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Abstract

The global optimization of mixed integer non-linear problems (MINLP), constitutes
a major area of research in many engineering applications. In this work, a comparison
is made between an algorithm based on Simulated Annealing (M-SIMPSA) and two
Evolutionary Algorithms: Genetic Algorithms (GAs) and Evolution Strategies (ESs).
Results concerning the handling of constraints, through penalty functions, with and
without penalty parameter setting, are also reported. Evolutionary Algorithms seem a
valid approach to the optimization of non-linear problems. Evolution Strategies emerge
as the best algorithm in most of the problems studied.
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1 Introduction

Real world problems can, in general, be formulated as mixed integer non-linear program-
ming problems (MINLP). These problems, due to their combinatorial nature, are considered
difficult problems. Gradient optimization techniques have only been able to tackle special
formulations, where continuity or convexity had to be imposed, or by exploiting special
mathematical structures. Approaches based on stochastic algorithms have been used. These
approaches, also know as adaptive random search, have successfully tackle MINLP, mostly
in the area of chemical engineering (Reklaitis et al. 1983, Salcedo 1992, Banga and Sneider
1996). In recent years, a vast amount of work has been published on applications of evo-
lutionary algorithms (Genetic Algorithms, Evolution Strategies, Simulated Annealing, etc.)
to the solution of MINLP in many engineering applications. These algorithms are distinct
from conventional algorithms since, in general, only the information regarding the objective
function is required. Moreover, they start from a pool of points that evolves over time,
possibly in the direction of the optimum. It should be stressed that the objective of this on
going research is not to find the ”best” algorithm for all problem instances, but to compare
different algorithms, in order to find out classes of problems which may be more suitable for

certain algorithms than others.

The general formulation of the problem is as follows:

min f(x) (1)



subject to

x; integer ,j € 1

xEX:{x]xeR",xlgxgx“}

where

he R™ g€ RP.

In this work, 7 test problems, proposed by independent authors, are studied using Genetic
Algorithms (GAs) and Evolution Strategies (ESs). These problems arise from the area of
chemical engineering, and represent difficult nonconvex optimization problems, with contin-
uous and discrete variables. Comparisons are made with an M-SIMPSA algorithm (Cardoso
et al.1996a, 1996b, 1997, Cardoso 1998) based on the combination of the non-linear simplex

method of Nelder and Mead and Simulated Annealing,.

2 Description of the Genetic Algorithm

2.1 Introduction

Genetic Algorithms are search algorithms that mimic the process of natural selection (Gold-

berg 1989). Thus, unlike conventional algorithms, GAs start from a pool of points, usually



referred to as chromosomes. In order to implement a simple GA it is necessary to define
the representation of the search space (usually a binary representation) and an evaluation
function which permits the comparison between the different chromosomes in terms of their
fitness. New points in the search space are generated by the application of genetic operators,

thus originating a new generation of points.

Figure 1 presents the GA flow chart. An initial population of bit strings (chromosomes)
is generated. Each of these strings is then evaluated. The selection operator assures that
strings are copied to the next generation with a probability associated to their fitness values.
Therefore, this operator mimics the survival of the fittest in the natural world. Although
selection assures that in the next generation the best chromosomes will be present with a
higher probability, it does not search the space, because it just copies the previous chro-
mosomes. The search results from the creation of new chromosomes from old ones. The
crossover operator, takes two randomly selected chromosomes; one point along their com-
mon length is randomly selected, and the characters of the two parent strings are swapped,
thus generating two new chromosomes. Crossover by itself does not involve any change in
the actual values of the chromosomes. The mutation operator, randomly selects a position
in the chromosome and, with a given probability, changes the corresponding value. This
operator does assure that new parts of the search space are explored, which selection and

crossover could not fully guarantee. The GA proceeds as the following algorithm (figure 1):

Algorithm 1 - Genetic Algorithm
1. INITIALIZATION
The initial population, consisting of points in the search space, is randomly created.
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Figure 1: Genetic Algorithm Flow Chart

2. EVALUATION

Each chromosome in the population is evaluated through the objective (fitness) function.

