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Abstract. This paper presents a critical review of the most impor-
tant evolutionary-based multiobjective optimization techniques devel-
oped over the years, emphasizing the importance of analyzing their Op-
erations Research roots as a way to motivate the development of new ap-
proaches that exploit the search capabilities of evolutionary algorithms.
Each technique is briefly described mentioning its advantages and disad-
vantages, their degree of applicability and some of their known applica-
tions. Finally, the future trends in this discipline and some of the open
areas of research are also addressed.
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1 Introduction

Since the pioneer work of Rosenberg in the late 60s regarding the possibility
of using genetic-based search to deal with multiple objectives, this new area of
research (now called evolutionary multiobjective optimization) has grown con-
siderably as indicates the notable increment (mainly in the last 15 years) of
technical papers in peer-reviewed journals, special sessions in international con-
ferences and interest groups in the Internet?.

Multiobjective optimization is with no doubt a very important research topic
both for scientists and engineers, not only because of the multiobjective nature of
most real-world problems, but also because there are still many open questions in
this area. In fact, there is not even a universally accepted definition of “optimum”
as in single-objective optimization, which makes it difficult to even compare
results of one method to another, because normally the decision about what the
“best” answer is corresponds to the so-called (human) decision maker.

* Most of this work was performed while the author was affiliated to the Plymouth
Engineering Centre, in the United Kingdom.

! The author maintains a list on Evolutionary Multiobjective Optimization at:
http://www.lania.mx/ ccoello/EMO0/EMOObib.html



Evolutionary algorithms seem particularly desirable to solve multiobjective
optimization problems because they deal simultaneously with a set of possible
solutions (the so-called population) which allows to find an entire set of Pareto
optimal solutions in a single run of the algorithm, instead of having to perform
a series of separate runs as in the case of the traditional mathematical program-
ming techniques. Additionally, evolutionary algorithms are less succeptible to
the shape or continuity of the Pareto front, whereas these two issues are a real
concern for mathematical programming techniques.

Surprisingly, despite the considerable volume of research in evolutionary mul-
tiobjective optimization in the last 15 years, there have been only two surveys
of this area published in the technical literature?: Tamaki et al. [91], which is
a very short and quick review of some of the main approaches, and Fonseca
and Fleming [18, 21] which is a remarkable account of the issues that make
this problem interesting from the evolutionary computing perspective. In both
cases, however, little detail was provided on how each method worked, just a few
applications of each technique were mentioned and their corresponding Opera-
tions Research roots were only scarcely mentioned. Furthermore, several other
approaches have arisen since the publication of these 2 papers, and the intention
of the present work is to provide researchers and students interested in this topic
with an updated survey that can be used (to a certain extent) as a self-contained
document for anyone interested in this area who has a previous (at least basic)
knowledge of genetic algorithms in general. Those who may need additional in-
formation about genetic algorithms should refer to Goldberg [27], Holland [35],
Michalewicz [54], and Mitchell [56] for more information.

2 Statement of the Problem

Multiobjective optimization (also called multicriteria optimization, multiperfor-
mance or vector optimization) can be defined as the problem of finding [65]:

a vector of decision variables which satisfies constraints and optimizes a
vector function whose elements represent the objective functions. These
functions form a mathematical description of performance criteria which
are usually in conflict with each other. Hence, the term “optimize” means
finding such a solution which would give the values of all the objective
functions acceptable to the designer.

Formally, we can state it as follows:

Find the vector z* = [zf,wg,...,w;‘l]’r which will satisfy the m inequality
constraints:

g(z)>0 i=12,....m (1)

2 Right after the submission of this paper, David A. Van Veldhuizen and Gary B.
Lamont made available a technical report [99] that contains another remarkable
survey of the area that complements the material contained in this paper.



the p equality constraints

hi(2)=0 i=1,2,...,p (2)

and optimizes the vector function

F(@) = [A1(@), f2(2), .., fu(@)]" (3)

where Z = [z1, z3,. .. ,wn]T is the vector of decision variables.

In other words, we wish to determine from among the set F of all num-
bers which satisfy (1) and (2) the particular set z7,z3,...,z} which yields the
optimum values of all the objective functions.

2.1 Pareto Optimum

The concept of Pareto optimum was formulated by Vilfredo Pareto in the XIX
century [66], and constitutes by itself the origin of research in multiobjective
optimization. We say that a point z* € F is Pareto optimal if for every z € F
either,

2, (fi(z) = fi(z") (4)

or, there is at least one ¢ € I such that

fi(2) > fi(z") (5)

In words, this definition says that z* is Pareto optimal if there exists no fea-
sible vector Z which would decrease some criterion without causing a simultane-
ous increase in at least one other criterion. Unfortunately, the Pareto optimum
almost always gives not a single solution, but rather a set of solutions called
non-inferior or non-dominated solutions.

2.2 Pareto Front

The minima in the Pareto sense are going to be in the boundary of the design
region, or in the locus of the tangent points of the objective functions. In Fig. 1, a
bold line is used to mark this boundary for a biobjective problem. The region of
points defined by this bold line is called the Pareto Front. In general, it is not easy
to find an analytical expression of the line or surface that contains these points,
and the normal procedure is to compute the points F* and their corresponding
f(]:k) When we have a sufficient amount of these, we may proceed to take the
final decision.



Fig. 1. An example of a problem with two objective functions. The Pareto front is
marked with a bold line.

3 Approaches That Use Aggregating Functions

The notion of genetic search in a multicriteria problem dates back to the late
60s, in which Rosenberg’s [80] study contained a suggestion that would have led
to multicriteria optimization if he had carried it out as presented. His suggestion
was to use multiple properties (nearness to some specified chemical composition)
in his simulation of the genetics and chemistry of a population of single-celled
organisms. Since his actual implementation contained only one single property,
the multiobjective approach could not be shown in his work, but it neverthe-
less showed the possibility of using an evolutionary-based technique to handle
multiple objective functions.

Knowing that a genetic algorithm needs scalar fitness information to work, it
is almost natural to propose a combination of all the objectives into a single one
using either an addition, multiplication or any other combination of arithmetical
operations that we could devise. There are, however, obvious problems with this
approach. The first is that we have to provide some accurate scalar information
on the range of the objectives, to avoid having one of them to dominate the
others. This implies that we should know, to a certain extent, the behavior of
each of the objective functions, which is normally (at least in most real-world
applications) a very expensive process (computationally speaking) that we can
not afford in most cases. Obviously, if this combination of objectives is possible
(and it is possible in some applications), this is not only the simplest approach,
but also is one of the most efficient procedures, because no further interaction



with the decision maker is required, and if the GA succeeds at optimizing the
resulting fitness function, then the results will be at least sub-optimum in most
cases.

The approach of combining objectives into a single function is normally de-
nominated aggregating functions, and it has been attempted several times in the
literature with relative success in problems in which the behavior of the objec-
tive functions is more or less well-known. This section includes the most popular
aggregating approaches.

3.1 Weighted Sum Approach

This method consists of adding all the objective functions together using different
weighting coeflicients for each one of them. This means that our multiobjective
optimization problem is transformed into a scalar optimization problem of the
form:

k
min szfz(i) (6)
i=1
where w; > 0 are the weighting coefficients representing the relative impor-
tance of the objectives. It is usually assumed that

k
Z’wi =1 (7)

Since the results of solving an optimization model using (6) can vary signifi-
cantly as the weighting coefficients change, and since very little is usually known
about how to choose these coefficients, a necessary approach is to solve the same
problem for many different values of w;. But in this case, the designer is still, of
course, confronted with the decision of having to choose the most appropriate
solution based on his/her intuition.

Note that the weighting coefficients do not reflect proportionally the relative
importance of the objectives, but are only factors which, when varied, locate
points in the Pareto set. For the numerical methods that can be used to seek
the minimum of (6), this location depends not only on the w; values, but also
on the units in which the functions are expressed.

