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Abstract the wst of a laminate cmposite. However, another

Laminated plate optimization is a combinatorial
problem where the objective is to find the
optimal sequence of materials from a given set,
along with the respedive fiber orientation. Due
to manufaduring reasons, the size of each py
can only take adiscrete number of values and,
together with the available materials, results in
an integer programming problem. Therefore, an
approach based on Genetic Algorithms samsto
present some alvantages in the solution of this
structural optimization problem. The proposed
stiffness maximization approach optimizes the
stacking sequenceof various plies, with different
orientations and materials; the thicknessof eath
ply and the global number of plies are, a priori,
asauumed. Moreover, a onstraint on the global
cost is aso presented. Genetic Algorithms
succesgully identify the designs with the desired
structural response.

1 INTRODUCTION

Composite materials have receved substantial attention as
manufaduring  materials.  Although  the  high
stiffnessto-weight and strength-to-weight properties of
composite materials are  dtradive, their gredest
advantage is their ability to be designed to satisfy
dirediona strength and stiffnesses for any particular
loading, or multi-loading, of the structure.

In laminated composite structures, ead ply has its
gredest stiffness and strength properties, along the
diredion, through which the fibers are oriented in. By
orienting ead layer at different angles, the structure can
be designed for a spedfic loading environment.

Along with structura performance and weight, cost is an
area of grea interest when considering optimization
studies in structural design. Obviously, reducing the
amourt of materia required for the structure, minimizes

method for cost reduction is to alow more than one
material in the stadking sequence Thus, it is possble to
use layers of low cost material a locaions, in the
structure, where performanceis lessimportant.

In general, the problem of composite laminate stadking
sequence optimization hes been formulated as a
continuous design problem, and solved using gradient
based techniques. These methods of solution present
several disadvantages:

e Staking sequence design dten involves design
variables, which are limited to small discrete sets of
values of ply thickness orientation angle or material
type, due to manufaduring or cost limitations;
therefore, these methods require the transformation of
these variables into continuows variables, in order
that a solution might be obtained;

e Converting the mntinuaus lutions badk to dscrete
feasible values, often produces sub-optimal, or even
infeasible designs,

e Composite laminate design problems often have
discontinuows objedivefunctions, exhibiting multiple
designs with similar performances, involving many
locd optimum designs.

Genetic Algorithms are suitable optimization algorithms
for problems with discrete design variables. Its
implementation des not require ayy evauation o
gradients which, together with its easiness of
implementation, make it worthwhile investigating.
Although, Genetic Algorithms require many function
evaluations, which reflect in large cmputationa costs,
there ae many reported applicaions of Genetic
Algorithms to the design of compasite structures. Genetic
algorithms have been applied to stadking sequence
optimization o composite plates, (Callahan and Weeks,
1992), to stiffened composite panel design (Nagendra @
al., 1996), design of laminated compasite panels (Hajela,
1990) (Leung and Nevill, 1994) (Fernandes et al., 1999
(Haftka, 1998).



2 LAMINATE STRUCTURAL
ANALYSIS

In this work, the equivalent single-layer laminated plate
model based on first and third order shea deformation
theory is employed to analyze eab passble design. This
approach al ows the reduction of the number of degrees of
freedom required to describe the structural response, with
sufficient detailed representation, and without excessve
computational cost.

In the equivalent single-layer laminate theories, an
heterogeneous laminate plate is treaded as a staticdly
equivalent single layer, with a @mplex constitutive
behavior; this approach reduces a @ntinuum
threedimensional problem to atwo-dimensional problem.
Therefore, composite laminates are treded as plate
elements.

The development of a plate theory requires the
assumption of a cetain form of displacement field within
the plate. Thus, an appropriate power series expansion of
the displacements, in the mordinate system with X,
normal to the midplane of the plate, is used.