3. GENETIC OPERATORS

The search is performed, by creating a new population from the previous one, through the
application of the genetic operators.

4. STOPPING CRITERIUM

These steps (2-8) are repeated till the population converges or the specified number of

generations is reached.



2.2 Constraint Handling

Most of GAs implementation on constrained optimization use the penalty function method

(Goldberg 1989), in such a way that, the fitness function F(x), is defined as follows,

P

F)=fx)+R (Z[maX{O, ()} + Z[hz(X)P) (2)

k=1 =1

i.e., as the sum of f(x), the objective function and two penalty terms denoting the equality
and inequality constraints violations, where R is a penalty coefficient.

This approach has a major drawback. The setting of the penalty parameters usually
requires extensive experimentation. In this work, we compare this approach with the con-
straint handling method proposed by Deb (1998). A penalty term is introduced which does

not depend on a penalty parameter. Thus, the fitness function is defined as

f(x) if g(x) <0 and h(x) =0

F(X) - p m
fmax + (,.;1 [max{0, gr(x)}] + 1:21 |h1(x)|> otherwise

(3)
where fiax, is the maximum function value of all feasible solutions in the population. The
fitness value of any infeasible solution will result from the summation of the constraints
violations, plus the highest objective function value of all feasible solutions. Thus, any
infeasible solution will have a fitness value worst than any of the feasible solutions.

In this approach, two solutions are compared on the base of,

e their objective function values, if feasible;

e the constraint violations, if infeasible.



2.3 Genetic Coding — Chromosome representation

The implementation of a Genetic Algorithm for Mixed Integer Non-Linear Programming
problems requires the representation of the potential solutions to the problem (each one
being a point in the search space). Thus, each problem solution, a vector consisting of

continuous and integer variables is represented by a string, denoted as a chromosome.

The chromosome length depends on the number of variables of the problem considered.

The variables, coded using a binary representation, were defined in the following way:

e the continuous variables are represented by a determined number of bits which defines

the resolution (in general a 32 bit representation was used);
e the binary variables are naturally represented in a binary code;

e the integer variables (defined in an interval of discrete values) are represented by the
least number of bits that allows the representation of all values and, if necessary,

restrictions are introduced in order to avoid infeasible values for those variables.

2.4 Genetic Algorithm Parameters

Table 1 presents the data concerning the GA parameters. These values have been set from
previous experience in solving MINLP problems. Each problem was solved for 10 times. In
any of the implementations, a stochastic uniform selection (Baker 1987), a two point crossover
with a probability of 0.7, and an uniform mutation with a probability 0.001 were used
(Goldberg 1989). The basic idea of this selection scheme is to allocate to each chromosome

a portion of a spinning wheel proportional to its relative fitness. A single spin of the wheel



allows the selection of the desired number of chromosomes. The two point crossover is
applied to pairs of chromosomes and consists in a random selection of two crossover points
and then, exchange the bit sections between these points. Uniform mutation means that
each chromosome position has an equal chance of being mutated. If mutation does occur at
a given position then a random value is chosen from {0, 1} to that position. All chromosomes
were coded as bit strings using a Gray code. The Gray codes have the property that adjacent

decoded values differ at exactly one bit position (Wright 1991).

| Parameter | Value |
Number of experiences 10
Population size 250
Chromosome length Variable
Crossover probability 0.7
Mutation probability 0.001
Penalization coefficient | Variable
Coding mechanism Graycode

Table 1: The GA Parameters

In a first phase, all the constraints were treated using a penalty scheme. In a second
phase, the inequalities were treated according to the scheme due to Deb (1998). For all the
executions, the initial population consisted of 250 chromosomes randomly generated. For
a given generation, f.x was estimated by the value of the objective function of the worst

chromosome in the population.

2.5 Stopping Criterion

The stopping criterion adopted was to terminate the search process when one of the following

conditions was verified:



e the maximum number of generations was reached (assumed 1000 generations);

e a given number of generations was reached without improvement of the fitness function

values (assumed 50 generations);

e all the population converged to a single point, i.e., when all the population converged

to the same chromosome.