If we want w; to reflect closely the importance of the objectives, all func-
tions should be expressed in units of approximately the same numerical values.
Additionally, we can also transform (6) to the form:

min Z w; fi(Z)es (8)

where ¢; are constant multipliers that will scale properly the objectives.
The best results are usually obtained if ¢; = 1/f?. In this case, the vec-
tor function is normalized to the form f(z) = [f1(Z), f2(Z),-- ., fr(Z)]T, where

fi(@) = fi(@)/ 1.



Applications

— Syswerda and Palmucci [90] used weights in their fitness function to add
or subtract values during the schedule evaluation of a resource scheduler,
depending on the existence or absence of penalties (constraints violated).

— Jakob et al. [41] used a weighted sum of the several objectives involved in a
task planning problem : to move the tool center point of an industrial robot
to a given location as precisely and quickly as possible, avoiding certain
obstacles and aiming to produce a path as smooth and short as possible.

— Jones et al. [42] used weights for their genetic operators in order to reflect
their effectiveness when a GA was applied to generate hyperstructures from
a set of chemical structures.

— Wilson & Macleod [103] used this approach as one of the methods incorpo-
rated into a GA to design multiplierless IIR filters in which the two conflict-
ing objectives were to minimize the response error and the implementation
cost of the filter.

— Liu et al. [51] used this technique to optimize the layout and actuator place-
ment of a 45-bar plane truss in which the objectives were to minimize the
linear regulator quadratic control cost, the robustness and the modal con-
trollability of the controlled system subject to total weight, asymptotical
stability and eigenvalues constraints.

— Yang and Gen [104] used a weighted sum approach to solve a bicriteria
linear transportation problem. More recently, Gen et al. [25, 26] extended
this approach to allow more than two objectives, and added fuzzy logic to
handle the uncertainty involved in the decision making process. A weighted
sumn is still used in this approach, but it is combined with a fuzzy ranking
technique that helps to identify Pareto solutions, since the coefficients of
the objectives are represented with fuzzy numbers reflecting the existing
uncertainty regarding their relative importance.

Strengths and Weaknesses

This method was the first technique developed for the generation of non-inferior
solutions for multiobjective optimization. This is an obvious consequence of the
fact that it was implied by Kuhn and Tucker in their seminal work on numerical
optimization [45]. The main strength of this method is its efficiency (compu-
tationally speaking), and can be applied to generate a strongly non-dominated
solution that can be used as an initial solution for other techniques. Its main
weakness is the difficulty to determine the appropriate weights when we do not
have enough information about the problem. In this case, any optimal point ob-
tained will be a function of the coefficients used to combine the objectives. Most
researchers prefer to use a simple linear combination of the objectives and then
generate the trade-off surface® by varying the weights. This approach is very

3 The term “trade-off” in this context refers to the fact that we are trading a value of
one objective function for a value of another function or functions.



simple and easy to implement, but it has the disadvantage of missing concave
portions of the trade-off curve (in other words, the approach does not gen-
erate proper Pareto optimal solutions in the presence of non-convex
search spaces) [77], which is a serious drawback in most real-world applications.

3.2 Goal Programming

Charnes and Cooper [5] and Ijiri [39] are credited with the development of the
goal programming method for a linear model, and have played a key role in
applying it to industrial problems. In this method, the decision maker has to
assign targets or goals that he/she wishes to achieve for each objective. These
values are incorporated into the problem as additional constraints. The objective
function will then try to minimize the absolute deviations from the targets to
the objectives. The simplest form of this method may be formulated as follows

[16]:

k
min Z |fi(Z) = T3], subjecttoz e F (9)
=1

where T; denotes the target or goal set by the decision maker for the :th
objective function f;(z), and F represents the feasible region. The criterion,
then, is to minimize the sum of the absolute values of the differences between
target values and actually achieved values. A more general formulation of the
goal programming objective function is a weighted sum of the pth power of
the deviation |f;(Z) — T3| [32]. Such a formulation has been called generalized
goal programming [37, 38]. This technique has also been called “target vector
optimization” by other authors [12].

Applications

— Wienke et al. [102] used this approach in combination with a genetic algo-
rithm to optimize simultaneously the intensities of six atomic emission lines
of trace elements in alumina powder as a function of spectroscopic excitation
conditions.

— Eric Sandgren [82] also used goal programming coupled with a genetic algo-
rithm to optimize plane trusses and the design of a planar mechanism.

Strengths and Weaknesses

This technique will yield a dominated solution if the goal point is chosen in
the feasible domain [16]. Its main strength is its efficiency (computationally
speaking) in case we know the desired goals that we wish to achieve, and if they
are in the feasible region. However, its main weakness is that the decision maker is
given the task of devising the appropriate weights or priorities for the objectives
that will eliminate the non-commensurable characteristics of the problem, which
in most cases is difficult unless there is prior knowledge about the shape of the



search space. Also, if the feasible region is difficult to approach, this method could
become very inefficient. Nevertheless, this technique may be useful in cases in
which a linear or piecewise-linear approximation of the objective functions can
be made, because of the availability of excellent computer programs for that, and
the possibility of eliminating dominated goal points easily. On the other hand,
in non-linear cases, other approaches may be more efficient.

3.3 Goal Attainment

In this approach, a vector of weights wy, wa, ..., wy relating the relative under- or
over-attainment of the desired goals must be elicited from the decision maker in
addition to the goal vector by, bs, ..., by for the objective functions fi, f2,..., fk.
To find the best-compromise solution z*, we solve the following problem:

Minimize « (10)
subject to:
g;(2)<0; j=12,....,m
where « is a scalar variable unrestricted in sign and the weights wq, w2, ..., w

are normalized so that

k
> lwil =1 (12)
i=1
If some w; = 0 (i = 1,2,...,k), it means that the maximum limit of objec-

tives f;(z) is b;.

It can be easily shown [6] that the set of non-dominated solutions for a
problem can be generated by varying the weights, with w; > 0 (i = 1,2,...,k)
even for nonconvex problems.

It should be pointed out that the optimum value of o will inform the decision
maker of whether the goals are attainable or not. A negative value of « implies
that the goal of the decision maker is attainable and an improved solution will
be obtained. Otherwise, if @ > 0, then the decision maker goal is unattainable.

Applications

— Wilson & MacLeod [103] used this approach as another of the methods
incorporated into their GA to design multiplierless IIR filters.



Strengths and Weaknesses

As Wilson and MacLoud [103] indicate, goal attainment has several weaknesses,
from which probably the main one is the misleading selection pressure that it can
generate in some cases. For example, if we have two candidate solutions which
are the same in one objective function value but different in the other, they will
still have the same goal-attainment value for their two objectives, which means
that for the GA none of them will be better than the other. Its main advantage
is the simplicity of its implementation and its computational efficiency.

3.4 The e-Constraint Method

This method is based on minimization of one (the most preferred or primary)
objective function, and considering the other objectives as constraints bound by
some allowable levels g;. Hence, a single objective minimization is carried out for
the most relevant objective function f; subject to additional constraints on the
other objective functions. The levels €; are then altered to generate the entire
Pareto optima set. The method may be formulated as follows:

(1) Find the minimum of the rth objective function, i.e., find £* such that

Fr(Z7) = ™ £, (7) (13)

subject to additional constraints of the form

fi(Z) <e; fori=1,2,...,k andi#r (14)

where ¢; are assumed values of the objective functions which we wish not to
exceed.

(2) Repeat (1) for different values of ;. The information derived from a well
chosen set of ¢; can be useful in making the decision. The search is stopped when
the decision maker finds a satisfactory solution.

It may be necessary to repeat the above procedure for different indices r.

To get adequate ¢; values, single-objective optimizations are normally carried
out for each objective function in turn by using mathematical programming
techniques (or independent GAs). For each objective function f; (i = 1,2,...,k),
there is an optimal design vector Z; for which f;(Z}) is a minimum. Let f;(Z})
be the lower bound on ¢;, i.e.

> filE@) i=1,2...r—1r+1,... k (15)

and f;(Z) be the upper bound on ¢;, i.e.

g <fi(z) i=1,2,....,r—=Lr+1,... .k (16)

When the bounds ¢; are too low, there is no solution and at least one of these
bounds must be relaxed.

