a

family of the L

p

�metrics de�ned as follows

7

L

p

(f) =

k

X

i=1

jf

0

i

� f

i

(x)j

p

!

1=p

1 � p � 1 (25)

Instead of deviations in the absolute sense, it is recommended to use in Equation (25) relative deviations

47

such as

f

0

i

� f

i

(x)

f

0

i

(26)

which have a direct substantive meaning in any given context.

The name min-max method is given to the global criterion method with the L

1

(f)�metric, because for this

metric the optimum x

�

is de�ned as

f(x

�

) = min

x

max

i

�

�

�

�

f

0

i

� f

i

(x)

f

0

i

�

�

�

�

i = 1; : : : ; k (27)

9

The solution to this optimization problem yields the best compromise solution, in which all criteria are con-

sidered equally important. The use of weighting coe�cients has been introduced before

7

in conjunction with this

method to rank the importance of the candidate criterion, so that the min-max problem can be restated as follows

f(x

�

) = min

x

max

i

!

i

�

�

�

�

f

0

i

� f

i

(x)

f

0

i

�

�

�

�

i = 1; : : : ; k (28)

where !

i

is the weighting coe�cient representing the relative importance of the ith criterion. Koski and

Osyczka

1

took this approach to solve the counterweight balancing problem presented in this paper, by using the

Computer Aided Multicriteria Optimization System (CAMOS).

8

They used a method which combines random

and sequential search to generate the Pareto-optima. First, they generated some points by the random search

method, and the best of them were stored and used as the starting points for the sequential search procedure.

Then, they minimized each objective separately, to obtain the set of optimal solutions, so that they could use

the weighting min-max method described above for generating several Pareto-optimal solutions. The weights

were chosen so that their sum were always equals to one. While seeking both, the ideal vector and the other

Pareto-optima, they used the random search method in combination with the Nelder-Mead simplex method

9

with

a penalty function.

4 Notions of Genetic Algorithms

The famous naturalist Charles Darwin de�ned Natural Selection or Survival of the Fittest in his book

10

as the

preservation of favorable individual di�erences and variations, and the destruction of those that are injurious.

In nature, individuals have to adapt to their environment in order to survive in a process called evolution, in

which those features that make an individual more suited to compete are preserved when it reproduces, and

those features that make it weaker are eliminated. Such features are controlled by units called genes which form

sets called chromosomes. Over subsequent generations not only the �ttest individuals survive, but also their

�ttest genes which are transmitted to their descendants during the sexual recombination process which is called

crossover.

John H. Holland became interested in the application of natural selection to machine learning, and in the late

60s, while working at the University of Michigan, he developed a technique that allowed computer programs to

mimic the process of evolution. Originally, this technique was called reproductive plans, but the term genetic

algorithm became popular after the publication of his book

11

.

12

In 1989, Goldberg published a book

13

that provided a solid scienti�c basis for this area, and cited no less than

73 successful applications of the genetic algorithm. In the last few years the growing interest on this technique

is re
ected in a larger number of conferences, a new international journal, and an increasing amount of software

and literature devoted to this subject.

Koza

14

provides a good de�nition of a GA:

The genetic algorithm is a highly parallel mathematical algorithm that transforms a set (pop-

ulation of individual mathematical objects (typically �xed-length character strings patterned after

chromosome strings), each with an associated �tness value, into a new population (i.e., the next

generation) using operations patterned after the Darwinian principle of reproduction and survival

of the �ttest and after naturally occurring genetic operations (notably sexual recombination).

Actually, the genetic algorithm derives its behavior from a metaphor of one of the mechanisms of evolution

in nature which is called hard selection.

15

Under this scheme, only the best available individuals are retained

for generating descendants. This contrasts with soft selection, which o�ers a probabilistic mechanism for

maintaining individuals to be parents of future progeny despite possessing relatively poorer objective values.

It has been argued

15

that the term genetic algorithm (GA) is misleading, since natural selection is only one

of the mechanisms of evolution, and it would be more appropriate to call them hard selection (HS) algorithms

to re
ect the fact that they deal with only that particular selection scheme. However, the term is so common

today, that a change does not seem feasible, at least in the near future.

A genetic algorithm for a particular problem must have the following �ve components:

16

10

1. A representation for potential solutions to the problem.

2. A way to create an initial population of potential solutions.

3. An evaluation function that plays the role of the environment, rating solutions in terms of their \�tness".

4. Genetic operators that alter the composition of children.

5. Values for various parameters that the genetic algorithm uses (population size, probabilities of applying

genetic operators, etc.).

Some of the basic terminology used by the genetic algorithms (GAs) community is the following:

15

� A chromosome is a data structure that holds a \string" of task parameters, or genes. This string may be

stored, for example, as a binary bit-string (binary representation) or as an array of integers (
oating point

o real-coded representation) that represent a
oating point number. This chromosome is analogous to the

base-4 chromosomes present in our own DNA. Normally, in the GA community, the haploid model of a cell

is assumed (one-chromosome individuals). However, diploids have also been used in the past.

13

� A gene is a subsection of a chromosome that usually encodes the value of a single parameter.

� An allele is the value of a gene. For example, for a binary representation each gene may have an allele of

0 or 1, and for a
oating point representation, each gene may have an allele from 0 to 9.

� If the solution of a problem can be represented by a set of N real-valued parameters, then the job of �nding

this solution can be thought of as a search in an N -dimensional space. This region is simply referred as the

search space of the problem.

� The �tness of an individual is a value that re
ects its performance (i.e., how well solves a certain task). A

�tness function is a mapping of the chromosomes in a population to their corresponding �tness values.

A �tness landscape is the hypersurface obtained by applying the �tness function to every point in the

search space.

� Exploitation is the process of using information gathered from previously visited points in the search space

to determine which places might be pro�table to visit next. Hill climbing is an example of exploitation,

because it investigates adjacent points in the search space, and moves in the direction giving the greatest

increase in �tness. Exploitation techniques are good at �nding local minima (or maxima). The GA uses

crossover as an exploitation mechanism.

� Exploration is the process of visiting entirely new regions of a search space, to see if anything promising

may be found there. Unlike exploitation, exploration involves leaps into unknown regions. Random search

is an example of exploration. Problems which have many local minima (or maxima) can sometimes only

be solved using exploration techniques such as random search. The GA uses mutation as an exploration

mechanism.

� A genotype represents a potential solution to a problem, and is basically the string of values chosen by

the user, also called chromosome.

� A phenotype is the meaning of a particular chromosome, de�ned externally by the user.

� Genetic drift is the name given to the changes in gene/allele frequencies in a population over many gener-

ations, resulting from chance rather than from selection. It occurs most rapidly in small populations and

can lead to some alleles to become extinct, thus reducing the genetic variability in the population.

� A niche is a group of individuals which have similar �tness. Normally in multiobjective and multimodal

optimization, a technique called sharing is used to reduce the �tness of those individuals who are in the same

niche, in order to prevent the population to converge to a single solution, so that stable sub-populations can

be formed, each one corresponding to a di�erent objective or peak (in a multimodal optimization problem)

of the function.