3 Evolution Strategies

3.1 Introduction

Evolution Strategies (Schwefel 1985) are also search procedures that mimic the natural evo-
lution of the species in the natural systems. They work directly with the real representation
of the parameter set, searching from an initial population (a set of points). Like GAs, they
only require data based on the objective function and constraints, and not derivatives or
other auxiliary knowledge. However, the transitions rules are deterministic and the con-
straints are handled, normally, using an elimination mechanism (the non-feasible points are

eliminated). The search of new points is based on one operator, the mutation operator.

We will consider two distinct types of Evolution Strategies differing basically on the

selection procedure:

e the (1 + A) Evolution Strategy and

e the (u, A\) Evolution Strategy.



strategies.

(4+A) Evolution Strategy

Current Next
Generation Generation
u Parents A Offspring i+ A Offspring u Parents
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(BA) Evolution Strategy
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u Parents A Offspring A Offspring u Parents
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Figure 2: (p+ A) and (u, A) Evolution Strategies

In this nomenclature, p represents the number of parents of a generation and A is the

number of offspring of a generation. The figure 2 illustrates the difference between these two

In (114 M) Evolution Strategy, at a given generation, there are y parents, and \ offspring
are generated by mutation. Then, the ;1 + A members are sorted according to their objective
function values. Finally, the best p of all the ©+ A members become the parents of the next
generation (i.e., the selection takes place between the 1+ A members).

In (i, \) Evolution Strategy, at a given generation, there are p parents, and A offspring
are generated by mutation (assuming that A > p). Next, the A members are sorted according

to their objective function values. Then, the u best of the A members generated become the
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parents of the next generation (i.e., the selection takes place between the A members).

3.2 (1+1) Evolution Strategy

This two membered scheme is the simplest Evolution Strategy. In this strategy, proposed
by Rechenberg (1994), at a given generation, there are only one parent (u = 1) and one

offspring (A = 1), and the selection takes place between these two members.

Algorithm 2 - (1+ 1) Evolution Strategy

1. INITIALIZATION

0
70 = : such that g;(z9) >0 forallj=1,... ,m
o9
k=0 i
2. MUTATION )
mik) + zik)
zgl\?iw e .T(k) + Z(k) e
ng) + zq(zk)
3. SELECTION )
o) TN F) < FEW) A gy(al,) 2 0 for all j=1,..m
:E =
2®) — otherwise
k=k-+1

IF stopping criterion is not true THEN return to step 2. ELSE end.

Algorithm 2 is the (1+1) Evolution Strategy algorithm. The search starts from an initial

point z(®) (an approximation to the optimum). Next, a new point, xg\lfiw, is generated by
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mutation by the addition of a random number z(¥). Then, the two points are compared and
the best one (with lower value of the objective function and satisfying all the constraints)
is selected to become parent on next generation. This process is repeated until the stop
criterion is verified.

Usually, the random numbers z(*) are generated according to a Gaussian or Normal
distribution. Besides, it is convenient that small changes occur frequently, but large ones
only rarely. So, two requirements arise together for the generation of the random numbers

(k)

e the expected value of the components zi(k) of z(¥) must be equal to zero, i.e., E [sz)} =0

fori=1,...,n, and
e the variances o7 must be small, fori =1,... ,n.

(k)

In this sense, the random numbers z;"’ can be generated according to a Normal distribu-

tion with mean zero and variance o?:

I N(0,0‘?)

)

The typical initial values for the standard deviations o; can be expressed by equation 4,
where Az is a rough measure of the distance from the optimum and n is the dimension of

the problem.
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These standard deviations o; are actualized by the 1/5 Success rule. This rule can be
formulated in the following manner (Rechenberg 1994):

"From time to time during the optimum search obtain the frequency of successes, i.e.,
the ratio of the number of successes to the total number of trials (mutations). If the ratio is
greater than 1/5, increase the variance, if it is less than 1/5, decrease the variance.”