Considering a laminated composite plate of total
thickness h, composed o orthotropic layers, a Cartesian
coordinate system x is defined on the plate, where the
XX, plane wincideswith the plate geometric midplane. It
is important to nde that Latin subscriptsrunin 1,2,3 and
Greek subscripts run in 1,2. Also, summeation on repeaed
subscripts is implied. For compactness the general
asaumed static displacement field is,

Uy (%00 %) = U7 (%, )+ %, (x, ) @)
where u’ are displacenent comporents in the x
diredions of the middie plane, and @, , are unknown
functions that, in some caes, are partialy known. In
particular, in first order shea plate theory,

®, =06, ®, =-6, ®,=0 2

where 6, are the ,right-hand-rule* rotations of the
normal to the midde plane dong the z, axes.

The first order theory leals to constant transverse shea
stress which violates equilibrium at the free surfaces of
the plate, and continuity requirements of the interlaminar
shea stress To acount for the discrepancy between the
constant state of shear strainsin the first order theory and
the quadratic or higher order distribution of shea strains
in the dasticity, shea corredion facors are introduced.
These fadors may be cdculated for laminated plates, and
many works have aldressd the seledion of exad, or
improved values (Whitney, 1973) (Lardeur, 1990).

Higher order theories involve alditional termsin x,, and
may not violate equilibrium at the free surface therefore
yielding a more acarate interlaminar stress distribution.
However, they require more cmmputational effort. First
order theories are the simplest equivalent to single layer
plate theories, and adequately describe the dnematic
behavior of most |aminates.

Approximating the unknowns with the gpropriate
interpolation functions (Reddy, 1997), and following the
standard displacement finite dement procedures, it is
posdble to oltain the equilibrium system of linea
equationsin the form,

K d=F 3
where K is the stiffnessmatrix, F isthe force vedor, and
d isthe vector of unknown functions.

At element leve (€), and in locd coordinates (§,n), the
stiff nessmatrix may be written as

K = BroBE 9] dédn
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where B is the strain displacenent matrix, D is the
elasticity matrix and | J | is the Jacbian. The subscripts
M, F and C stand for membrane, bending and shea,
respedively, and

B® =L g9 (5)

where S is the shape function matrix, depending on the
choice of finite dement and laminate theory, and L is a
matrix of differential operators. On the other hand, the
constitutive equationis

e W
MH =09 (6)
EQ B %/c O
O
with
Dy Dy O E(f)
D® = SDFM D 0 E (7)
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The submatrix Dy relates membrane forceresultants N to
membrane strains (8°), Dr relates generalized moments M

to generalized curvatures (€), Dyr relates membrane force
resultants to generalized curvatures, and generalized
moments to membrane strains, and finally, D¢ relates
transverse shea resultants Q to shea strains (Y).

As eadt layer may have diff erent properties, the dasticity
matrix D must be evaluated by summations carried ou all
over the thickness Therefore, equivalent singe layer
theories produce euivaent stiffness matrix, which is a
weighted average of the individual layer stiffnessthrough
the thickness Following the mnventional procedures of
the finite dement method, layer stresses can be found
from nodal results.

In this work, two first order quadrilateral elements with
eight (serendipity family) and rine nodes (Lagrange
family), are used for the analysis of general composite
laminated plates. Serendipity elements have fewer nodes
compared to the Lagrange dements because they do ot
have interior points. All elements present five degrees of



freedom per node. The cmmplete development of these
elementsis described in (Led, 1998.

3 GENETICALGORITHMSIN
LAMINATED PLATE DESIGN

In laminated composite structures, the goal is to find the
material for ead layer and ply orientation angles that wil |
provide astructure with the best performance, for a given
set of loading conditions. Additionally, geometry,
manufaduring, cost, and failure @nstraints may also be
considered in the design.

In order to reduce the design space a symmetric and
balanced laminate is considered, such that the global
laminate is ymmetric relatively to the midplane, with a
—a° ply for ead +a° ply. Figure 1 shows the laminate
structure, where h states for the total thickness and m, &
are, respedively, the material and angle for layer i.
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Figure 1: Laminated plate structure

Genetic Algorithms (GAs) are seach and optimization
algorithms that mimic the process of natural evolution
(Goldberg, 1989) (Schwefel, 198). The basic
reguirements for building a Genetic Algorithm are:

e Encoding technique;

» Evauationfunction;

e Initiaization procedure;
*  Genetic operators.