11

The basic operation of a Genetic Algorithm is illustrated in the following segment of pseudo-code:

17

generate initial population, G(0);

evaluate G(0);

t:=0;

repeat

t:=t+1;

generate G(t) using G(t-1);

evaluate G(t);

until a solution is found

First, an initial population is randomly generated. The individuals of this population will be a set of chromo-

somes or strings of characters (letters and/or numbers) that represent all the possible solutions to the problem.

We apply a �tness function to each one of these chromosomes in order to measure the quality of the solution

encoded by the chromosome. Knowing each chromosome's �tness, a selection process takes place to choose the

individuals (presumably, the �ttest) that will be the parents of the following generation. The most commonly

used selection schemes are the following:

18

� Proportionate Reproduction: This term is used generically to describe several selection schemes that

choose individuals for birth according to their objective function values f . In these schemes, the probability

of selection p of an individual from the ith class in the tth generation is calculated as

p

i;t

=

f

i

P

k

j=1

m

j;t

f

j

(29)

where k classes exist and the total number of individuals sums to n. Several methods have been suggested

for sampling this probability distribution, including Monte Carlo or roulette wheel selection,

19

stochastic

remainder selection

20

,

21

and stochastic universal selection

22

.

23

� Ranking Selection: In this scheme, proposed by Baker

24

the population is sorted from best to worst, and

each individual is copied as many times as it can, according to a non-increasing assignment function, and

then proportionate selection is performed according to that assignment.

� Tournament Selection: The population is shu�ed and then is divided into groups of k elements from

which the best individual (i.e., the �ttest) will be chosen. This process has to be repeated k times because

on each iteration only m parents are selected, where

m =

population size

k

For example, if we use binary tournament selection (k = 2), then we have to shu�e the population twice,

since in each stage half of the parents required will be selected. The interesting property of this selection

scheme is that we can guarantee multiple copies of the �ttest individual among the parents of the next

generation.

After being selected, crossover takes place. During this stage, the genetic material of a pair of individuals is

exchanged in order to create the population of the next generation. The two main ways of performing crossover

are called single-point and two-point crossover. When a single-point crossover scheme is used, a position of the

chromosome is randomly selected as the crossover point as indicated in Figure 5. When a two-point crossover

scheme is used, two positions of the chromosome are randomly selected as indicated in Figure 6.

Mutation is another important genetic operator that randomly changes a gene of a chromosome. If we use

a binary representation, a mutation changes a 0 to 1 and viceversa. This operator allows the introduction of

new chromosomic material to the population and, from the theoretical perspective, it assures that|given any

population|the entire search space is connected.

17

12

1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0

1 0 1 0 1 1 1 0

1 1 1 0 1 1 0 1

Cross-point Cross-point

Descendants

Figure 5: Use of a single-point crossover between two chromosomes. Notice that each pair of chromosomes

produces two descendants for the next generation. The cross-point may be located at the string boundaries, in

which case the crossover has no e�ect and the parents remain intact for the next generation.

1 0 1 1 0 1 1 1 1 0 1 1 1 0

1 0 1 0 1 1

1 1 1 1

Descendants

0 1

011 0

 Cross-points Cross-points

1 0

Figure 6: Use of a two-point crossover between two chromosomes. In this case the genes at the extremes are kept,

and those in the middle part are exchanged. If one of the two cross-points happens to be at the string boundaries,

a single-point crossover will be performed, and if both are at the string boundaries, the parents remain intact for

the next generation.

13

0 0 1 1 0 1 0 1 0 0 0 0

2 8 9 3 0 1

Representation of the number 289.301 using
floating point encoding

Representation of the number 289.301 using
binary encoding

1 0 0 01 1 1

Figure 7: Representing the same number using binary and
oating point encodings.

If we knew in advance the �nal solution, it would be trivial to determine how to stop a genetic algorithm.

However, as this is not normally the case, we have to use one of the two following criteria to stop the GA: either

give a �xed number of generations in advance, or verify when the population has stabilized (i.e., all or most of

the individuals have the same �tness).

5 Using MOSES

To solve the multiobjective optimization problem presented in this paper, a system developed by the authors

25

called MOSES (Multiobjective Optimization of Systems in the Engineering Sciences), was used. Several Mul-

tiobjective Optimization approaches based on genetic algorithms are implemented in MOSES. The main body

of the system is based on the Simple Genetic Algorithm (SGA) originally implemented by Goldberg

13

and then

translated to C by R. E. Smith and modi�ed by Je� Erickson. However, this C implementation had to be modi�ed

to support both binary and
oating point representations.

The traditional representation used by the genetic algorithms community is the binary scheme according to

which a chromosome is a string the form hb

1

; b

2

; : : : ; b

m

i, where b

1

; b

2

; : : : ; b

m

are called alleles (either zeros or

ones). Since the binary alphabet o�ers the maximum number of schemata per bit of information of any coding,

13

its use has became very popular among scientists. This coding also facilitates theoretical analysis of the technique

and allows elegant genetic operators. However, since the \implicit parallelism" property of GAs does not depend

on using bit strings

16

it is worthwhile to experiment with larger alphabets, and even with new genetic operators.

In particular, for optimization problems in which the parameters to be adjusted are continuous, a
oating point

representation scheme seems a logical choice. According to this representation, a chromosome is a string of the

form hd

1

; d

2

; : : : ; d

m

i, where d

1

; d

2

; : : : ; d

m

are digits (numbers between zero and nine). Consider the example

shown in Figure 7, in which the same value is represented using binary and
oating point encoding. Notice how

in Figure 7 the binary value shown in the chromosome is not a typical binary representation of a
oating point

number in which some bits would represent the mantissa, another portion the exponent and the �rst bit the sign.

The representation provided here is intended to be translated directly from binary to decimal, producing the

value 289301 in this case, which will become the desired value (238:301) when we divide it by a certain amount

(1000 in this example).

The term \
oating" may seem misleading since the position of the implied decimal point is at a �xed position,

and the term \�xed point representation" seems more appropriate. However, the reason that the term \
oating

point" is preferred is because in this representation each variable (representing a parameter to be optimized) may

have the point at any position along the string. This means that even when the point is �xed for each gene, is

not necessarily �xed along the chromosome. Therefore, some variables could have a precision of 3 decimal places,

14

while others are integers, and still they could all be represented with the same string. Nevertheless, the term

real-coded GAs is also used in the Literature

26

.

27

Floating point representation is faster and easier to implement,

and provides a higher precision than its binary counterpart, particularly in large domains, where binary strings

would be prohibitively long. One of the advantages of
oating point representation is that it has the property

that two points close to each other in the representation space must also be close in the problem space, and vice

versa.

16

This is not generally true in the binary approach, where the distance in a representation is normally

de�ned by the number of di�erent bit positions.

Goldberg

26

has presented a theory of convergence for real-coded or
oating-point GAs, and also real numbers

and other alphabets have been proposed,

27

particularly for numerical optimization, in a resemblance of the power

of evolutionary strategies

28

in this domain. As Eshelman and Scha�er

29

point out, a lot of researchers in the

GA community have agreed to use real-coded genetic algorithms for numerical optimization despite of the fact

that there are theoretical arguments that seem to show that small alphabets should be more e�ective than large

alphabets. Practitioners, on the other hand, have shown that real-coded genes work better in practice.

30

A few

attempts have been made to develop a theoretical defense of this representation scheme, from which the recent

work by Eshelman and Scha�er deserves special attention.