This approach was suggested by Ritzel and Wayland [77] as a simple and
naive way of solving multiobjective optimization problems using a GA. The idea



was to code the GA in such a way that all the objectives, except for one, were
kept constant (constrained to a single value), and the remaining objective would
then become the fitness function for the GA. Thus, through a process of running
the GA numerous times with different values of the constrained objectives, a
trade-off surface can be developed.

Applications

— Quagliarella and Vicini [71] suggested the use of this technique coupled with
a hybrid GA (a genetic algorithm that used gradient based optimization
techniques to speed up the search in order to reduce the computational cost
required in a real-world application) to solve multiobjective optimization
problems.

— Ranjithan et al. [72] used this approach to solve groundwater pollution con-
tainment problems.

— Loughlin and Ranjithan [52] used a variation of this technique in which
they incorporated target satisfaction levels (similar to those used in Goal
Programming), and combined it with a neighboorhood selection procedure
according to which only individuals within a certain radius were allowed to
mate (individuals in the population were indexed and placed in a matrix
format). Additional genetic operators such as elitism and dynamic scaling
of the target satisfaction levels were also implemented. Loughlin and Ran-
jithan applied this technique to a real-world air quality management problem
with two conflicting objectives: minimize the cost of controlling air pollutant
emissions and maximize the amount of emissions reduction (this is a combi-
natorial problem that is suitable for integer programming techniques).

Strengths and Weaknesses

The most obvious weakness of this approach is that it is time-consuming, and
the coding of the objective functions may be difficult or even impossible for
certain problems, particularly if there are too many objectives. Furthermore,
this method tends to find weakly non-dominated solutions, which may not be
appropriate in some applications (e.g., structural optimization). Nevertheless,
the relative simplicity of the technique (its main strength) has made it popular
among some GA practitioners.

4 Other Approaches Not Based on The Notion of Pareto
Optimum

To overcome the difficulties involved in the aggregating approaches, much work
has been devoted to the development of alternative techniques based on popula-
tion policies or special handling of the objectives [70]. Some of the most popular
approaches that fall into this category will be examined in this section.



Generation (t) Generation (t+1)

Individual 1 Sub-popu- Individual 1 Individual 1
lation 1
Individual 2 Individual 2 Individual 2
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Individual 3 lation 2 Individual 3 Individual 3
* Create Sub-popu- | gnyffle * Apply *
E— lation 3 —_— E
* Sub-popu- entire * genetic *
. lations . population . operators .
Sub-popu-
Individual N lation M Individual N Individual N
Initial Population M sub-populations Individuals are now Start all over again
Size N are created mixed

Fig. 2. Schematic of VEGA selection. It is assumed that the population size is N and
that there are M objective functions.

4.1 VEGA

David Schaffer [83] extended Grefenstette’s GENESIS program [31] to include
multiple objective functions. Schaffer’s approach was to use an extension of the
Simple Genetic Algorithm (SGA) that he called the Vector Evaluated Genetic
Algorithm (VEGA), and that differed of the first only in the way in which se-
lection was performed. This operator was modified so that at each generation
a number of sub-populations was generated by performing proportional selec-
tion according to each objective function in turn. Thus, for a problem with k
objectives, k sub-populations of size N/k each would be generated (assuming a
total population size of N). These sub-populations would be shuffled together to
obtain a new population of size N, on which the GA would apply the crossover
and mutation operators in the usual way. This process is illustrated in Fig. 2.
Schaffer realized that the solutions generated by his system were non-dominated
in a local sense, because their non-dominance was limited to the current pop-
ulation, and while a locally dominated individual is also globally dominated,
the converse is not necessarily true [83]. An individual who is not dominated in
one generation may become dominated by an individual who emerges in a later
generation. Also, he noted a problem that in genetics is known as “speciation”
(i.e., we could have the evolution of “species” within the population which excel
on different aspects of performance). This problem arises because this technique
selects individuals who excel in one dimension of performance, without looking
at the other dimensions. The potential danger doing that is that we could have



individuals with what Schaffer calls “middling” performance? in all dimensions,

which could be very useful for compromise solutions, but that will not survive
under this selection scheme, since they are not in the extreme for any dimension
of performance (i.e., they do not produce the best value for any objective func-
tion, but only moderately good values for all of them). Speciation is undesirable
because it is opposed to our goal of finding a compromise solution. Schaffer sug-
gested some heuristics to deal with this problem. For example, to use a heuristic
selection preference approach for non-dominated individuals in each generation,
to protect our “middling” chromosomes. Also, crossbreeding among the “species”
could be encouraged by adding some mate selection heuristics instead of using
the random mate selection of the traditional GA.

Applications

— Ritzel and Wayland [77] used a variation of VEGA in which they incorpo-
rated a parameter to control the selection ratio. In the case of the ground-
water pollution containment problem that Ritzel and Wayland solved, there
were only two objectives, and the selection ratio was defined as the ratio of
the fraction of strings selected on the basis of the first objective (reliability)
to the fraction selected via the second objective (cost).

— Surry et al. [89] proposed an interesting application of VEGA to model con-
straints in a single-objective optimization problem to avoid the need of a
penalty function. Surry et al., however, modified the standard procedure of
VEGA and introduced a form of ranking based on the number of constraints
violated by a certain solution, and they reported that their approach worked
well in the optimization of gas supply networks, since the tendency of VEGA
to favor certain solutions can actually be an advantage when handling con-
straints, because in that case we want to favor precisely any solution that
does not violate any constraint over those which do.

— Cvetkovi¢ et al. [13] proposed several approaches to overcome VEGA'’s prob-
lems. For example, to wait for a certain amount of generations before shuf-
fling together the population, or avoid shuffling the individuals, and instead
copy or migrate a certain amount of individuals from one sub-population to
another. They used these and other traditional multiobjective optimization
approaches for preliminary airframe design.

— Tamaki et al. [92, 91] developed a technique in which at each generation,
non-dominated individuals in the current population are kept for the follow-
ing generation. This approach is really a mixture of Pareto selection (see next
section) and VEGA, because if the number of non-dominated individuals is
less that the population size, the remainder of the population in the follow-
ing generation is filled applying VEGA to the dominated individuals. On
the other hand, if the number of the non-dominated individuals exceeds the
population size, individuals in the following generation are selected among

* By “middling”, Schaffer meant an individual with acceptable performance, perhaps
above average, but not outstanding for any of the objective functions.



the non-dominated individuals using VEGA. In a later version of this algo-
rithm, called Pareto Reservation strategy, Tamaki et al. [91] used also fitness
sharing among the non-dominated individuals to maintain diversity in the
population.

Strengths and Weaknesses

Although Schaffer reported some success, and the main strength of this approach
is its simplicity, Richardson et al. [76] noted that the shuffling and merging of all
the sub-populations corresponds to averaging the fitness components associated
with each of the objectives. Since Schaffer used proportional fitness assignment
[27], these fitness components were in turn proportional to the objectives them-
selves [18]. Therefore, the resulting expected fitness corresponded to a linear
combination of the objectives where the weights depended on the distribution of
the population at each generation as shown by Richardson et al. [76]. The main
consequence of this is that when we have a concave trade-off surface certain
points in concave regions will not be found through this optimization proce-
dure in which we are using just a linear combination of the objectives, and it has
been proved that this is true regardless of the set of weights used [76]. Therefore,
the main weakness of this technique is its inability to produce Pareto-optimal
solutions in the presence of non-convex search spaces.

4.2 Lexicographic Ordering

In this method, the objectives are ranked in order of importance by the designer.
The optimum solution Z* is then obtained by minimizing the objective functions,
starting with the most important one and proceeding according to the assigned
order of importance of the objectives.