In order to illustrate the gplication o GAs to the
laminated plate design problem, let us consider a simple
symmetricd problem, consisting onafour sides supported
plate with sixteen layers, two materials (GlasgEpoxy (G);
Graphite/Epoxy (C)), and seven py angles (0°, 15°, 30°,

45°, 60°, 75°, 90°). Thus, a feasible solution to the
problem must spedfy the materials in ead layer, as well
as the angles. Since the problem is symmetricd and
balanced, only four design variables neel to be spedfied.
For instance, a feasible solution could be [(G, £30°); (C,
+75); (G, +459); (G, +6(°)],, that is, the first layer is of
glasgepoxy and +30°, the seaond is of glasgepoxy and —
3P (imposed to restrain the seach space), the third layer
is of graphite/epoxy and +75, and so on. The laminate is
symmetric (s subscript) to restrain the seach space It is
important to nde that, if the angle is 0° or 9(°, two
identical layers are considered.

31 ENCODING TECHNIQUE

Let us consider the following laminate [(G, £3(°); (C,
+75%); (G, £45°); (G, +60°)].. This laminate can be mded
as

Design Material Angle
Variable
1 G 3
2 C 75°
3 G 45°
4 G 60°

This lution can be seen as a string, where each material
is represented by a digit (G-0, C-1), and ead angle by a
digit ranging from O to 6 (0-0° 1-15° 2-30°, 3-45° 4-60;
5-75°% 6-90°). Therefore, the solution could be represented
by the following aternate sequence of materials and
angles:

02 15 03 04

In this approadh, the wdificaion o the Genetic
Algorithm requires a binary coding,

Design Material Angle
Variable
1 0 010
2 1 101
3 0 o1l
4 0 100

implying that the solution would be represented by the
following chromosome

00101101001 10100

3.2 EVALUATION FUNCTION

Each pdnt in the seach spac, i.e., eat chromosome is
evaluated in terms of its compliance, i.e., the inverse of
stiffness Such evaluationis performed by afinite dement



modue, which for a given set of materias and angles,
produces a value for the objedive function. Thus, this
evaluation mechanism is the bridge between the bit string
manipulator algorithm and the red world.

For the problem under consideration, four biquadratic
elements of the serendipity and lagrangean families were
considered onthe evaluation d the objedive function.

A penalty function scheme was used to take into acount
solutions, which did not observe the cnstraints of the
problem.

33 GA PARAMETERS

In this approadh, a two-point crossover, uniform mutation
and linea ranking have been used. Table 1 presents the
parameters values used in this example.

Tablel: Genetic Algorithm Parameters

Parameter Value
Population Size 100
Crossover Probability 0.7
Mutation Probability 0.001
Penalty coefficient 1000

Several runs were caried ou in oder to evaluate the
reliability of the solutions.

34 RESULTSOF TEST PROBLEM

In this ®dion, the results concerning the design problem
are presented. The initial population was randomly
generated, and the solutions, which violated the problem
constraints, were penalized. Furthermore, ead problem
instance was replicated 10 times, thus, the values in the
tables represent averages. The exeaution was terminated
when convergence to a solution was observed. Cost
constraints were cnsidered with the following material
relative wsts: G — 1 and C — 8. Table 2 presents the
results obtained, in terms of the average number of
generations and number of function evaluations. Table 3
lists the best solutions obtained for the several instances
of Problem 1.

Table 2: Results for Problem 1

Table 3: Best solutionsfor Problem 1

Problem 1: Objective

2 materials, 7angles | Solution Function (Nm)
Without restrictions [(C, +45°)4]s 162

Cost <=32 [(C, +45°)4)s 162

Cost <=25 [(C, #457)3; (G, +45°)]s 163

Cost <= 18 [(C, +45%),; (G, 2459)]s 173
Cost<=11 [(C, +45); (G, +4593]; 208

Problem 1: Number of Number of Function
2 materials, 7 angles Generations Evaluations
Without any restriction 19 823

Cost <=32 19 823

Cost <=25 21 992

Cost <=18 21 984
Cost<=11 23 1119

Figure 2 presents the evolution d the average objedive
function value dong the generations, for the instance of
Problem 1 withou restrictions.
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Figure 2: Average objedive function value.