29

One of the main abilities of real-coded GAs is their

capacity to exploit the gradualness of functions of continuous variables (where gradualness is taken to mean that

small changes in the variables correspond to small changes in the function)

29

.

27

MOSES has an automatic encoding facility. The user can choose among three di�erent types of variables:

integer, discrete and real. The user has to provide the ranges of each variable (or the list of possible values

if the type discrete is used), and MOSES will automatically compute the length of the chromosome. MOSES

expects all the input from a �le, and it needs another �le to generate its output. The parameters of the GA

(maximum number of generations, maximum number of runs, population size, crossover rate, mutation rate,

maximum number of generations and random numbers seed) can be passed on the command line, but suitable

defaults are included in the program. The system was designed in a modular fashion, so that the user only has

to plug the particular decoding, report and �tness modules to start working. Everything else remains normally

the same, except for the code used for selection, which can be changed according to the user needs. The �tness

function used for this problem is the following:

t

1

=

�

�

�

f

0

1

�f

1

f

0

1

�

�

�

t

2

=

�

�

�

f

0

2

�f

2

f

0

2

�

�

�

t

3

=

�

�

�

f

0

3

�f

3

f

0

3

�

�

�

t

4

=

�

�

�

f

0

4

�f

4

f

0

4

�

�

�

t

5

=

�

�

�

f

0

1

�f

1

f

1

�

�

�

t

6

=

�

�

�

f

0

2

�f

2

f

2

�

�

�

t

7

=

�

�

�

f

0

3

�f

3

f

3

�

�

�

t

8

=

�

�

�

f

0

4

�f

4

f

4

�

�

�

if (t

1

> t

5

) z

1

= t

1

else z

1

= t

5

if (t

2

> t

6

) z

2

= t

2

else z

2

= t

6

if (t

3

> t

7

) z

3

= t

3

else z

3

= t

7

if (t

4

> t

8

) z

4

= t

4

else z

4

= t

8

z = w

1

z

1

+w

2

z

2

+ w

3

z

3

+w

4

z

4

fitness =

1

z

(30)

The weights w

i

were also chosen such that w

1

+w

2

+w

3

+w

4

= 1. Fifteen combinations of these four weights

were used to generate the best overall result. For all tests, except for one method, binary tournament selection

was used, together with double-point crossover, and a population size of 100 chromosomes. The methods included

in MOSES are discussed in the following section.

6 Monte Carlo Methods

The two Monte Carlo methods used by Osyczka

31

to �nd the min-max optimumwere also implemented in MOSES.

These methods are called exploratory because a point is generated by means of a rule which disregards the results

previously obtained. In particular, the Monte Carlo method picks up a certain number of points at random over

the estimated range of all the variables of the problem. This is done formally by obtaining the randomly selected

value for x

i

from the following formula

15

x

i

= x

a

i

+ �

i

(x

b

i

� x

a

i

) for i = 1; 2; : : : ; n (31)

where x

a

i

is the estimated or given lower limit for x

i

, x

b

i

is the estimated or given upper limit for x

i

, and �

i

is

a random number between zero and one. The same random number generator used by the genetic algorithm was

employed to implement the FORTRAN function RANF of the original program.

If the values of variables for l

a

points want to be generated, the random numbers �

i

for each point have to

be generated �rst, and then equation (31) should be used to obtain the values of the variables x

i

. After that,

each generated point has to be tested for violation and discard it if it is not a feasible solution. If the point is

in the feasible region, the objective function should be evaluated for that point. The best result is taken as the

minimum, and a new set of random numbers is generated for each of l

a

points.

The two Monte Carlo methods described by Osyczka

31

to �nd the min-max optimum are presented next.

6.1 Monte Carlo method 1

In this method, the space of variables is explored twice, �rst searching for the ideal vector

�

f

0

and then searching

for the min-max optimum. The algorithm is the following:

31

Do steps 1, 2, 3, 4, for l = 1; 2; : : : ; l

a

(1) Generate a random point �x

(l)

.

(2) If the point �x

(l)

is not in the feasible region go to 1, otherwise go to 3.

(3) Evaluate f

i

(�x

(l)

) for i = 1; 2; : : : ; k.

(4) Replace f

0

i

by f

i

(�x

(l)

) for every i for which f

i

(�x

(l)

) < f

0

i

.

Do steps 5, 6, 7, 8, for l = 1; 2; : : : ; l

a

(5) Generate a random point �x

(l)

.

(6) If the point x

(l)

is not in the feasible region go to 5, otherwise go to 7.

(7) Evaluate f

i

(�x

(l)

) for i = 1; 2; : : : ; k.

(8) Check if the point �x

(l)

is the min-max optimum.

6.2 Monte Carlo method 2

Here, the space of variables is explored only once, and the Pareto set is generated while searching for the ideal

vector

�

f

0

. Then, this set analyzed to check which solution is the min-max optimum. The algorithm is the

following:

31

Do steps 1, 2, 3, 4, 5, for l = 1; 2; : : : ; l

a

(1) Generate a random point �x

(l)

.

(2) If the point �x

(l)

is not in the feasible region go to 1, otherwise to 3.

(3) Evaluate f

i

(�x

(l)

) for i = 1; 2; : : : ; k.

(4) Replace f

0

i

by f

i

(�x

(l)

) for every i for which f

i

(�x

(l)

) < f

0

i

.

(5) Check if the point �x

(l)

is Pareto optimal.

Do steps 6, 7 for j = 1; 2; : : : ; j

a

(6) Evaluate f

i

(�x

p

j

) for i = 1; 2; : : : ; k.

(7) Check if the point �x

p

j

is the min-max optimum.

There are several trade-o�s between these two methods. For example, the second method uses less CPU time

than the �rst, because the space of variables is explored only once, but it also requires much more memory since the

whole Pareto set has to be stored. Obviously, the designer normally wants to analyze the entire Pareto set in order

to take a decision, but as I mentioned before, this set could be too large and the computational resources available

could be insu�cient for that sake. Osyczka recommends the reduction of this set by introducing constraints of

the form f

i

(�x) � f

0

i

for i = 1; 2; : : : ; k where values of f

0

i

are chosen by the designer.

The second method should be preferred for problems with a large number of constraints and for discrete

programming problems, because in those cases it is expected to have a small Pareto set. The main advantage

of exploratory methods in general is their
exibility, since they can be applied both to linear and non-linear

programming problems. However, they are normally recommended only for cases where a few decision variables

are handled because otherwise, they could take too long to �nd a reasonable good solution.

16

7 Osyczka's Multicriterion Optimization System

This system was developed at the Technical University of Cracow, and its FORTRAN implementation is provided

in Osyczka's book.

31

A C translation of that code was incorporated into MOSES, and its contents is explained

next.

Osyczka's system contains several multiobjective optimization methods:

� Min-max method : The equation

^

i 2 I

(z

i

(�x) = max fz

0

i

(�x); z

00

i

(�x)g (32)

is used to determine the elements of the vector �z(�x).

� Global Criterion method : The equation (24) is used as the global function.

� Weighting min-max method : This is a combination of the weighting method and the min-max approach

that can �nd the Pareto set of solutions for both convex and non-convex problems. The equation

^

i 2 I

(z

i

(�x) = maxfw

i

z

0

i

(�x); w

i

z

00

i

(�x)g) (33)

is used to determine the elements of vector �z(�x).