Assuming that this rule is applied periodically, every p generations, it can also be ex-

pressed by:

Cdeco-gk) — Prsuc(p) < %
k+1
o =0 o™ e Pro(p) > L
ng) — Proue(p) = %

\

where Prg,.(p) is the success rate during the last p generations, and cgee < 1 and c¢jpe > 1

are the decreasing and increasing factors of the standard deviations o;, respectively.

3.3 (u,A) Evolution Strategy

In this Evolution Strategy, in each generation, there are p parents and A offspring, and the

selection takes place between the A offspring.

Algorithm 3 - (u, \) Evolution Strategy

1. INITIALIZATION

0
2

xg)): : such thatgj(xﬁ,o))zOfor allj=1,... mandp=1,... ,pu

T
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k=0

2. MUTATION )
mfﬂ -+ zik’\“)

Ny = 2+ 23 = : such that g;(zy,,) >0
:ng?)z S

forallj=1,... m,p=1,...,puandu € [1,p],

w—d=p,2u,..., Kp wth K integer
e.g., u=

d//u < otherwise

where |/ states for the rest of integer division
3. SELECTION
Sort the mffj)\,ew, withd =1,... A, so that f(mgkj)\,ew) < f(mgkl)vew)

foralla=1,...  pandb=p,... A

:lZ;S,k-H) (k)

=Ty New Withp=1,...;panda=1,... ¢

k=k+1

IF stopping criterion is not true THEN return to step 2. ELSE end.

Algorithm 3 is the algorithm of a (u, A) Evolution Strategy. The search starts generating

g points from an initial point (an approximation to the optimum). Then, A points are
generated by mutation, as a result of the addition of random numbers z*). Next, all the X
points generated are sorted according to the objective function and the constraints. The p

best points are selected to become parents on the next generation. This process is repeated

until the stopping criterion is satisfied.

The same requirements regarding the normal distribution of the random quantities z F

are observed, i.e., zgk) ~ N(0,0%) fori=1,... ,n. Like in the (1+1) Evolution Strategy, the
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typical initial values for the standard deviations o; can be expressed by the same equation
4. However, the standard deviations o, are now actualized by equation 5 where z*) are
determined according to a Normal distribution with mean zero and variance Ao?, where Ao
is a parameter of the algorithm.

ot — ng)ezgk) with 2" ~ N(0, Ac?) (5)

1 1

3.4 (p+ M) Evolution Strategy

In this Evolution Strategy, like in the previous one, in each generation, there are y parents
and \ offspring; however, the selection takes place between all the p+ X offspring. The (pu+\)
Evolution Strategy algorithm is also similar to the previous one (algorithm 3), except at the
selection procedure which chooses the best p of the p + A members, for parents on the next
generation.

All requirements regarding the normal distribution of the random quantities z§k), the
typical initial values for the standard deviations o; (equation 4) and the actualization of the

standard deviations o; (equation 5) are identical to the (u, \) Evolution Strategy.

3.5 Constraint Handling

All the constraints were treated using the elimination mechanism (the non-feasible points are
eliminated). Depending on the problem, an initial approximation for the global optimum
was considered. This initial approximation allowed the random generation of the initial

population. A simple mechanism was used in order to guarantee that all points in this initial
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population were feasible.

3.6 Evolution Strategies Parameters

Table 2 presents the data concerning the Evolution Strategies parameters. As previously,

each problem was solved for 10 times.

| Parameter Value
Number of experiences 10
Initial approximation Variable
Initial value of o Variable
Lower bound of o (absolute) 107°
Lower bound of o (relative) 107°
Actualization factor of o 0.85
Penalization coeflicient 103

Table 2: The ES Parameters

3.7 Stopping Criterion

The stopping criterion adopted for (1 4+ 1) Evolution Strategy was to terminate the search

process when one of the following conditions was verified:

e the maximum number of generations was reached (assumed 2000 generations);

o |fEFAR) — fB)| <107 with Ak = 20;

|f(k+Ak),f(k) |
W

< 107° with Ak = 20.