Let the subscripts of the objectives indicate not only the objective function
number, but also the priority of the objective. Thus, f1(Z) and fi(Z) denote
the most and least important objective functions, respectively. Then the first
problem is formulated as

Minimize fi(Z) (17)
subject to
9i(2)<0; j=12,....,m (18)

and its solution Z7 and f; = (Z7) is obtained. Then the second problem is
formulated as

Minimize fo(Z) (19)

subject to



gi(z) <0; j=12,....m (20)
fi@) = f1 (21)
and the solution of this problem is obtained as z; and f5 = f2(z3). This pro-

cedure is repeated until all £ objectives have been considered. The ith problem
is given by

Minimize f;(%) (22)

subject to
gi(2)<0; j=12,....m (23)
H@y=f, 1=1,2,...,i—-1 (24)

The solution obtained at the end, i.e., z}, is taken as the desired solution z*
of the problem.

Applications

— Fourman [24] suggested a selection scheme based on lexicographic ordering.
In a first version of his algorithm, objectives were assigned different priorities
by the user and each pair of individuals were compared according to the
objective with the highest priority. If this resulted in a tie, the objective with
the second highest priority was used, and so on. In another version of this
algorithm (that apparently worked quite well), an objective was randomly
selected at each run. Fourman used this approach to design compact symbolic
layouts [24].

— Kursawe [47] formulated a multiobjective version of evolution strategies [84]
(ESs) based on lexicographic ordering. Selection consisted of as many steps
as objective functions had the problem. At each step, one of these objectives
was selected randomly according to a probability vector, and used to delete
a fraction of the current population. After selection, the survivors became
the parents of the next generation. The map of the trade-off surface was
produced from the points evaluated during the run. Since the environment
was allowed to change over time, diploid individuals were necessary to keep
recessive information stored.

Strengths and Weaknesses

Selecting randomly an objective is equivalent to a weighted combination of ob-
jectives, in which each weight is defined in terms of the probability that each
objective has of being selected. However, the use of tournament selection with
this approach makes an important difference with respect to other approaches



such as VEGA, because the pairwise comparisons of tournament selection will
make scaling information neggligible [18, 21]. This means, that this approach
may be able to see as convex a concave trade-off surface, although that really
depends on the distribution of the population and on the problem itself. Its main
weakness is that this approach will tend to favor more certain objectives when
many are present in the problem, because of the randomness involved in the pro-
cess, and this will have the undesirable consequence of making the population
to converge to a particular part of the Pareto front rather than to delineate it
completely [12]. However, its simplicity (its main strength) makes it competitive
with a weighted sum of objectives and VEGA.

4.3 Use of Game Theory

X2
S= Shaded Region
Constant f;
contours \
Constant f,
contours
) R
2 Increasing
f2
Increa-
sing f;
: X
X, '

Fig. 3. Example of cooperative and non-cooperative game solutions.

We can analyze this technique with reference to a simple optimization prob-
lem with two objectives and two design variables whose graphical representation
is shown in Fig. 3. Let fi(z1,22) and fa(z1,z2) represent two scalar objectives



and z; and z2 two scalar design variables. It is assumed that one player is
associated with each objective. The first player wants to select a design vari-
able z; which will minimize his objective function f;, and similarly the second
player seeks a variable zo which will minimize his objective function fs5. If f;
and f> are continuous, then the contours of constant values of f; and f; appear
as shown in Fig. 3. The dotted lines passing through O; and O, represent the
loci of rational (minimizing) choices for the first and second player for a fixed
value of x5 and 1, respectively. The intersection of these two lines, if it exists,
is a candidate for the two objective minimization problem, assuming that the
players do not cooperate with each other (non-cooperative game). In Fig. 3, the
point N(z},z3) represents such intersection point. This point, known as a Nash
equilibrium solution, represents a stable equilibrium condition in the sense that
no player can deviate unilaterally from this point for further improvement of
his/her own criterion [57].
This point has the characteristic that

filat,23) < fi(wa,23) (25)

and

fa(@1,25) < faw],m2) (26)

where z; may be to the left or right of z7 in (25) and z; may lie above or

below z3 in (26).

Applications

— Périaux et al. [68] proposed a GA-based approach that uses the concept

of Nash equilibrium to solve a biobjective optimization problem (the op-
timal distribution of active control elements which minimizes the backsca-
tering of aerodynamic reflectors). The main idea of this work was to use 2
non-cooperative players represented by 2 independent sub-populations in a
genetic algorithm, and then make them to interact in the following way:
If f; and f> are the 2 objectives to be optimized, let P; and P represent
the 2 non-cooperative players. We start at generation zero with P; trying
to optimize f; while fs remains fixed and P» trying to optimize f» while f;
remains fixed. After one generation is over (i.e., when all the individuals in
both populations have been evaluated and the genetic operators have been
applied independently to each of those populations), we send (or migrate) the
best individual from population 1 to population 2 and the best individual
from population 2 to population 1. This process is repeated for as many
generations as needed, until the Nash equilibrium is reached.

Strenghts and Weaknesses

The main strength of this approach is that it seems to be very efficient (computa-
tionally speaking), but in the state presented in the work by Périaux et al. [68] is



not possible to generate more than one non-dominated solution which, hopefully
will be the best overall solution to the problem®. However, it is indeed possible
to extend this approach to k players (where k is the number of objectives of a
problem), and to have several Nash equilibrium points, with which the Pareto
front can actually be found, although a cooperative game may be preferred in
that case over a non-cooperative approach [75, 74].

4.4 Using Gender to Identify Objectives

Robin Allenson [2] used a population-based approach modelled after VEGA in
which gender was used to distinguish between the two objective functions of a
problem counsisting of the planning of a route composed of a number of straight
pipeline segments. With this approach, only male-female mating was allowed,
and such gender was randomly assigned at birth. In the initial population, Al-
lenson made sure that there was an equal number of males and females, but such
balance was not kept after applying the genetic operators. At each generation,
the worst individual (chosen according to one of the two genders) was eliminated
and replaced by another (randomly picked) individual of the same gender. Allen-
son used evolution strategies to implement some form of sexual attractors that
would modify the way in which mating was performed. The idea was to model
the sexual attraction that some individuals have over others in nature, which
determines a not so random mating.

Lis and Eiben [50] also incorporated gender in their GA, but in a more general
sense. In this case, the number of genders (or sexes), was not limited to two, but
it could be as many as objectives we had. Another distinction of this approach
is that the crossover operator was modifed as to allow panmictic reproduction,
in which several parents generate a single child (instead of having two parents
generate two children as in the traditional genetic algorithm). The idea was to
select one parent from each sex to contribute to the generation of a child. This
child will have the sex of the parent that contributed with the largest amount
of genes (if there is a tie, then the sex is randomly chosen from the parents that
contributed the same amount of genes). If no crossover takes place, then one of
the individuals in the old generation is copied exactly the same (including its
sex) to the following generation. In this approach, individuals are evaluated using
different fitness functions (according to their corresponding sex). The mutation
operator is only slightly restricted to avoid changes in the sex of an individual. As
generations progress, a list of non-dominated individuals is updated, removing
from it any individual that is no longer non-dominated after the list is modified.
At the end, this list will contain the Pareto optimal solutions.

Applications

— Lis and Eiben [50] tested successfully their approach with the two multi-
objective optimization problems provided in the paper by Srinivas and Deb

5 Périaux et al. did not succeed at that in the example presented in their paper.



[86], but no further applications of this technique seem to be available at the
moment.

Strengths and Weaknesses

The use of genders is really another way of defining separate subpopulations
for each objective. The difference of this approach with VEGA [83] lies on the
fact that Lis and Eiben used panmictic crossover, which imposes certain mat-
ing restrictions, avoiding the random crossing among different subpopulations
performed by Schaffer. However, the main weakness of this approach is that as
we increase the number of objectives (or genders), we will have many subpop-
ulations and panmictic crossover will become more inefficient (computationally
speaking), because we will need to use more parents to generate a child. Ad-
ditionally, the population size will have to be large enough as we increase the
number of objectives, to keep a reasonably diverse spread of genders across the
entire population.

4.5 Weighted Min-max Approach

The idea of stating the min-maz optimum and applying it to multiobjective
optimization problems, was taken from game theory, which deals with solving
conflicting situations. The min-max approach to a linear model was proposed by
Jutler [43] and Solich [85], and was further developed by Osyczka [59, 60, 64],
Rao [73] and Tseng and Lu [95].

