
Multiobjective Optimization of the Transport in Oil Pipelines
Networks

J.M.de la Cruz, B.de Andres-Toro, A.Herrán, E.Besada Porta, P.Fernandez Blanco

Dpt. Computer Architecture and Automatic Control

Universidad Complutense de Madrid
28040- Madrid

SPAIN

Abstract - Heuristic methods are specially well suited to
solve combinatorial problems. One of this problem is
the distribution of petroleum products through oil
pipelines networks. In this paper the problem is stated
and solved using a multiobjective and constraint
evolutionary optimization algorithm. Several objective
functions has been defined to express the goals of the
solutions as well as the preferences among them. Some
constraints are included as hard objective functions and
some has been evaluated through a repairing function
to avoid infeasible solutions. An example of working is
given.

I. INTRODUCTION

Distribution of petroleum product through oil pipeline
networks is a very important problem since it is an activity
of economic importance in every country. Usually the
products are taken from refineries, ports or storage centers
and transported to the destination points. Usually the pipes
are unidirectional but in some special cases there can be
bidirectional pipes.

The main goal is to satisfy the demanded products at
the destination points in due time, but other important goal
is to avoid sending consecutive products of different kinds
because they may contaminate each other. Moreover, a
number of constrains must be satisfied, as the limits in
capacity of delivering of sources and of receiving in
destination, the limits in the capacity of the transportation
network, and the limits in the storage capacity.

This is a problem of combinatorial type. This kind of
problems are well suited for evolutionary algorithms (EA)
[1], [2]. Although originally developed to optimize a cost
function or fitness function, algorithms have been proposed
to solve multiobjective optimization and constrained
problems [3],[4],[5].

In this paper we present a solution to a simplified
problem of the optimal distribution of petroleum products
through oil pipelines networks using an evolutionary
multiobjective constrained optimization algorithm. In
section 2 we study the model of the problem. In section 3
the model coding and representation used by the
evolutionary algorithm is given. The objective functions,

constraints and priorities used in the algorithm of the
problem are stated in section 4. An example is presented in
section 5 and the conclusions are stated in section 6.

To the autors knowledge this problem has not been
aborded before.

II. MODEL OF THE OIL PIPELINE NETWORK

We consider a simplified model of an actual network.
The network has a set of nodes made up of a set of sources,
a set of sinks or receiving terminals, such as delivery points
or storage terminals, and a set of intermediate connections
that actuate as receiving and delivering points with storage
capacity. Every source and intermediate connections may
have different pipes to different nodes and can deliver
different products in different pipes simultaneously. We
consider that the different products or oils are delivered as
discrete packets. There might be as many different types of
packets as number of different products. A unit packet is
the minimum fluid volume delivered by a source or
intermediate node in a unit time, that is, the minimum
volume of the pipe filled by a fluid. Every sink and
intermediate node have as many tanks as products he can
receive, to store the different products. Also we can assume
that the sources take the fluids from tanks.

In order to simplify the problem we assume that all
pipes have the same diameter and characteristics. We also
assume that all packets flow with the same speed and that
they occupy a similar volume in the pipe. If two packets of
different fluids follow one another there exist the
possibility of both products to become contaminated. In a
number of pipes the fluids may flow in both directions
from one node to the other.

A simple network can be seen in figure 1. This
network has two sources (nodes 1 and 2), three sinks
(nodes 5, 6 and 7) and two intermediate nodes (4 and 5). In
pipe joining nodes 3 and 4 the fluid can flow in both
directions. Numbers in links joining two nodes give the
normalized distance in terms of units of time needed by a
given packet to cover the whole pipe. For instance, number
4 in pipe linking nodes 1 and 3 means that one packet
spends four periods of unit time to go from node 1 to node
3, or that the pipe may contain four packets.

Figure 1: Simple network model

To code the topology of the network we use a matrix

having as entries the distance among the nodes. An entry of
zero says that there is no connection between these nodes.
A connection is represented as a pair (i,j) where i is the
output node and j the input node. A bidirectional links is
acknowledge because we have a pair of symmetric
connections (i, j) and (j, i).

III. MODEL REPRESENTATION

We describe the data structure, operators and functions
that characterize the solution space. Firs we have the
solution coding and then we pass to describe the most
important genetic operators used over the population.