4 APPLICATION TO PLATE DESIGN
PROBLEMS

In this section, the results for two distinct plate design
problems are presented. The problems are: a four sides
clamped plate design problem and a four sides supported
plate design problem. In bah problems, 6 materialsand 7
ply angles are cnsidered. The materials are mmpaosites
of Epoxy, three with fibers reinforcement of Glass (G1,
G2, G3), and three with Graphite (C1, C2, C3). Cost
constraints are dso considered with the following relative
costs for the 6 materials: 1, 3, 4, 8, 10, 12, respedively.

Two pant crossover, uniform mutation and linea ranking
were used, with the same GA parameters presented on
table 1, but with apopulation o 150 chromosomes.

41 FOUR SIDESCLAMPED PLATE DESIGN

PROBLEM

The results for a four sides clamped pate, in terms of the
average number of generations and average number of



function evaluations, using four biquadratic dements of

the serendipity (Problem 2-SER) and
(Problem 2-LAG.) families for

evaluation, are presented on Tables4 and 5

Table 4: Results for Problem 2-SER.

lagrangean
objedive function

4.2

FOUR SIDES SUPPORTED PLATE DESIGN
PROBLEM

Theresults for afour sides supported plate, in terms of the
average number of generations and average number of
function evaluations, using four biquadratic dements of

the serendipity (Problem 3-SER) and
(Problem 3-LAG.) families for

lagrangean
objedive function

evaluation, are presented on Tables 8 and 9 respedively.

Table 8: Results for Problem 3-SER.

Problem 3-Ser.: Number of Number of Function
6 materials, 7 angles Generations Evaluations
Without restrictions 29 1245

Cost <= 40 37 2156

Cost <=30 42 2614

Cost <=20 41 2879
Cost<=10 32 2249

Table 9: Results for Problem 3-LAG.

Problem 2-SER.: Number of Number of Function
6 materials, 7 angles Generations Evaluations
Without restrictions 34 2495

Cost <=40 37 2452

Cost <=30 43 3058

Cost <=20 55 3486

Cost <=10 28 2203

Table 5: Results for Problem 2-LAG.

Problem 2-LAG.: Number of Number of Function
6 materials, 7 angles Generations Evaluations
Without restrictions 40 2605

Cost <=40 44 2916

Cost <=30 45 3037

Cost <=20 40 2928

Cost <=10 35 2428

Tables 6 and 7 list the best solutions obtained for the
severa instances of Problem 2. Note that, in some cases,
two different solutions were obtained in distinct GA

exeautions.

Table 6: Best solutions for Problem 2-SER.

Problem 3-LAG.: Number of Number of Function
6 materials, 7 angles Generations Evaluations
Without restrictions 31 2090

Cost <=40 39 2244

Cost <=30 37 2860

Cost <=20 37 2866

Cost <=10 31 2262

Tables 10 and 11 list the best solutions obtained for the
several instances of Problem 3.