The min-max optimum compares relative deviations from the separately at-
tainable minima. Consider the #th objective function for which the relative de-
viation can be calculated from

o @) = £

@) = s )
or from

b L@ = )

“@0="Ta )

It should be clear that for (27) and (28) we have to assume that for every
1 € I and for every z € F, f;(Z) #0.

If all the objective functions are going to be minimized, then equation (27)
defines function relative increments, whereas if all of them are going to be max-
imized, it defines relative decrements. Equation (28) works conversely.

Let 2(Z) = [z1(Z), ..., 2z(%), ..., 2z,(Z)]T bea vector of the relative increments
which are defined in R*. The components of the vector z(z) will be evaluated
from the formula

Vier(zi(7)) = maz {z;(%), 2 (1)} (29)



Now we define the min-max optimum as follows [64]:

A point Z* € F is min-max optimal, if for every Z € F the following recur-
rence formula is satisfied:

Step 1:

v(27) =T T E(E)} (30)
and then I; = {i1}, where i; is the index for which the value of z(Z) is
maximal.
If there is a set of solutions z; C F which satisfies Step 1, then
Step 2:

w(e)= Mn Mz ) (31)
and then I» = {i1,i2}, where iy is the index for which the value of z;(z) in
this step is maximal.
If there is a set of solutions z,,_; C F which satisfies step r — 1 then
Step r:

v (T7) = ITZ'Tn_l e Z’f‘;mjr_l {zi(Z)} (32)
and then I, = {I,_1,%,}, where i, is the index for which the value of z;(Z)
in the rth step is maximal.
If there is a set of solutions z;_; C F which satisfies Step k& — 1, then
Step k:

v(27) = ijﬁlzl(i) . Tiaflk_l forieland e & It (33)
where v1(Z%),...,vE(Z) is the set of optimal values of fractional deviations
ordered non-increasingly.

This optimum can be described in words as follows. Knowing the extremes
of the objective functions which can be obtained by solving the optimization
problems for each criterion separately, the desirable solution is the one which
gives the smallest values of the relative increments of all the objective functions.

The point z* € F which satisfies the equations of Steps 1 and 2 may be
called the best compromise solution considering all the criteria simultaneously
and on equal terms of importance.

Applications

— Hajela and Lin [33] included the weights of each objective in the chromosome,
and promoted their diversity in the population through fitness sharing. Their
goal was to be able to simultaneously generate a family of Pareto optimal
designs corresponding to different weighting coefficients in a single run of the
GA. Besides using sharing, Hajela and Lin used a vector evaluated approach



based on VEGA to achieve their goal. They proposed the use of a utility
function of the form:

l F
u=>" WF— (34)
i=1 2

where F; are the scaling parameters for the objective criterion, ! is the
number of objective functions, and W; are the weighting factors for each
objective function Fj.

Hajela’s approach also uses a sharing function of the form:

di; \*
B(dij) = {3)_ (Fi) s < o (35)

, otherwise

with a = 1, and ospgre chosen between 0.01 and 0.1. The fitness of a design
72 is then modified as:

fi
= = ——— 36
g Zj‘i1 ¢(dij) ( )

where M is the number of designs located in the vicinity of the :-th design.
Under Hajela’s representation, weight combinations are incorporated into
the chromosomic string, and a single number represents not the weight itself,
but a combination of weights. For example, the number 4 (assuming integer
representation) could represent the vector X,, = (0.4, 0.6) for a problem with
two objective functions. Then, sharing is done on the weights.

Finally, a mating restriction mechanism was imposed, to avoid members
within a radius 0,4 to cross. The value of g,,4: = 0.15 was suggested by
Hajela and Lin in their paper [33].

Hajela and Lin [33] used their approach to optimize a 10-bar plane truss
in which weight and displacement were to be minimized, and a wing-box
structure in which they wanted to minimize its weight while maximizing its
natural frequency.

Strengths and Weaknesses

The main weakness of this approach is that it can create a very high selection
pressure if certain combinations of weights are produced at early stages of the
search [12]. The use of sharing will avoid to a certain extent to have a premature
convergence, but the use of a sharing factor (which is not easy to determine)
increases the number of parameters required by the GA, and is therefore sub-
ject to further experimenting. Its main weakness is its simplicity and efficiency,
because it does not require to check for non-dominance.



4.6 Two Variations of the Weighted Min-Max Strategy

Coello [12, 11] proposed two variations of the weighted min-max strategy used
by Hajela and Lin. In his first approach, the decision maker has to provide a
predefined set of weights that will be used to spawn several small subpopulations
that will evolve separately (and concurrently), trying to converge to a single
point of the Pareto front each. Mating restrictions were imposed to guarantee
feasibility of all the solutions, and constraints were handled by not allowing
the generation of any infeasible solutions through the evolution process (death
penalty). This approach also requires the knowledge of the ideal vector, or some
estimate of it that lies in the feasible region.

In a second approach, Coello [12] proposed the use of a local ideal vector
that was computed at each generation, and the selection process was modified
as to allow the incorporation of min-max dominance. That means that a certain
individual would be considered the winner of a tournament if its maximum de-
viation from the ideal vector was the smallest from the set under competition.
Also, mating restrictions were imposed to keep only feasible solutions at all gen-
erations. Finally, sharing had to be used to overcome the high selection pressure
introduced by the use of min-max tournament selection.

Applications

— Coello and Christiansen applied these two approaches to the optimization
of I-beams [8] and manufacturing problems [9], and to the design of a robot
arm [10].

Strengths and Weaknesses

The main strength of this technique is its efficiency and relative simplicity. The
use of weights is its main weakness because it is not always easy to find an ap-
propriate set that can delineate correctly the part of the Pareto region that we
wish to find. However, Coello [12] showed through several engineering design ex-
amples that it was actually possible to find a good approximation of the Pareto
front with a relatively small amount of weights chosen systematically (using a
deterministic technique). The use of mating restrictions and feasibility checks
during the entire evolution process may be seen as an important weakness, since
it has been shown that such constraint-handling approach will not work in con-
cave search surfaces. However, this was an attempt to incorporate the handling
of constraints into the search process in another way different from the tradi-
tional penalty approach, and it does not preclude the algorithm from handling
constraints in a different manner.

The second approach, in which weights are not used, is much more efficient
and produces good Pareto fronts [12]. However, its main weakness is its depen-
dence on the value of ogpere, but the idea of using a utility function that is
dynamically modified, as in this case, has also been exploited more recently by
other researchers [96, 4, 30].



4.7 Use of the Contact Theorem to Detect Pareto Optimal
Solutions

Osyczka and Kundu [62] proposed the use of an algorithm based on the contact
theorem (one of the main theorems in multiobjective optimization [49]) to de-
termine relative distances of a solution vector with respect to the Pareto set. In
this paper [62], the contact theorem was used to determine the fitness of each
individual in the population.

This approach is in a way, very similar to the Min-Max approach previously
described, only that in this case no weights are required for each objective, nor
a sharing function is needed to keep diversity in the population®.

Applications

— Although the GA-based technique presented by Osyczka and Kundu [62]
has not been applied to real-world problems (they used only two simple
biobjective optimization functions in their paper), Osyczka’s algorithm for

detecting Pareto optimality has been applied before to several problems,
mainly in machine design [63, 59, 60, 61, 64].

Strengths and Weaknesses

The main strengths of this approach are its efficiency and relative simplicity.
Additionally, it does not require an explicit sharing function. However, its main
weakness is that it is highly sensitive to the values of the penalty factor used
to incorporate the constraints into each objective function, and its performance
relies heavily on the so-called starting distance, which is some sort of scaling
factor used to compare relative quality among the different solutions. If any
of these 2 values is not chosen properly, too much selection pressure may be
generated, or the GA may often jump back and forth between the feasible and
infeasible regions at any given generation, producing too many dominated points
in the process, and consequently losing portions of the Pareto front.