The stopping criterion adopted for (u+ A) Evolution Strategy and (i, A) Evolution Strat-

egy was to terminate the search process when one of the following conditions was verified:

e the maximum number of generations was reached (assumed 1000 generations);
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| Problem ||
#1
#2
#2
#3
#4
#4’
#5
#6
#7

Table 3: Mixed Test Problems
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4 Case Studies

Seven problems chosen from the chemical engineering area are presented in Table 3. In this
table, n is the total number of variables in the problem; r, ¢ and b, are, respectively, the
number of continuous, integer and binary variables (n = r+i40b); m and p are, respectively,
the number of equality and inequality constraints in the problem. Problems #2 and #4, with
equality constraints, were reformulated in order to change these constraints into inequality

ones (problems #2 and #4°).

Problem #1

This problem has a nonlinear restriction and has been proposed by Kocis and

Grossmann (1988); it has been solved also by Floudas et al. (1989), Ryoo and

17



Sahinidis (1995) and Cardoso et al (1997).

min f(z,y) =2z +y

subject to

1.25 -2 —y <0
r+y<16

0<x<16

y € {0,1}

The global optimum is (x,y; f) = (0.5, 1; 2).

Problem #2

This problem, with a nonlinear constraint, has been proposed by Kocis and

Grossmann (1987) and also studied by Salcedo (1992) and Cardoso et al (1997).

min f(x1,22,y) = —y + 221 + 22

18



subject to

1 —2exp(—z2) =0

—m1+x2+y§0

The global optimum is (x1, xs,y; f) = (1.375,0.375,1;2.124).

Problem #2’

Problem #2 can also be formulated without the nonlinear equality constraint

with the same global optimum.

min f(z1,) = —y + 22, — n(z1/2)

subject to
—x1 —In(x1/2) +y <0
y€{0,1}
Problem #3

This problem was firstly studied by Floudas (1995) and presents a nonlinear
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constraint. It has also been solved by Cardoso et al (1997).

min f (71 22y) = —0.7y + 5(x; — 0.5)> + 0.8

subject to

—exp(z; —0.2) — 25, <0

—2.22554 < 9 < —1

y € {0,1}

The global optimum is (z1 29, y; f) = (0.94194, —2.1,1;1.07654).

Problem #4

In this problem, taken from Kocis and Grossmann (1989), the objective is to
select one between two candidate reactors in order to minimize the production
cost. It has also been solved by Diwekar et al. (1992), Diwekar and Rubin (1993)

and Cardoso et al (1997).

min f(x, y1, Yo, v1,v2) = 7.5y1 + 5.5ys + Tv1 + 6vs + 5z

20



subject to

ht+y=1
z1 = 0.9[1 — exp(—0.5v1)] 1
29 = 0.8 [1 — exp(—0.4vy)] xo
21+ 29 =10
1+ T ==x
2191 + 22y2 = 10
v; < 10y,
vy < 10y
1 < 201,
To < 20y
T1, T2, 21, 22, V1, V2 > 0

y1,92 € {0,1}

The global optimum is (z, y1, y2, v1, v2; f) = (13.362272, 1,0, 3.514237, 0; 99.245209).

Problem #4’

The previous problem, without equality constraints, can be formulated as follows:

min f(yq,v1,v9) = 7.5y + 5.5(1 — y1) + Tvy + 6vg

I—wy 150 n

+ 500.8[1 — exp(—0.4v,)] 0.9[1 — exp(~0.5v1)]

21



subject to

0.9[1 — exp(—0.5v1)] — 2y; <0

0.8[1 — exp(—0.4v5)] = 2(1 — 1) <0

Problem #5

This problem was studied by Floudas et al. (1989), Yuan et al. (1989), Salcedo
(1992), Ryoo and Sahinidis (1995) and Cardoso et al (1997) and presents several

nonlinear constraints.

minf(xl,:1:2,:1:3,y1,y2,y3,y4) = (?/1 - 1)2 + (92 - 1)2

+(ys — 1) —In(ya + 1) + (21 — 1) + (22 — 2)* + (x5 — 3)°
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subject to