Obj.
Problem 2-SER.: Funct. Table 10: Best solutions for Problem 3-SER.
6 materials, 7 angles | Solution (Nm) ob.
Without restrictions [(C3, £907); (C3, 20, (C3, 90Y]s 4.7 Problem 3-SER.: Funct.
[(C3, £09); (C3, +90°),; (C3, +09)], . .
[(C3, 207 (C3, 290)»: (G3, £0°)]. 6 materlals 7 aﬁgles Solution : (Nm)
Cost <=40 [(C3, £90°): (C3, £09: (G3, +907)]s 4.8 Wlthotit restrictions [(C3, ir45")3j (G3, +45%)] 14.3
. [(C3.290%; (G340, (G2, 407, (@2, 5907, - gost <: 40 [(C3, ¢45°)Sj (G3, +459)]s 14.3
= i ' ) . ost <= 30 [(C3, +45°),; (G2, +45%),]s 151
[(C3.20%. (C3 £907, (G2.290), (62 207, Cost <= 20 [(C2, +459); (C1, +45°); (G1, +45°);] 17.3
Cost <= 20 [(C2, #90P); (C1, +0%); (G1, +90P)]s 5.8 Cod == 10 [(G2‘ :450)' . (G'1-+450')] 1= als 30'1
Cogt <= 10 [(G2, £90%; (G2, 0% (GL +90)]s | o R AR Sl :
[(G2, +09; (G2, +90P);; (G1, +09)]s
Table 11: Best solutions for Problem 3-LAG.
Table 7: Best solutions for Problem 2-LAG. Obj.
Obj. Problem 3-LAG. ‘ Funct.
Problem 2-LAG.: Funct. 6 materlals 7 aﬁgles Solution (Nm)
6 materials, 7 angles | Solution (Nm) Without restrictions [(C3, +45°)4]s 16.6
Without restrictions | [(C3, 09); (C3, £90°); (C3, 0] a7 | Cost<=40 [(C3, £45)5, (G3, +45)], 168
Cost <= 40 [(C3, £09); (C3, £90P): (G3, 209« 18 Cost <=30 [(C2, £45%),; (C1, +45%); (GL, +459)]s | 184
Cost <= 30 [(C3 £907: (C3, 0P (G2 £0°) (2,490 51 Cost <= 20 [(C2, +459); (C1, +45°); (G1, +45°),]s | 202
ot 20 [(C2, £90°) (CL £09): (GL, £90°),]. o Cost <= 10 [(G2, +45)3; (G1, +459)]s 420
[(C2, £0°); (C1, +90°); (G1, +09)]s )
Cost <= 10 [(G2, £90°); (G2, +0°),; (G1, +909)]s 108 The number of biquadratic dements used for objedive

[(G2, +09); (G2, +90°),; (G1, +09)]s

function evaluation was varied in order to investigate how
it affeds the results. In this experiment no relative st




constraints were cnsidered. The number of serendipity
and lagrangean elements was fixed by 4, 16 and 64.

Table 12 presents the results, in terms of the average
number of generations and average number of function
evaluations, using the same GA parameters of the
previous problem, but with a popdation of 100
chromosomes. Table 13 lists the best solutions for
different number of biquadratic dements.

Table 12: Results for Problem 3

Number of Typeof Number of Number of Function
elements elements Generations Evaluations
4 Serendipity 31 1387
Lagrangean 33 1400
16 Serendipity 31 1375
Lagrangean 27 1339
64 Serendipity 34 1419
Lagrangean 34 1504

Table 13: Best solutions for Problem 3

Number Type Obj.
of of Funct.
elements elements Solution (Nm)
4 Serendipity | [(C3, +45%s; (G3, +45%)] 14.28
Lagrangean | [(C3, +45°)4]s 16.64

16 Serendipity | [(C3, £45%)4]s 16.63
Lagrangean | [(C3, +45°),]s 16.67

64 Serendipity | [(C3, £45°)4]s 16.67
Lagrangean | [(C3, +45°)4]s 16.67

Figure 3 shows how the GA exeaution time varies with
the number of elements considered on the objedive
function evaluation. Figure 4 shows the variation d the
objedive function value (the cmpliancevalue) versusthe
number of elements used on the objedive function
evaluation.
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Figure 3: Time versus Number of elements
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Figure 4: Compliance versus Number of elements

The mputation time grows exporentialy with the
number of elements considered. However, the acaracy of
the solutionis, in pradicd terms, approximately the same
for 16 and 64 elements.

5 CONCLUSION

The results presented, for four sides supported and
clamped plates, show that Genetic Algorithms can be
used in the optimizaion d the design of composite
laminated plates, producing solutions with physical
meaning, while cnsidering different cost restrictions.
Moreover, as expeded, the computational cost grows
exponentially with the number of elements considered,
that is to say, with the acarracy imposed on the finite
element code (the evaluation function); however, it has
been shown that a solution with 16 elements is acairate
enough, with reasonable cmputational times. It seems
contradictory that the number of function evaluations
does not increase monotonicaly as the st restriction is
minimized. It should be pointed out that this is a
combinatorial problem, and the amissible set for
different instances of cost, can be quite different. Thus,
the number of observed function evaluations (an average
value of 10 exeautions) refleds this difference Future
work will aim at the reduction of the cmputational times,
while mnsidering afinite dement methodol ogy, based on
third order theory, and the study of one side damped
plates.
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