� Pure weighting method : The equation

min

k

X

i=1

w

i

f

i

(�x) (34)

is used to determine a preferred solution. In this equation, w

i

� 0 are the weighting coe�cients representing

the relative importance of the objectives.

� Normalized weighting method :

�

f(�x) is used in equation (34).

Since all these methods require the ideal vector, the user is given the choice of providing it, or letting the

system to �nd it automatically. For this purpose, the system includes two single criterion optimization

techniques:

1. The
exible tolerance (FT) method : Is a sequential method in which a point is established on the

basis of the previously obtained results. Based on this information, the method will know where

the minimum is likely to be so that the appropriate search direction may be established. Normally

sequential methods, even when are more e�cient and more highly developed than exploratory methods,

tend to be designed to solve only continuous convex problems. However, this particular method can

deal with non-linear models.

32

2. The direct and random search (DRS) method : It is a mixture of an exploratory and a sequential

method. The direct search method

33

starts from the point chosen by the user and seeks a minimum.

Then, a new starting point is generated at random and then the direct search method seeks a better

solution. The procedure is repeated n times, and each time the direct search method starts from a

new point where the value of n is given by the user. The best result from all searches is taken as the

minimum.

17

21 n. . .

gene performance

parentsGeneration(t) Generation(t+1)

select n
subgroups
using each
dimension of
performance
in turn

popsize

1

shuffle apply genetic
operators

popsize

1

STEP STEP STEP1 2 3

.

.

.

.

.

.

1

.

.

.

2

n

Figure 8: Schematic of VEGA selection.

8 GA-based Methods

Goldberg

13

indicates that the notion of genetic search in a multicriteria problem dates back to the late 60s, in

which Rosenberg's

34

study contained a suggestion that would have led to multicriteria optimization if he had

carried it out as presented. His suggestion was to use multiple properties (nearness to some speci�ed chemical

composition) in his simulation of the genetics and chemistry of a population of single-celled organisms. Since his

actual implementation contained only one single property, the multiobjective approach could not be shown in his

work, but it was a starting point for researchers interested in this topic.

Genetic algorithms require scalar �tness information to work, which means that when approaching multicriteria

problems, it is necessary to perform a scalarization of the objective vectors. One problem is that it is not always

possible to derive a global criterion based on the formulation of the problem. In the absence of information,

objectives tend to be given equivalent importance, and when there is some understanding of the problem, it is

possible to combine them according to the information available, probably assigning more importance to some

objectives. Optimizing a combination of the objectives has the advantage of producing a single compromise

solution, requiring no further interaction with the decision maker.

35

The problem is, that if the optimal solution

cannot be accepted, either because the function used excluded aspects of the problem which were unknown prior

to optimization or because an inappropriate setting of the coe�cients of the combining function was chosen,

additional runs may be required until a suitable solution is found.

8.1 VEGA

David Scha�er

36

extended Grefenstette's GENESIS program

37

to include multiple objective functions. Scha�er's

approach was to use an extension of the Simple Genetic Algorithm (SGA) that he called the Vector Evaluated

Genetic Algorithm (VEGA), and that di�ered of the �rst only in the way in which selection was performed.

This operator was modi�ed so that at each generation a number of sub-populations was generated by performing

proportional selection according to each objective function in turn. Thus, for a problem with k objectives, k sub-

populations of size N=k each would be generated, assuming a total population size of N . These sub-populations

would be shu�ed together to obtain a new population of size N , on which the GA would apply the crossover and

mutation operators in the usual way. This process is illustrated in Figure 8 (taken from Scha�er

36

).

18

8.2 Lexicographic ordering

The basic idea of this technique is that the designer ranks the objectives in order of importance. The optimum

solution is then found by minimizing the objective functions, starting with the most important one and proceeding

according to the order of importance of the objectives.

38

Fourman

39

suggested a selection scheme based on

lexicographic ordering. In a �rst version of his algorithm, objectives were assigned di�erent priorities by the user

and each pair of individuals were compared according to the objective with the highest priority. If this resulted

in a tie, the objective with the second highest priority was used, and so on. A second version of this algorithm,

reported to work surprisingly well,

35

consisted of randomly selecting the objective to be used in each comparison.

As in VEGA, this corresponds to averaging �tness across �tness components, each component being weighted

by the probability of each objective being chosen to decide each tournament.

35

However, the use of pairwise

comparisons makes an important di�erence with respect to VEGA, since in this case scale information is ignored.

Therefore, the population may be able to see as convex a concave trade-o� surface, depending on its current

distribution, and on the problem itself. This second version of the Lexicographic ordering algorithm was used in

MOSES.

8.3 Multiple Objective Genetic Algorithm (MOGA)

Fonseca and Fleming

40

have proposed a scheme in which the rank of a certain individual corresponds to the

number of chromosomes in the current population by which it is dominated. Consider, for example, an individual

x

i

at generation t, which is dominated by p

(t)

i

individuals in the current generation. Its current position in the

individuals' rank can be given by:

40

rank(x

i

; t) = 1 + p

(t)

i

(35)

All non-dominated individuals are assigned rank 1, while dominated ones are penalized according to the

population density of the corresponding region of the trade-o� surface.

Fitness assignment is performed in the following way:

40

1. Sort population according to rank.

2. Assign �tness to individuals by interpolating from the best (rank 1) to the worst (rank n

�

� N) in the way

proposed by Goldberg,

13

according to some function, usually linear, but not necessarily.

3. Average the �tnesses of individuals with the same rank, so that all of them will be sampled at the same

rate. This procedure keeps the global population �tness constant while maintaining appropriate selective

pressure, as de�ned by the function used.

8.4 Non-dominated Sorting Genetic Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srinivas and Deb,

41

and is based on

several layers of classi�cations of the individuals. Before the selection is performed, the population is ranked

on the basis of nondomination: all nondominated individuals are classi�ed into one category (with a dummy

�tness value, which is proportional to the population size, to provide an equal reproductive potential for these

individuals). To maintain the diversity of the population, these classi�ed individuals are shared with their dummy

�tness values. Then this group of classi�ed individuals is ignored and another layer of nondominated individuals

is considered. The process continues until all individuals in the population are classi�ed. A stochastic remainder

proportionate selection was used for this approach. Since individuals in the �rst front have the maximum �tness

value, they always get more copies than the rest of the population. This allows to search for nondominated

regions, and results in quick convergence of the population toward such regions. Sharing, by its part, helps to

distribute it over this region. The e�ciency of NSGA lies in the way multiple objectives are reduced to a dummy

�tness function using a nondominated sorting procedure. With this approach, any number of objectives can be

solved,

42

and both maximimization and minimization problems can be handled. Figure 9 (taken from Srinivas

and Deb

42

) shows the general
ow chart of this approach. This method is the only one implemented in MOSES

that does not use tournament selection, but uses the stochastic remainder method instead.

19

No

is

gen < maxgen

 ?
No

S T A R T

initialize

population

gen = 0

front = 1

classified ?

population
is identify

Nondominated
individuals

assign
dummy fitness

sharing in

current front

front = front + 1

 crossover

 mutation

S T O P

Yes

gen = gen + 1

reproduction

according to

dummy fitness

Yes

Figure 9: Flowchart of the Nondominated Sorting Genetic Algorithm (NSGA).