1 +Y2+ys+x1+x0+ 23 <95
ys +al+ a3+ 15 <55
Y1+ < 1.2
Yo+ 19 < 1.8
y3 +x3 < 2.5
ys +x1 < 1.2
Y2 + x2 < 1.64
Y2 + 232 < 4.25
Y2 + 22 < 4.64
1, %, T3 > 0

Y1, Y2, Y394 € {0,1}

The global optimum is

(21, T, T3, Y1, Yo, 3, ya; f) = (0.2, 1.280624, 1.954483, 1,0, 0, 1; 3.557463).

Problem #6

This is maximization problem taken from Wong (1990) and also studied by Car-
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doso et al (1997).

max f(z1, To, T3, Y1, Yo) = —5.357854z% — 0.835689y; 73 — 37.29329y; + 40792.141

subject to

ay + agys3 + azy1Ta — asr1x3 < 92
as + agyaTs + azy1ys + agrs — 90 < 20
ag + a10T123 + a11Y171 + a12x122 — 20 <5
27T < x1,29,x3 < 45
y1 € {78, ...,102}, integer

Y2 € {33, ...,45}, integer

where a; to a5 are given by table 4.

ap | 85.334407 || as | 80.51249 | a9 | 9.300961

az | 0.0056858 || ag | 0.0071317 || aio | 0.0047026

as | 0.0006262 || a7 | 0.0029955 | a1; | 0.0012547

as | 0.0022053 || ag | 0.0021813 || a12 | 0.0019085

Table 4: Problem #6 Data

The global optimum is, for any combination of zs, yo, (1, z3,y1; f) = (27,27, 78;32217.4).

Problem #7
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This is a multi-product batch plant problem with M serial processing stages,
where fixed amounts (); from N products must be produced. The objective is
to find out for each stage j, the number of parallel units N;, together with the
respective sizes V; and, for each product ¢, the corresponding batch sizes B;
and cycle times 77;. The data are the horizon time H, the size factors S;;, the
processing times t,; of product ¢ in stage j, the required productions ); and the
cost coefficients o; and ;. This problem, studied by Grossmann and Sargent
(1979), Kocis and Grossmann (1988), Salcedo (1992) and Cardoso et al (1997)

has the following mathematical formulation:

M
min f = Z oszjVjﬂj

J=1

subject to

NjTp; > ti;
1< N; <N
Visv<y
Ty < T < T,
B < B <B

N, integer

25



where, for the specific problem considered, M = 3, N = 2, H = 6000, a; = 250,
B; = 0.6, N =3, V] = 250 and V}* = 2500. The values of T}, T};, B! and B

are given by:

to:
Tl» — 1]
T max -,
j
Tp; = maxty
j
Qi
Bl = =T,
i H L
Y
BY = min(Q,, min -

The table 5 gives the values of S;; and t,;.

Sij tij

2 3148 |20(8

4 163|164 |4

Table 5: Problem #7 Data

The global optimum is

(N1, No, N3, Vi Va Vs By, Bo, Tya, Tro; f) = (1,1, 1,480, 720, 960, 240, 120, 20, 16; 38499.8).

5 Results

Figures 3 and 4 summarize the results obtained when GAs were used. In these experiments,
different values of the penalty coefficient of the constraints in equation 2 (R equals to 10, 10?
and 10°), and the Deb Scheme as described in equation 3 were considered. Figure 3 presents
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Figure 3: GA convergence

the percentage of convergencies to the global optimum and figure 4 shows the mean number

of objective function evaluations needed to reach convergence.

Figures 5 and 6 summarize the results obtained when ESs were considered. In these
experiments, three ESs were applied, the (14 1) -ES, the (u+ A) - ES and (u, A) - ES. The
number of parents (u) and number of offspring () were, respectively, 10 and 100. As before,
figure 5 presents the percentage of convergencies to the global optimum and figure 6 shows

the mean number of objective function evaluations needed to reach convergence.