4.8 A Non-Generational Genetic Algorithm

Valenzuela-Rendén & Uresti-Charre [96] proposed a GA that uses non-generational
selection and in which the fitness of an individual is calculated incrementally.
The idea comes from Learning Classifier Systems (LCS) [27], in which it has
been shown that a simple replacement of the worst individual in the population
followed by an update of fitnesses of the rest of the population works better than
a traditional (generational) GA. In the context of multiobjective optimization,
what Valenzuela-Renddén and Uresti-Charre did was to transform the problem
with N objectives into another one with only two objectives : the minimiza-
tion of domination count (weighted average of the number of individuals that

 The algorithm used by Osyczka to identify Pareto optimal solutions and the contact
theorem are described in detail in his book [64].



have dominated this individual so far) and the minimization of the moving niche
count (weighted average of the number of individuals that lie close according
to a certain sharing function). Then, this biobjective optimization problem is
transformed into a single objective optimization problem by taking a linear com-
bination of these 2 objectives.

Applications

— Valenzuela-Rendén and Uresti-Charre [96] obtained better results than NPGA
[36] (see below) in 3 biobjective optimization problems, both in terms of the
number of points in the Pareto front at the final iteration, and in terms of
the total number of function evaluations. However, no further comparisons
with other methods or in problems with more objectives was provided.

Strengths and Weaknesses

This approach is really a more elaborate version of the weighted ranking tech-
niques used by Bentley and Wakefield [4] (particularly the technique that they
called weighted average ranking—WAR). The main strength of this approach
is that it seems to provide good distributions in an efficient manner using well-
known techniques taken from LCS. However, its main weakness is that it does
not seem feasible to incorporate in this approach preferences of the objectives
defined by the decision maker, which may be a drawback in real-world appli-
cations. Also, it does not seem clear how to define the additional parameters
required by this algorithm, which apparently require an empirical fine tuning as
the other normal parameters of the GA (e.g., crossover and mutation rates).

4.9 Use of Randomly Generated Weights and Elitism

Ishibuchi and Murata [40] proposed an algorithm similar to Hajela’s weighted
min-max technique, but the weights were generated in a slightly different way in
this case, and the set of non-dominated solutions produced at each generation
was kept separately from the current population.

Applications

— Ishibuchi and Murata [40] used this technique to solve biobjective optimiza-
tion flowshop scheduling problems in which the makespan and maximum
tardiness were to be minimized.

Strengths and Weaknesses

This approach is very similar to the technique called Sum of Weighted Rations
(SWR) by Bentley and Wakefield [4] and to the attribute value functions used
by Greenwood et al. [30]. Bentley and Wakefield [4] claim that this approach



maintains enough diversity as to keep a wide spread of solutions through many
generations. However, Coello [12] has shown (using a similar approach), that
such spread may not be kept in problems in which there is an objective in the
ideal vector that can be easily achieved by a wide set of solutions. In such case,
it is necessary to use sharing techniques or a local search technique (as proposed
by Ishibuchi and Murata [40]) to keep diversity, which constitutes the main
weakness of this approach.

Bentley and Wakefield [4] showed also another variation of this algorithm
called Sum of Weighted Global Ratios (SWGR)) which visibly reduces the spread
of solutions produced (i.e., the size of the Pareto set) by using the globally best
and worst values instead of the current ones. The idea is nevertheless interesting
and its main strength is that the implementation of this algorithm seems to be
not only easy, but also quite efficient with respect to most of the Pareto-based
approaches described next.

5 Pareto-Based Approaches

The idea of using Pareto-based fitness assignment was first proposed by Goldberg
[27] to solve the problems of Schaffer’s approach. He suggested the use of non-
dominated ranking and selection to move a population toward the Pareto front in
a multiobjective optimization problem. The basic idea is to find the set of strings
in the population that are Pareto non-dominated by the rest of the population.
These strings are then assigned the highest rank and eliminated from further
contention. Another set of Pareto nondominated strings are determined from
the remaining population and are assigned the next highest rank. This process
continues until the population is suitably ranked. Goldberg also suggested the
use of some kind of niching technique to keep the GA from converging to a single
point on the front. A niching mechanism such as sharing [29] would allow the
GA to maintain individuals all along the non-dominated frontier.

Applications

— Hilliard et al. [34] used a Pareto optimality ranking method to handle the
objectives of minimizing cost and minimizing delay in a scheduling prob-
lem. They tentatively concluded that the Pareto optimality ranking method
outperformed the VEGA method.

— The Pareto method was found to be superior to a VEGA by Liepins et al.
[48] when applied to a variety of set covering problems.

— Ritzel et al. [77] also used non-dominated ranking and selection combined
with deterministic crowding [53] as the niching mechanism. They applied
the GA to a groundwater pollution containment problem in which cost and
reliability were the objectives. Though the actual Pareto front was unknown,
Ritzel et al. used the best trade-off surface found by a domain-specific al-
gorithm, called MICCP (Mixed Integer Chance Constrained Programming),
to compare the performance of the GA. They found that selection according



to Pareto non-domination was superior to both VEGA and non-domination
with deterministic crowding, at least for finding points near or on the front
found by MICCP.

— Stanley and Mudge [88] implemented Goldberg’s Pareto ranking technique to
solve a microprocessor design problem in which the constraints were handled
as additional objectives.

Strengths and Weaknesses

The main weakness of Pareto ranking in general is that there is no efficient algo-
rithm to check for non-dominance in a set of feasible solutions [12]. Traditional
algorithms have serious degradation in performance as we increase the size of
the population and the number of objectives. Also, the use of sharing requires
to estimate the value of o4pgre, Which is not easy, and the performance of the
method relies a lot on such value. However, Pareto ranking is the most appropri-
ate way to generate an entire Pareto front in a single run of the GA and its main
strength is that the approach is less succeptible to the shape or continuity of the
Pareto front, whereas these two issues are a serious concern for mathematical
programiming techniques.

5.1 Multiple Objective Genetic Algorithm

Fonseca and Fleming [17] have proposed a scheme in which the rank of a certain
individual corresponds to the number of chromosomes in the current population
by which it is dominated. Consider, for example, an individual z; at generation
t, which is dominated by pgt) individuals in the current generation. Its current
position in the individuals’ rank can be given by [17]:
rank(z;,t) =1 +p§t) (37)

All non-dominated individuals are assigned rank 1, while dominated ones are
penalized according to the population density of the corresponding region of the
trade-off surface.

Fitness assignment is performed in the following way [17]:

1. Sort population according to rank.

2. Assign fitness to individuals by interpolating from the best (rank 1) to the
worst (rank n < N) in the way proposed by Goldberg [27], according to
some function, usually linear, but not necessarily.

3. Average the fitnesses of individuals with the same rank, so that all of them
will be sampled at the same rate. This procedure keeps the global population
fitness constant while maintaining appropriate selective pressure, as defined
by the function used.

As Goldberg and Deb [28] point out, this type of blocked fitness assignment
is likely to produce a large selection pressure that might produce premature con-
vergence. To avoid that, Fonseca and Fleming used a niche-formation method



to distribute the population over the Pareto-optimal region, but instead of per-
forming sharing on the parameter values, they have used sharing on the objective
function values [87].

Applications

— Chen Tan and Li [93] reported success in the use of MOGA for the multi-
objective optimization of ULTIC controllers that satisfy a number of time
domain and frequency domain specifications. Also, Chipperfield and Fleming
[7] reported success in using MOGA for the design of a multivariable control
system for a gas turbine engine.

— Obayashi [58] used Pareto ranking with phenotypic sharing and best-N se-
lection (the best N individuals are selected for the next generation among
N parents and N children) for the aerodynamic design of compressor blade
shapes.

— Rodriguez Vazquez et al. [78] extended MOGA to use it in genetic pro-
gramming, introducing the so-called MOGP (Multiple Objective Genetic
Programming). Genetic programming [44] replaces the traditional linear
chromosomic representation by a hierarchical tree representation that, by
definition, is more powerful, but also requires larger population sizes and
specialized operators. MOGP was used for the identification of non-linear
model structures, as an alternative that the authors reported to work better
(in terms of representation power) than the use of the conventional linear
representation of MOGA that they had attempted before [22].