20

8.5 Niched Pareto GA

Horn and Nafpliotis

43

proposed a tournament selection scheme based on Pareto dominance. Instead of limiting

the comparison to two individuals, a number of other individuals in the population was used to help determine

dominance. When both competitors were either dominated or non-dominated (i.e., there was a tie), the result of

the tournament was decided through �tness sharing.

44

Population sizes considerably larger than usual were used

so that the noise of the selection method could be tolerated by the emerging niches in the population.

35

The pseudocode for Pareto domination tournaments assuming that all of the objectives are to be maximized

is presented below.

43

S is an array of the N individuals in the current population, random pop index is an array

holding the N indices of S, in a random order, and t

dom

is the size of the comparison set.

function selection /* Returns an individual from the current population S */

begin

shu�e(random pop index); /* Re-randomize random index array */

candidate 1 = random pop index[1];

candidate 2 = random pop index[2];

candidate 1 dominated = false;

candidate 2 dominated = false;

for comparison set index = 3 to t

dom

+ 3 do /* Select t

dom

individuals randomly from S */

begin

comparison individual = random pop index[comparison set index];

if S[comparison individual] dominates S[candidate 1]

then candidate 1 dominated = true;

if S[comparison individual] dominates S[candidate 2]

then candidate 2 dominated = true;

end /* end for loop */

if (candidate 1 dominated AND : candidate 2 dominated)

then return candidate 2;

else if (: candidate 1 dominated AND candidate 2 dominated)

then return candidate 1;

else

do sharing;

end

8.6 Hajela's Approach

Hajela and Lin

45

proposed the use of a utility function of the form:

�

U =

l

X

i=1

W

i

F

i

F

�

i

(36)

where F

�

i

are the scaling parameters for the objective criterion, l is the number of objective functions, and W

i

are the weighting factors for each objective function F

i

. In the current implementation, a min-max approach was

used to determine the utility function, so that the scaling factor was the ideal vector.

Hajela's approach also uses a sharing function of the form:

�(d

ij

) =

(

1�

�

d

ij

�

sh

�

�

; d

ij

< �

sh

0; otherwise

(37)

where � = 1 for this work, d

ij

is a metric indicative of the distance between designs i and j, and �

sh

is the

sharing parameter, which is typically chosen between 0.01 and 0.1. The �tness of a design i is then modi�ed as:

f

s

i

=

f

i

P

M

j=1

�(d

ij

)

(38)

21

where M is the number of designs located in vicinity of the i-th design.

Hajela incorporates weight combinations into the chromosomic string, so MOSES's implementation was ex-

tended to accomodate the additional genes required, according to the number of weight combinations provided

by the user. Under Hajela's representation, a single number represents not the weight itself, but a combina-

tion of weights. For example, the number 4 (under
oating point representation) could represent the vector

X

w

= (0:4; 0:6) for a problem with two objective functions. Then, sharing is done on the weights.

Finally, a mating restriction mechanism was imposed, to avoid members within a radius �

mat

to cross. The

value of �

mat

= 0:15 used by Hajela was adopted in MOSES's implementation.

8.7 An Approach Based on a Weighted Min-Max Strategy

This is really a variant of Hajela's idea, in which a few changes were introduced by the authors:

1. The initial population is generated in such a way that all their individuals constitute feasible solutions. This

can be ensured by checking that none of the constraints is violated by the solution vector encoded by the

corresponding chromosome.

2. The user should provide a vector of weights, which are used to spawn as many processes as weight com-

binations are provided (normally this number will be reasonably small). Each process is really a separate

genetic algorithm in which the given weight combination is used in conjunction with a min-max approach

to generate a single solution. It should be noticed that in this case the weights do not have to be encoded

in the chromosome as in Hajela's approach.

3. After the n processes are terminated (n=number of weight combinations provided by the user), a �nal �le

is generated containing the Pareto set, which is formed by picking up the best solution from each of the

processes spawned in the previous step.

4. Since this approach requires to know the ideal vector, the user is given the choice to provide such values

directly (in case he/she knows them) or to use another genetic algorithm to generate it. This additional

program works in a similar manner, spawning k processes (k=number of objective functions), where each

process corresponds to a genetic algorithm responsible for a single objective function. When all the processes

terminate, there will be a �le containing the ideal vector, which turns out to be simply the best values

produced by each one of the spawned processes.

5. The crossover and mutation operators were modi�ed to ensure that they produced only feasible solutions.

Whenever a child encodes an unfeasible solution, it is replaced by one of its parents.

6. Notice that the Pareto solutions produced by this method are guaranteed to be feasible, as opposed to the

other GA-based methods in which there could be convergence towards a non-feasible solution.

9 The GA optimizer for single-objective problems

Using the GA itself as an optimizer for single-objective problems is a controversial topic, mainly because the

di�culties found to adjust its parameters (i.e., population size, maximum number of generations, mutation and

crossover rate).

46

Since once of the goals of this work was to be able to produce a reliable design optimization

system, this is a natural problem to face. In practice, GA parameters are empirically adjusted in a trial and error

process that could take quite a long time in some cases.

During several months, a very simple methodology, explained below, has been tried with di�erent engineering

design optimization problems, and the results obtained so far

25

led to think that it was a reasonable choice to

use in MOSES. The method is the following:

� Choose a certain value for the random numbers seed and make it a constant.

� Make constants also the population size and the maximum number of generations (100 chromosomes and

50 generations, respectively are normally used).

22

Method x

1

x

2

x

3

x

4

f

1

f

2

f

3

f

4

Monte Carlo 1 0.19247 0.19511 34.9006 2.4059 103:11 39.30 708.72 236.49

Monte Carlo 1 0.02417 0.09112 18.9996 14.5462 214.30 29:85 795.79 434.79

Monte Carlo 1 0.04311 0.10200 0.00755 0.70932 135.1197 41.1169 385:88 205.76

Monte Carlo 1 0.01713 0.12098 29.5132 0.02916 127.45 41.90 658.27 194:94

Min-Max (OS) 0.19247 0.19511 34.9006 2.40593 103:11 39.30 708.72 236.49

Min-Max (OS) 0.02417 0.09112 18.9996 14.5462 214.30 29:85 795.79 434.79

Min-Max (OS) 0.04311 0.10200 0.07550 0.70932 135.12 41.12 385:88 205.76

Min-Max (OS) 0.01713 0.12098 29.5132 0.02916 127.45 41.90 658.27 194:94

GA (Binary) 0.1565 0.2000 35.0000 0.4095 92:82 41.25 679.78 201.59

GA (Binary) 0.1621 0.0963 22.4752 15.00 194.43 29:60 805.76 444.92

GA (Binary) 0.2000 0.1972 0.00340 0.0000 132.20 41.94 373:85 194.52

GA (Binary) 0.1419 0.0965 1.8294 0.0066 130.06 41.93 389.06 194:61

GA (FP) 0.1557 0.2000 35.00 0.9869 91:99 40.29 684.44 211.95

GA (FP) 0.2000 0.0930 35.00 15.00 168.03 29:59 890.92 443.34

GA (FP) 0.2000 0.2000 0.0000 0.0004 132.21 41.94 373:83 194.52

GA (FP) 0.2000 0.0096 35.00 0.0010 105.22 41.94 692.73 194:52

Literature 0.199 0.199 34.98 5.77 112:75 39.06 750.60 303.09

Literature 0.175 0.114 10.24 14.86 216.76 30:21 713.05 452.31

Literature 0.198 0.140 0.001 0.002 133.11 41.94 374:82 195.23

Literature 0.191 0.198 14.30 0.001 111.99 41.94 485.66 195:21

Table 2: Comparison of results computing the ideal vector for the design of a robot arm. For each method

the best results for optimum f

1

, f

2

, f

3

and f

4

are shown in boldface. OS stands for Osyczka's Multiobjective

Optimization System.