Table 6 presents the comparison, in terms of the number of objective function evaluations
and proportion of convergencies to the optimum, between the GA (with the two penalty
schemes), the (114 \)-ES and the M-SIMPSA algorithm. In this table, #F and #C represent,
respectively, the mean number of objective function evaluations over all the 10 executions,
and the percentage of convergencies to the global optimum. The results presented are the
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Figure 4: GA number of function evaluations
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Figure 5: ES convergence
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Figure 6: ES number of function evaluations

best obtained for each problem. For problem #b5 a better solution was found by GAs and

ESs than the best obtained by M-SIMPSA.

GA-R =10° | GA-Deb sch. | (uz+ A)-ES | M-SIMPSA | M-SIMPSA-pen.

| Prob. # || #F| C% #E| C%h | #F| C% #F | C% #F | C%
1 6787 | 100 | 6191 | 100 | 1518 [ 100 607 [ 99 16282 100

2’ 13939 [ 100 | 15298 | 100 | 2255 | 100 | 10582 | 83 14440 100

3 107046 | 90| 110233 | 90 | 1749 | 100 - 0] 38042 100

4 22480 [ 100 | 23730 | 80 - 0] 14738 | 100 42295 100

5 102778 | 60| 34410 90| 6710] 100 | 22309 | 60* 63751 97*

6 37167 | 100 | 35255 | 100 | 2536 | 100 | 27410 | 87| 33956 95

7 225176 0| 225173 0 B 0 B 0| 257536 97

* converged to a non-optimal solution

- execution halted

Table 6: GA versus M-SIMPSA
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6 Conclusions

It is well known that one of the main disadvantages of Evolutionary Algorithms lies in the
required computational time. On the other hand, requiring only the objective function values
to execute the search, based on a pool of points, allows Evolutionary Algorithms to deal with
nonconvex problems with reduced chances of being trapped on a local optimum. This work
compared Genetic Algorithms, Evolution Strategies with previous published results of M-

SIMPSA (Cardoso et al 1997), a Simulated Annealing based algorithm.

The results clearly show the difficulty in dealing with equality constraints (Problems #2
and #4); however, when reformulated without these constraints, the algorithms exhibited a

high rate of convergence.

The method proposed by Deb (1998) to deal with the constraints is clearly superior to
the usual penalty scheme, since it does not require the setting of a penalty parameter. The
proposal of Cardoso et al. (1997) for the M-SIMPSA algorithm can generate infeasible points
with fitness values superior to feasible points. Evolutionary strategies exclude all non fea-
sible points, which corresponds to an infinite penalty. All algorithms presented have great
difficulties with problem #7 which is not surprising since the problem is highly constrained;
the global optimum corresponds to a point where a very small variation in any of the contin-
uous variables produces infeasibility. Thus, it seems of utmost importance the development

of appropriate methods to deal with constraints in the context of Evolutionary Algorithms.

Evolutionary Strategies exhibit difficulties in highly constrained problems but, in general,

they are the most efficient in terms of function evaluations. In summary, the solution of
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MINLP problems with Evolutionary Algorithms is a valid approach in non convex problems
where computational time is not of primary importance. Future work will address the
comparison of evolutionary algorithms with adaptive random search algorithms, as well as

the treatment of equality constraints.

References

Baker, J. (1987), Reducing Bias and Inefficiency in the Selection Algorithm, in Proceed-
ings of the Second International Conference on Genetic Algorithms and their Applications,
Lawrence Erlbaum Associates, Hillsdale, New Jersey, USA, 14-21.

Banga, J. R., Seider, W. D, (1996), Global optimization of chemical processes using
stochastic algorithms, State of the Art in Global Optimization: Computational Methods
and Applications, C.A. Floudas and P. M. Pardalos (Eds.), Kluwer Academic Publishers,
Dordrecht, The Netherlands, 563-583.

Cardoso, M. M. F. C.(1998), A Procura do Optimo Global, PhD Thesis, Engineering
Faculty, University of OPorto, Portugal.