— Aherne et al. [1] used MOGA to optimize the selection of parameters for an
object recognition scheme called the Pairwise Geometric Histogram paradigm.

— Todd and Sen [94] used a variant of MOGA for the preplanning of con-
tainership layouts (a large scale combinatorial problem). In Todd and Sen’s
approach, a population of non-dominated individuals is kept and updated
at each generation, removing individuals that become dominated and du-
plicates. The traditional genetic operators and sharing are applied only to
this population. Niche sizes are computed automatically for each criterion
by substracting the maximum value for that criterion from the minimum
and dividing it by the population size. Crossover was restricted so that only
individuals that were very similar could mate, and because of the permu-
tations encoded, a repair algorithm had to be used afterwards. Finally, a
heuristic mutation that basically defined rules to exchange bit positions had
to be used to avoid premature convergence of the population.

Strenghts and Weaknesses

It has been cited in the literature [87, 14] that the main weakness of MOGA is
that it performs sharing on the objective value space, which implies that two
different vectors with the same objective function values can not exist simul-
taneously in the population under this scheme. This is apparently undesirable,
because these are precisely the kind of solutions that the user normally wants.



However, nothing in the algorithm precludes it from performing sharing the pa-
rameter value space, and apparently this choice has been taken in some of the
applications reported above.

The main strenghts of MOGA is that is efficient and relatively easy to imple-
ment [12]. Its main weakness is that, as all the other Pareto ranking techniques,
its performance is highly dependent on an appropriate selection of the shar-
ing factor. However, it is important to add that Fonseca and Fleming [17] have
developed a good methodology to compute such value for their approach.

5.2 Non-Dominated Sorting Genetic Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srini-
vas and Deb [86], and is based on several layers of classifications of the indi-
viduals. Before selection is performed, the population is ranked on the basis
of nondomination: all nondominated individuals are classified into one category
(with a dummy fitness value, which is proportional to the population size, to
provide an equal reproductive potential for these individuals). To maintain the
diversity of the population, these classified individuals are shared with their
dummy fitness values. Then this group of classified individuals is ignored and
another layer of nondominated individuals is considered. The process continues
until all individuals in the population are classified. A stochastic remainder pro-
portionate selection was used for this approach. Since individuals in the first
front have the maximum fitness value, they always get more copies than the rest
of the population. This allows to search for nondominated regions, and results
in quick convergence of the population toward such regions. Sharing, by its part,
helps to distribute it over this region. The efficiency of NSGA lies in the way
in which multiple objectives are reduced to a dummy fitness function using a
nondominated sorting procedure. With this approach, any number of objectives
can be solved [87], and both maximimization and minimization problems can be
handled.

Applications

— Périaux et al. [68] used the NSGA to find an optimal distribution of active
control elements which minimizes the backscattering of aerodynamic reflec-
tors.

— Vedarajan et al. [97] used the NSGA for investment portfolio optimization,
but interestingly they used binary tournament selection instead of stochas-
tic remainder selection as suggested by Srinivas and Deb [86]. The authors
claim that this approach worked well in their examples, although they do
not provide any argument for their choice of selection strategy. Tournament
selection is expected to introduce a high selection pressure that may di-
lute the effect of sharing. However, since Vedarajan et al. used fairly large
population sizes (above 1000 individuals), the counter-effect of tournament
selection may had been absorbed by the extra individuals in the population.

— Michielssen and Weile [55] used also the NSGA to design an electromagnetic
system.



Strengths and Weaknesses

The main strengths of this technique is that can handle any number of objectives,
and that does sharing iin the parameter value space instead of the objective value
space, which ensures a better distribution of individuals, and allows multiple
equivalent solutions exist. Some researchers [12] have reported that its main
weakness is that it is more inefficient (both computationally and in terms of
quality of the Pareto fronts produced) than MOGA, and more sentitive to the
value of the sharing factor o spqre. Other authors [106, 105] report that the NSGA
performed quite well in terms of “coverage” of the Pareto front (i.e., it spreads in
a more uniform way the population over the Pareto front) when applied to the
0/1 knapsack problem, but in their experiments no comparisons with MOGA
were provided.

5.3 Niched Pareto Genetic Algorithm

Horn and Nafpliotis [36] proposed a tournament selection scheme based on
Pareto dominance. Instead of limiting the comparison to two individuals, a
number of other individuals in the population was used to help determine dom-
inance (typically around 10). When both competitors were either dominated or
non-dominated (i.e., there was a tie), the result of the tournament was decided
through fitness sharing [29]. Population sizes considerably larger than usual with
other approaches were used so that the noise of the selection method could be
tolerated by the emerging niches in the population [18].

Horn and Nafpliotis [36] arrived at a form of fitness sharing in the objective
domain, and suggested the use of a metric combining both the objective and the
decision variable domains, leading to what they called nested sharing.

Applications

— Belegundu et al. [3] used the NPGA for the design of laminated ceramic
composites.

— Poloni and Pediroda [69] used it for the design of a multipoint airfoil that has
its minimum drag at two given lift values with a constraint in the maximum
allowed pitching moment.

— A variation of the NPGA was proposed by Quagliarella and Vicini [71]. They
introduced the dominance criteria of the problem in the selection mechanism
(as in the NPGA), but then selected the individuals to be reproduced to gen-
erate the following population using a random walk operator. This obviously
produces a locally dominating individual rather than a globally dominating
one. Additionally, if more than one non dominated individual is found, then
the first one encountered is selected (instead of doing sharing like in the
NPGA). At the end of every new generation, the set of Pareto optimal so-
lutions is updated and stored. They used this approach for airfoil design

[71].



Strengths and Weaknesses

Since this approach does not apply Pareto selection to the entire population,
but only to a segment of it at each run, its main strenghts are that is very fast
and that it produces good non-dominated fronts that can be kept for a large
number of generations [12]. However, its main weakness is that besides requiring
a sharing factor, this approach also requires a good choice of the size of the
tournament to perform well, complicating its appropriate use in practice.

6 Future Research Paths

Although a lot of work has been done in this area, most of it has concentrated
on application of conventional or ad-hoc techniques to certain difficult problems.
Therefore, there are several research issues that still remain to be solved, some
of which will be briefly described next:

— Since the size of the Pareto set is normally considerably large, and in the
particular case of using a genetic algorithm, depends on the size of the pop-
ulation, it may be desirable in some cases to devise ways of reducing the
number of elements in such set, in order to facilitate the analysis for the
decision maker. Kunha, Oliveira and Covas [46] proposed the incorporation
of Roseman and Gero’s algorithm [79] into the GA to cluster together points
that are within a certain distance (defined by the user) of each other in the
Pareto front.

— Probably one of the most difficult problems in multiobjective optimization

is to determine how to measure the quality of a solution. So far, practically
visual inspection is the only technique used, unless there is some previous
knowledge of the points which lie in the Pareto front (in which case there
is obviously no need for a multiobjective optimization technique). Fonseca
and Fleming [23] proposed the definition of certain (arbitrary) goals that
we wish the GA to attain; then we can perform multiple runs and apply
standard non-parametric statistical procedures to evaluate the quality of the
solutions (i.e., the non-dominated fronts) produced by the technique under
study, and/or compare it against other similar techniques. However, these
arbitrary goals are not easy to define either.
Other (similar) metrics have been proposed in the literature. For example,
Van Veldhuizen and Lamont [98] proposed the so-called generational dis-
tance, which is a measure of how close is our current Pareto front from the
real Pareto front (assuming we know where it lies). Zitzler and Thiele [105]
proposed two measures: the first concerns the size of the objective value
space which is covered by a set of nondominated solutions and the second
compares directly two sets of nondominated solutions, using as a metric the
fraction of the Pareto front covered by each of them. Finally, Srinivas and
Deb [87] proposed the use of an statistical measure (the chi-square distri-
bution) to estimate the spread of the population on the Pareto front with
respect to the sharing factor used.



All these metrics are interesting proposals but there are almost no compar-
ative studies of techniques that substantiate their suitability in general test
problems, which implies that more work in this area is required.