� Loop the mutation and crossover rates from 0:1 to 0:9 at increments of 0:1 (this is actually a nested loop).

This implies that 81 runs are necessary. In each step of the loop, the population is not reinitialized.

� For each run, update 2 �les. One contains only the �nal costs, and the other has a summary that includes,

besides the cost, the corresponding values of the design parameters and the mutation and crossover rates

used.

� When the whole process ends up, the �le with the costs is sorted in ascending order, and the smallest value

is searched in the other �le, returning the corresponding design parameters as the �nal answer.

10 Comparison of Results

First, the ideal vector was generated using each of the single objective optimization techniques included in

MOSES. The results are presented in Table 2. As can be seen from these results, the GA with
oating point

representation was able to �nd the complete ideal vector, obtaining even better results than those previously

reported in the literature.

1

It is interesting to notice that the results reported by Koski and Osyczka

1

using

CAMOS for computing the ideal vector are not any better than those obtained with Osyczka's Multiobjective

Optimization System,

31

which is an older program. Probably the reason for that is that the software used to

compute the ideal vector of this problem could had employed less digits of precision thanMOSES's implementation

of Osyczka's Multiobjective Optimization System, producing a discrepancy in their results. CAMOS is not part of

MOSES, so the results shown in Table 2 were taken directly from the literature.

1

Nevertheless, CAMOS achieves

a much better overall solution than any of the methods included in Osyczka's Multiobjective Optimization System

(see Table 3).

23

Method x

1

x

2

x

3

x

4

f

1

f

2

f

3

f

4

L

p

(f)

Ideal Vector 91.99 29.59 373.83 194.52 0.000000

Monte Carlo 1 0.18738 0.18074 13.47721 1.5555 117.68 39.74 505.73 221.24 1.112581

Monte Carlo 2 0.12276 0.17042 9.26852 0.33446 123.43 41.41 458.17 200.12 0.995563

Min-max (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680

GCM (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680

WMM (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680

PMM (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680

NMM (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680

GALC (B) 0.20000 0.20000 20.2738 0.0132 102.18 41.94 529.01 194.52 0.943299

GALC (FP) 0.20000 0.06450 35.0000 15.000 161.89 30.85 878.20 430.70 3.365909

Lexicographic (B) 0.04690 0.01970 10.5668 0.4671 129.19 41.29 414.91 202.44 0.950512

Lexicographic (FP) 0.20000 0.02720 35.0000 0.8189 105.00 41.74 694.10 197.74 1.425351

VEGA (B) 0.18010 0.08990 15.3888 0.4392 129.71 41.90 393.13 194.90 0.879695

VEGA (FP) 0.20000 0.01320 35.0000 0.0188 105.20 41.94 692.83 194.79 1.415545

NSGA (B) 0.13680 0.06090 20.9519 0.4369 115.61 41.69 465.15 197.78 0.926816

NSGA (FP) 0.14100 0.20000 35.0000 0.2221 93.16 41.48 676.66 199.22 1.248742

MOGA (B) 0.17370 0.00630 35.0000 9.1130 144.92 34.49 637.22 316.49 2.072441

MOGA (FP) 0.20000 0.08090 35.0000 15.000 165.01 29.73 885.55 438.00 3.418972

NPGA (B) 0.08520 0.04760 35.0000 0.6984 109.84 41.51 695.58 204.99 1.511325

NPGA (FP) 0.20000 0.20000 0.0009 15.000 227.94 29.75 631.28 449.13 3.480962

Hajela (B) 0.19990 0.11240 0.0391 0.1537 132.75 41.75 376.58 196.89 0.873619

Hajela (FP) 0.20000 0.20000 35.000 10.0624 166.52 47.46 841.71 394.29 3.692761

GAminmax1 (B) 0.16430 0.20000 0.0059 0.0006 132.20 41.94 373.87 194.52 0.172920

GAminmax1 (FP) 0.20000 0.20000 0.0300 0.0440 133.16 41.87 375.72 195.91 0.091128

Literature 0.10300 0.11400 0.1380 2.0800 141.63 39.46 408.89 228.29 0.194282

Table 3: Comparison of the best overall solution found by each one of the methods included in MOSES. GA-based

methods were tried with binary (B) and
oating point (FP) representations. The following abbreviations were

used: OS = Osyczka's System, GCM = Global Criterion Method (exponent=2.0), WMM (Weighting Min-max),

PWM (Pure Weighting Method), NWM (Normalized Weighting Method), GALC = Genetic Algorithm with a

linear combination of objectives using scaling. In all cases, weights were assumed equal to 0.25 (equal weight for

every objective).

24

Method w

1

w

2

w

3

w

4

f

1

f

2

f

3

f

4

x

1

x

2

x

3

x

4

L

p

(f)

Koski 0.25 0.25 0.25 0.25 138.88 38.93 510.18 268.92 0.186 0.198 7.95 4.06 0.3809

GA 0.25 0.25 0.25 0.25 133.16 41.87 375.73 195.92 0.200 0.200 0.029 0.045 0.2170

Koski 0.3 0.3 0.2 0.2 139.91 37.98 612.36 298.39 0.171 0.184 16.9 5.66 0.4737

GA 0.3 0.3 0.2 0.2 102.45 41.87 532.12 195.92 0.200 0.200 20.46 0.045 0.2431

Koski 0.35 0.35 0.15 0.15 152.99 37.74 667.45 336.62 0.194 0.182 19.6 7.59 0.5540

GA 0.35 0.35 0.15 0.15 96.99 40.70 581.09 209.56 0.200 0.200 25.055 0.853 0.2438

Koski 0.4 0.4 0.1 0.1 152.76 38.85 800.85 344.61 0.130 0.193 32.9 7.84 0.5793

GA 0.4 0.4 0.1 0.1 94.71 40.20 615.27 215.86 0.200 0.1778 27.689 1.237 0.2298

Koski 0.2 0.2 0.3 0.3 136.76 38.91 505.85 264.17 0.190 0.197 8.05 3.82 0.3711

GA 0.2 0.2 0.3 0.3 133.15 41.87 375.76 195.92 0.200 0.200 0.033 0.045 0.1742

Koski 0.15 0.15 0.35 0.35 139.62 38.63 457.88 245.80 0.200 0.200 0.039 0.044 0.2917