Cardoso, M. F., Salcedo, R. L., Feyo de Azevedo, S. (1996a), Nonequilibrium Simulated
Annealing: A Faster Approach to Combinatorial Minimization, Ind. Eng. Chem. Res, 33,
1908-1918.

Cardoso, M. F., Salcedo, R. L., Feyo de Azevedo, S. (1996b), The Simplex-Simulated
Annealing Approach to Continuous Non-Linear Optimization, Computers chem. Engng.,
Vol. 20, 9, 1065-1080.

Cardoso, M. F., Salcedo, R. L., Feyo de Azevedo, S., Barbosa, D. (1997), A Simulated
Annealing Approach to the Solution of MINLP Problems, Computers chem. Engng., Vol.

31



91, 12, 1349-1364.

Deb, K. (1998), An Efficient Constraint Handling Method for Genetic Algorithms, Comp.
Meth. Appl. Mech. Eng. (to appear).

Diwekar, U. M., Grossmann, I. E., Rubin, E. S. (1992), An MINLP Process Synthesizer
for a Sequential Modular Simulator, Ind. Eng. Chem. Res, 31, 313-322.

Diwekar, U. M., Rubin, E. S. (1993), Efficient Handling of the Implicit Constraints
Problem for the ASPEN MINLP Synthesizer, Ind. Eng. Chem. Res, 32, 2006-2011.

Floudas, C. A. (1995), Nonlinear and mixed-integer optimization, Oxford University
Press, New York.

Floudas, C. A., Aggarwal, A., Ciric, A. R. (1989), Global Optimum Search for Nonconvex
NLP and MINLP Problems, Computers chem. Engng., Vol. 13, 10, 1117-1132.

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, Reading, Massachusetts.

Grossmann, I. E., Sargent, R. W. H., (1979) Optimal design of multipurpose chemical
plants, Ind. Eng. Chem. Process Des. Dev., Vol. 18, 343.

Kocis, G. R., Grossmann, 1. E. (1987), Relaxation Strategy for the Structural Optimiza-
tion of Process Flow Sheets, Ind. Eng. Chem. Res, 26, 1869-1880.

Kocis, G. R., Grossmann, 1. E. (1988), Global Optimization of Nonconvex Mixed-Integer
Nonlinear Programming (MINLP) Problems in Process Synthesis, Ind. Eng. Chem. Res,
97, 1407-1421.

Kocis, G. R., Grossmann, I. E. (1989), A Modelling and Decomposition Strategy for the
MINLP Optimization of Process Flowsheets, Computers chem. Engng., Vol. 13, 7, 797-819.

Rechenberg, 1. (1994), Evolutionsstrategie '94, Frommann-Holzboog, Stuttgart.

32



Reklaitis, G. V., Ravindran, A., Ragsdell, K. M. (1983), Engineering Optimization:
Methods and Applications, Wiley, New York, 277-287.

Ryoo, H. S., Sahinidis, B. P. (1995), Global Optimization of nonconvex NLPs and
MINLPs with applications in process design, Comp. chem. Engng., Vol. 19(5), 551.

Salcedo, R. L. (1992), Solving nonconvex nonlinear programming and mixed-integer non-
linear programming problems with adaptive random search, Ind. Eng. Chem. Res, 31,
262.

Schwefel, H.-P.(1985), Evolution and Optimal Seeking, John Wiley & Sons

Winston, W. L.(1994), Operations Research Applications and Algorithms, 3 ed., Duxburg

Wright, A. H. (1991), Genetic Algorithms for Real Parameter Optimization, in G.J.E.
Rawlings (Ed.), Foundations of Genetic Algorithms, Morgam Kaufmann Publishers, San
Mateo, CA, 205-218

Wong, J. (1990), Computational experience with a general nonlinear programming algo-
rithm, COED J., Vol. 10, 19.

Yuan, X., Zhang, S., Pibouleau, L., Domenech, S.(1989), Une Methode d’optimization

nonlineaire en variables mixtes pour la conception de procedes, in RAIRO-Oper. Res.

33