In some cases it may be necessary to be able to assign more importance to
certain objective or objectives. Interestingly, in such cases, an aggregating
approach allows us to change the importance of the objectives very easily,
as opposed to any ranking technique (i.e., Pareto-based approaches) which
normally do not provide the means to do it directly. Fonseca and Fleming
[17] proposed the use of a utility function combined with MOGA [18, 21] to
produce a method for the progressive articulation of preferences. The idea
that they proposed was to have a feedback loop between the decision maker
and the GA, so that certain solutions (from the Pareto set) are given more
preference than others. Ideally, such process could be done automatically
by replacing the decision maker with an expert system [17]. The problem
with Fonseca’s approach is that it requires previous knowledge of the ranges
of each objective function, which could be excessively expensive or even
impossible to obtain in some cases.

Bentley and Wakefield [4] proposed the use of weights to estimate the im-
portance of solutions that are already identified as Pareto optimal, in an
attempt to overcome the problems with Fonseca’s approach. Also, in a more
elaborate approach, Greenwood et al. [30] proposed a compromise between
the aggregated approach (i.e., the use of weights) and ranking techniques in
which the level of preference may be defined. Greenwood et al. [30] used an
approach called specified multi-attribute value theory (ISMAUT) [101] which,
combined with a GA, allows the definition of preferences by the GA itself,
rather than asking the intervention of the decision maker. However, the de-
cision maker still gets to decide what particular area of the trade-off surface
wants to explore, so that the GA constrains the search to that specific area.
Additionally, Greenwood et al. [30] defined a certain metrics that allows us
to obtain a single value (or utility function) that will guide the search to the
particular Pareto region that is of interest to the decision maker.

Finally, Voget and Kolonko [100] proposed the use of a fuzzy controller that
regulates the selection pressure automatically by using a set of predefined
goals that define the ‘desirable’ behavior of the population. An interesting
aspect of this work is that they actually combine Pareto ranking with VEGA
during the same run of the GA, to allow the desired reduction of deviations
from the goals specified by the authors [100].

These 3 proposals are quite interesting, but still more work needs to be done
in this area, preferrently with real-world problems (Fonseca’s approach was
an appropriate choice for the optimization of a gas turbine engine [17], and
Greenwood et al. [30] showed that their approach performed well in two
hardware/software codesign problems), so that more general guidelines can
be derived from the different approaches proposed.

Directly related to the problem of measuring the quality of the solutions
found with a multiobjective optimization technique lies the need to have a
set of benchmark problems that can be used to test existing and new ap-



proaches. This set should include both constrained and unconstrained prob-
lems”, examples with few objectives (2 or 3) suitable for graphical inspection,
problems with few and several variables, and problems in which is possible
to achieve the ideal vector (these could be used to tune up any technique
to be tried). In this direction, Deb [14] has recently proposed ways to cre-
ate controllable test problems for evolutionary multiobjective optimization
techniques using single-objective optimization problems as a basis. This is
an interesting proposal that could allow to transform deceptive and mas-
sively multimodal problems into very difficult multiobjective optimization
problems. However, in his technical report, Deb [14] only defines test prob-
lems with 2 objective functions and the scalability of these test functions
to more objectives is not straightforward. Van Veldhuizen and Lamont [99]
have also proposed some guidelines to design a test function suite for evolu-
tionary multiobjective optimization techniques, and have included in their
report some sample test problems.

Using benchmark problems such as those proposed by Deb [14] and Van
Veldhuizen & Lamont [99)], it should be possible to perform detailed studies
of performance of different GAs (assuming certain quality measures).
Coello [12] and Zitzler & Thiele [106, 105] have conducted comparative stud-
ies of this type using engineering design problems and the 0/1 knapsack
problem respectively, but it is necessary to have a database of test prob-
lems (as suggested by Van Veldhuizen and Lamont [99]) and to define better
metrics to evaluate the performance of each technique. It is particularly im-
portant to introduce in this database problems that have constraints, since
this aspect has been overlooked by most researchers in the last few years.
This will improve our understanding of the strengths and weaknesses of each
technique and should lead us to the development of new and more powerful
approaches.

— As Deb indicates [14], it would be very useful to understand the dynamics
of the population of a GA over different generations when applied to multi-
objective optimization problems. If we knew how is the population behaving
and what issues are making it difficult to keep nondominated solutions, we
could devise techniques in which the progress towards the global Pareto front
could be considerably faster than with the current approaches.

— It is also important to define stopping criteria for a GA-based multiobjec-
tive optimization technique, because it is not obvious to know when the
population has reached a point from which no further improvement can be
reached (i.e., how do we know that the global Pareto front has been found?).
Currently, the main approaches used to stop this kind of GA haven been to
either use a fixed number of generations, or to monitor the population at
certain intervals and interpret visually the results to determine when to halt
the evolution process.

7 Most current papers that introduce new GA-based multiobjective optimization tech-
niques, use 2 or 3 simple unconstrained biobjective functions, particularly those used

originally by Schaffer [83].



— The use of sharing in these techniques introduces another problem, because
the value of gspqre becomes another parameter with which the user has to
experiment until a reasonable setting is found. Even when important work
has been done in this area (see for example Deb and Goldberg [15] and
Fonseca & Fleming [17]), most of that research is focused on single-objective
optimization, or multimodal optimization.

— Some researchers have also found alternative applications of multiobjective

optimization techniques that are quite interesting. The most remarkable is
perhaps the attempt to use ranking techniques or similar approaches to han-
dle constraints in a single objective optimization problem, as to avoid the
use of penalty functions. Surry et al. [89] proposed the COMOGA (Con-
strained Optimization by Multi-Objective Genetic Algorithms) approach,
which treats each constraint as a separate objective and therefore transforms
a constrained single objective optimization problem into an unconstrained
multiobjective optimization problem, which is solved using Fonseca’s MOGA
[17]. This approach was used by Surry et al. to optimize gas supply networks
[89]. Fonseca and Fleming [19] also proposed to handle constraints as objec-
tives, and applied their approach to the design of a gas turbine [20]. Parmee
and Purchase [67] implemented a version of VEGA [83] to handle constraints
relating to a gas turbine design problem as objectives to allow the GA to
locate a feasible region within the highly constrained search space of this ap-
plication. Having identified a feasible point region, specialized operators were
introduced to create a variable-size hypercube around each feasible point in
an attempt to define the feasible region [67]. Finally, Stanley and Mudge
[88] used also Pareto ranking to handle constraints treated as objectives in
a combinatorial optimization problem (microprocessor design).
With no doubt, the number of applications of evolutionary multiobjective
optimization techniques to real-world problems will increase over the years,
and a probable trend in research could be to reformulate many problems that
are currently considered as if they only had one objective. This will constitute
a more realistic approach to the solution of problems that frequently arise
in areas such as engineering, because they are normally reduced to a single
objective and the remaining objectives are treated as constraints instead of
handling all (conflicting) objectives simultaneously.

— Finally, a very important topic that has been only scarcely addressed by
researchers in multiobjective optimization is the development of a theory
that can explain issues such as the effect of the parameters used (i.e., pop-
ulation size, crossover and mutation rates, niche sizes, and elitism) and the
way in which the selection technique adopted affects the performance of an
algorithm. In this direction, Giinter Rudolph [81] has recently showed that
theoretical results of convergence derived from single-objective evolutionary
optimization cannot be used in the presence of multiple objectives. In his
study, Rudolph proposes a methodology to prove convergence to the Pareto
front, but only shows results for a specific problem, indicating in the process
the main difficulties that theoreticians have to face to derive a more general
proof.



7 Conclusions

This paper has attempted to provide a comprehensive review of the most pop-
ular evolutionary-based approaches to multiobjective optimization, giving also
some insights of their Operations Research roots, their advantages and disadvan-
tages, and their possible range of applicability. Additionally, some representative
real-world applications of each approach (when found) have also been included,
together with a very rich bibliography that should be enough to guide a new-
comer into this important and growing area of research.

In the final section of the paper, the most promising areas of future research
(according to the author’s opinion) were briefly described, and some of the work
already done around them has also been briefly addressed.
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