GA 0.15 0.15 0.35 0.35 133.14 41.87 375.79 195.91 0.200 0.200 0.039 0.044 0.1315

Koski 0.1 0.1 0.4 0.4 141.63 39.46 408.89 228.29 0.103 0.114 0.138 2.08 0.1943

GA 0.1 0.1 0.4 0.4 133.16 41.87 375.72 195.91 0.200 0.200 0.03 0.044 0.0911

Koski 0.5 0.1 0.2 0.2 99.44 41.46 592.53 202.09 0.172 0.093 26.5 0.45 0.2036

GA 0.5 0.1 0.2 0.2 98.91 41.88 553.41 195.84 0.200 0.200 23.244 0.04 0.1749

Koski 0.1 0.5 0.2 0.2 153.03 35.75 645.41 335.46 0.198 0.157 17.0 7.84 0.4584

GA 0.1 0.5 0.2 0.2 133.25 41.84 375.83 196.25 0.200 0.200 0.0 0.065 0.2533

Koski 0.4 0.2 0.2 0.2 121.99 38.42 606.99 258.65 0.148 0.182 20.6 3.6 0.3788

GA 0.4 0.2 0.2 0.2 98.91 41.87 553.44 195.91 0.200 0.200 23.243 0.044 0.2090

Koski 0.2 0.4 0.2 0.2 162.68 39.11 583.60 319.94 0.152 0.198 10.3 6.6 0.5215

GA 0.2 0.4 0.2 0.2 133.16 41.87 375.74 195.92 0.200 0.200 0.031 0.045 0.2566

Table 4: Pareto-optimal solutions for the robot arm whose mechanical model is shown in Figure 1.

25

The best trade-o� results obtained by each one of the methods included in MOSES for multiobjective opti-

mization were compared against each other, producing the results shown in Table 3. To evaluate these results,

the maximum deviation from the optimum was used as a parameter. This maximum deviation is de�ned by

L

p

(f) =

4

X

i=1

w

i

�

�

�

�

f

0

i

� f

i

(x)

�

i

�

�

�

�

(39)

where �

i

= f

0

i

,or f

i

(x), depending on which gives the maximum value for L

p

(f).

It should be mentioned that this expression will favor mathematical programming techniques and approaches

such as Hajela's and the new algorithm presented before, in which the emphasis is on obtaining the best overall

result. Further studies

25

have shown that techniques such as MOGA

35

are very successful at keeping the pop-

ulation of a GA from converging to a single solution, and can also obtain some reasonable overall results under

certain conditions not met by this problem. However, the goal of this work was to show that it was possible to

develop a GA-based technique that could compete with any mathematical programming technique in �nding the

best overall solution to a complex multiobjective optimization problem, while at the same time avoiding total

convergence of the population.

Table 3 shows the comparison of results using all the techniques implemented in MOSES and CAMOS,

1

including the newmethod based on the min-max algorithm. As can be seen, this new method found the best trade-

o� solution using both representations, surpassing even the mathematical programming techniques employed.

Floating point representation provided the best result of all using this new method, with a signi�cantly low total

deviation, showing the suitability of this representation for numerical optimization problems.

Also, the Pareto front was generated, using the eleven weights proposed by Koski et al.

1

using the new method

based on the min-max optimum, and the comparison of results is presented in Table 4. As can be seen, the new

technique consistently �nds better results than Koski's algorithm, proving its e�ciency in this domain. Only

oating point representation was used in this case with the new algorithm, since it has consistently provided with

better results in all the experiments performed so far.

The two main drawbacks of this new technique when compared to similar GA-based approaches are that the

user has to decide what are the weights to be employed and that the ideal vector has to be known. With respect

to the �rst drawback, it can be said that small sets (of a maximum of about 20 vectors of values) have proved

to be su�cient in practice, even when dealing with problems with higher search spaces.

25

With respect to the

second problem, it should be said that the ideal vector does not have to be known beforehand, since this algorithm

works with a utility function. This means that any set of values that are considered suitable can be employed,

even if they underestimate or overestimate the optima. Nevertheless, a module to compute the ideal vector using

either mathematical programming or GA-based single objective optimization techniques has also be included in

MOSES.

11 Future Work

Because of the intensive CPU time-consuming nature of this problem, it would be desirable to explore the use of

other techniques that can reduce the number of function evaluations, such as the approximation of functions by

low order polynomials over some small region.

47

In this case a computationally expensive function is evaluated at

a su�cient number of points to construct a low order polynomial approximation. Then, an iterative optimization

algorithm is used for �nding the minimum of the approximate function. At the point obtained the optimization

model is replaced by a new approximate model, and the process continues until the improvement in the objective

function can not be distinguished.

Another interesting path of research is to explore other possible alternatives to use genetic algorithms to solve

multiobjective optimization problems. In that respect, there has been some experimenting with another technique

also based on the min-max optimum but that does not require to have the ideal vector or any other set of target

values to compute the Pareto set.

25

This approach uses sharing to keep the GA from converging to a single

solution, but has still some di�culties to generate good trade-o�s in certain domains, and more work has to be

done in that respect.

26

12 Conclusions

A GA-based min-max approach has been proposed for a complex multiobjective optimization problem: a robot

arm balancing. Also, MOSES, a multiobjective design optimization system developed by the authors was intro-

duced as a powerful tool to apply di�erent mathematical programming and GA-based techniques to numerical

optimization problems. Its modularity makes it easy to expand it in the future to include new approaches as

required by the user's needs.

The problem analyzed in this paper has four objective functions to be minimized, and is highly non-convex.

Furthermore, the complex calculations involved consume a lot of CPU time, and make necessary the development

of heuristic techniques that need the least possible number of function evaluations. The great variation of the

results obtained show that this problem would be very di�cult to solve with pure random search, or with brute-

force techniques. Also, to �nd a reasonable heuristics seems a di�cult task given the factors previously mentioned,

and the possible presence of local minima. The GA has showed to be very consistent in this application, �nding

better compromise solutions for all the instances of the problem under consideration.

Finally, some other GA-based approaches seem suitable for this application, especially those in which a Pareto-

based selection is applied. However, time remains to be an issue to be considered in further applications of the GA

to this problem, and it would be desirable to explore techniques for reducing the number of function evaluations.

Nevertheless, the use of such a powerful heuristic should bring bene�ts to the robotics industry, and this work

should be seen as a small module of a larger system whose goal is to optimize the entire design process of a robot

arm.

References

1. J. Koski and A. Osyczka. Optimal counterweight balancing of robot arms using multicriteria approach. In

Hans Eschenauer, Juhani Koski, and Andrzej Osyczka, editors,Multicriteria Design Optimization. Procedures

and Applications, chapter 5, pages 151{167. Springer-Verlag, Berlin, Germany, 1990.

2. Charles P. Neuman and John J. Murray. The complete dynamic model and customized algorithms for the

puma robot. IEEE Transactions on Systems, Man, and Cybernetics, SMC-17(4):635{644, jul 1987.

3. B. Armstrong, O. Khatib, and J. Burdick. The explicit dynamic model and inertial parameters of the PUMA

560 arm. In Proceedings of the 1986 IEEE International Conference on Robotics and Automation, pages

510{518, San Francisco, California, apr 1986.

4. Andrzej Osyczka. Multicriteria optimization for engineering design. In John S. Gero, editor, Design Opti-

mization, pages 193{227. Academic Press, 1985.

5. L. M. Boychuck and V. O. Ovchinnikov. Principal methods for solution of multi-criteria optimization problems

(survey). Soviet Automatic Control, 6(3):1{4, 1973.

6. M. E. Salukvadze. On the existence of solution in problems of optimization under vector valued criteria.

Journal of Optimization Theory and Applications, 12(2):203{217, 1974.

7. P. Hajela. Genetic search{an approach to the nonconvex optimization problem. AIAA Journal, 28(7):1205{

1210, 1990.

8. H. A. Eschenauer, A. Osyczka, and E. Sch�afer. Interactive multicriteria optimization in design process. In

Hans Eschenauer, Juhani Koski, and Andrzej Osyczka, editors,Multicriteria Design Optimization. Procedures

and Applications, chapter 3, pages 71{114. Springer-Verlag, Berlin, 1990.

9. J. A. Nelder and R. A. Mead. Simplex method for function minimization. Computer Journal, 7:308{313,

1965.

10. Charles Darwin. The Origin of Species by Means of Natural Selection or the Preservation of Favored Races

in the Struggle for Life. The Book League of America, 1929. Originally published in 1859.

27

11. John H. Holland. Adaptation in Natural and Arti�cial Systems. Ann Harbor : University of Michigan Press,

1975.

12. John H. Holland. Adaptation in Natural and Arti�cial Systems. An Introductory Analysis with Applications

to Biology, Control and Arti�cial Intelligence. MIT Press, Cambridge, Massachusetts, 1992.

13. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Mass. :

Addison-Wesley Publishing Co., 1989.

14. John R. Koza. Genetic Programming. On the Programming of Computers by Means of Natural Selection.

The MIT Press, 1992.

15. Joerg Heitkoetter and David Beasley. The hitch-hiker's guide to evolutionary computation (faq in

comp.ai.genetic). USENET, sep 1995. (Version 3.3).

16. Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, second

edition, 1992.

17. Bill P. Buckles and Frederick E. Petry. Genetic Algorithms. Technology Series. IEEE Computer Society Press,

1992.

18. David E. Goldberg and Kalyanmoy Deb. A comparison of selection schemes used in genetic algorithms. In

G.J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 69{93. Morgan Kaufmann, San Mateo,

California, 1991.

19. A. K. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University

of Michigan, 1975.

20. L. B. Booker. Intelligent behavior as an adaptation to the task environment. Technical Report 243, University

of Michigan at Ann Arbor, Ann Arbor, Michigan, 1982.

21. A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, Department of Computer Science of

the University of Alberta, Alberta, Canada, 1981.

22. J. E. Baker. Reducing bias and ine�ciency in the selection algorithm. In John Grefenstette, editor, Proceedings

of the Second International Conference on Genetic Algorithms, pages 14{21, Hillsdale, New Jersey, 1987.

Lawrence Erlbaum Associates.

23. J. J. Grefenstette and J. E. Baker. How genetic algorithms work: A critical look at implicit parallelism. In

J. David Scha�er, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages

20{27, San Mateo, California, jun 1989. George Mason University, Morgan Kaufmann Publishers.

24. J. E. Baker. Adaptive selection methods for genetic algorithms. In J. J. Grefenstette, editor, Proceedings of

an International Conference on Genetic Algorithms and Their Applications, pages 100{111, Hillsdale, New

Jersey, 1985. Lawrence Erlbaum.

25. Carlos Artemio Coello Coello. Multiobjective Engineering Design Optimization using Genetic Algorithms.

PhD thesis, Department of Computer Science, Tulane University, May 1996. (to be published).

26. David E. Goldberg. Real-coded genetic algorithms, virtual alphabets and blocking. Technical Report 90001,

University of Illinois at Urbana-Champaign, Urbana, Illinois, sep 1990.

27. Alden H. Wright. Genetic algorithms for real parameter optimization. In Gregory J. E. Rawlins, editor,

Foundations of Genetic Algorithms, pages 205{218. Morgan Kaufmann Publishers, San Mateo, California,

1991.

28. H. P. Schwefel. Numerical Optimization of Computer Models. John Wiley and sons, Great Britain, 1981.

28

29. Larry J. Eshelman and J. Davis Scha�er. Real-coded genetic algorithms and interval-schemata. In L. Darrell

Whitley, editor, Foundations of Genetic Algorithms 2, pages 187{202. Morgan Kaufmann Publishers, San

Mateo, California, 1993.

30. Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, New York,

1991.

31. Andrzej Osyczka. Multicriterion Optimization in Engineering with FORTRAN programs. Ellis Horwood

Limited, 1984.

32. David M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill Book Company, New York, 1972.

33. R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical problems. Journal of the ACM,

8:221{230, 1961.

34. R. S. Rosenberg. Simulation of genetic populations with biochemical properties. PhD thesis, University of

Michigan, Ann Harbor, Michigan, 1967.

35. Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary algorithms in multiobjective optimiza-

tion. Technical report, Department of Automatic Control and Systems Engineering, University of She�eld,

She�eld, U. K., 1994.

36. J. David Scha�er. Multiple objective optimization with vector evaluated genetic algorithms. In Genetic

Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms,

pages 93{100. Lawrence Erlbaum, 1985.

37. J. J. Grefenstette. GENESIS: A system for using genetic search procedures. In Proceedings of the 1984

Conference on Intelligent Systems and Machines, pages 161{165, 1984.

38. S. S. Rao. Multiobjective optimization in structural design with uncertain parameters and stochastic processes.

AIAA Journal, 22(11):1670{1678, nov 1984.

39. M. P. Fourman. Compaction of symbolic layout using genetic algorithms. In Genetic Algorithms and their Ap-

plications: Proceedings of the First International Conference on Genetic Algorithms, pages 141{153. Lawrence

Erlbaum, 1985.

40. Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for Multiobjective Optimization: Formula-

tion, Discussion and Generalization. In Stephanie Forrest, editor, Proceedings of the Fifth International

Conference on Genetic Algorithms, pages 416{423, San Mateo, California, 1993. University of Illinois at

Urbana-Champaign, Morgan Kau�man Publishers.

41. N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in genetic algorithms.

Technical report, Department of Mechanical Engineering, Indian Institute of Technology, Kanput, India,

1993.

42. N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Nondominated Sorting in Genetic Al-

gorithms. Evolutionary Computation, 2(3):221{248, fall 1994.

43. J. Horn and N. Nafpliotis. Multiobjective Optimization using the Niched Pareto Genetic Algorithm. Technical

Report IlliGAl Report 93005, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993.

44. David E. Goldberg and J. Richardson. Genetic algorithm with sharing for multimodal function optimiza-

tion. In J. J. Grefenstette, editor, Genetic Algorithms and Their Applications: Proceedings of the Second

International Conference on Genetic Algorithms, pages 41{49. Lawrence Erlbaum, 1987.

45. P. Hajela and C. Y. Lin. Genetic search strategies in multicriterion optimal design. Structural Optimization,

4:99{107, 1992.

29

46. J. J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems,

Man, and Cybernetics, 16(1):122{128, 1986.

47. A. Osyczka and J. Zajac. Multicriteria optimization of computationally expensive functions and its appli-

cations to robot spring balancing mechanism design. In Hans Eschenauer, Juhani Koski, and Andrzej Osy-

czka, editors, Multicriteria Design Optimization. Procedures and Applications, chapter 5.2, pages 168{183.

Springer-Verlag, Berlin, 1990.

30