A. Coding a solution.

A solution to the problem is given by the kind of
packet sent by every source or interconnection node at
every instant. To code a solution we use a matrix in which
the rows are the network connections and the columns the
time. Every entry represents the kind of product that is
delivered to the link at this time instant. Every product is
coded as an integer and the value 0 is used to represents
that no packet is delivered at this time. Figure 2 shows a
solution for the network of figure 1. In order to use this
coding, we need a prior knowledge of a maximum value of
the time needed to find a solution. This estimation is made
from the network parameters and the constraints. In figure
2 we have taken this value as Ninst = 15 and we have
suppose that there are three kind of products.

Figure 2: Matrix solution coding.

Not only will this coding let the objective function
reproduce a solution and evaluate it properly, but also it
favours the implementation of quickly initialization,
crossover and mutation operators: initial values are random
integers in the range [0, number of oil types], the crossing
points will be instant of times and the crossover performed
dividing the matrix in groups of columns, and the mutation
will be carried out modifying randomly the value of some
of the elements of the matrix.

However, in order to store a whole population in a no
structured variable is more suitable to represent each
individual as a vector and the population as a matrix, with a
row for individual. The above coding can be rearranged in
a row vector, by placing consecutively each of the columns
of the matrix (instant of times), in such a way that the first
n elements store the types of package units sent through the
n connections in the first instant of time, the following n
elements the types of package units sent during the second
instant of time, and so on. The new coding of the same
solution to the problem as the one presented in figure 2, is
shown in figure 3:

Instant 1 Instant 15
1.......................10 1.......................10
1 1 2 2 2 2 2 1 2 1 0 3 1 3 1 3 1 3 1 3

Figure 3: Vector solution coding

Implementing the objective function for this coding is
as easy as for the original one and as all the population can
be stored in a matrix, quicker genetic operators that work
over the whole population (and not individual by
individual) can be developed straightforward.

However, this codification doesn’t necessary fulfil the
problem statement conditions yet, because the types of oils
produced for each source could be different, and all the
elements in the row vector solution are in the range [0,
number of oil types]. The easiest way of handling this
aspect of the problem is to code, for each of the sources,
the types of oils from 1 to the number of different oils sent
by that source (leaving the 0 for the case of not sending any
product at that instant of time). This coding will not
overload the genetic operators and the real type of oil
coded in the individual can be obtained, before evaluating
the individuals to obtain its fitness, by means of the
Package_Type variable.

For example, for the network of the figure 1, if the
source 1 can handle packages of type 1 and 2, and the
source 2 can handle packages of type 3 and 4, the valid
values in the individual row vector for the connections 1, 2,
3 and 4 will be in the range [0,2] and for the others in the
range [0-4]. In the two first connections, the values 1 and 2
will code types 1 and 2, while in the two following
connections the same values will code the types 3 and 4.
For all the other connections, the values [1,4] will code

types [1,4]. The Package_Type for the example is
presented in table 1 (the coding values in first row are
mapped to the valid types for each node in the same
column), while the final coding for an individual is shown
in figure 4 (at the top, the vector individual; at the bottom
the individual after the mapping to the real oil types):

coding values 0 1 2 3 4

Types for Source 1 0 1 2

Types for Source 2 0 3 4

Types for Inter. node 1 0 1 2 3 4

Types for Inter. node 2 0 1 2 3 4
Table 1: Package_Type variable.

Instant 1 Instant 15

1.......................10 1.......................10
1 1 1 1 2 2 2 1 2 1 0 1 1 2 1 3 1 3 1 3

Instant 1 Instant 15

1.......................10 1.......................10
1 1 3 3 2 2 2 1 2 1 0 1 3 4 1 3 1 3 1 3

Figure 4: Vector individual coding (top) and real
type mapped individual (bottom).

The information in table 1 can be kept easily in a
structure where every row is a cell associated to a node,
and ,within every row, there are as many columns as
connections departing from this node. So, the value of the
gene acts as entry to get the product associated to it. In
Matlab notation the representation of the information in
table 1 would be as follows:

ProductType={ [1 2] ; % node 1

[3 4] ; % node 2

[1 2 3 4] ; % node 3

[1 2 3 4] }; % node 4

With this representation the products associated to the
genes of the first node are:

» ProductType {1}(1)=1

» ProductType {1}(2)=2

and those of the second node are

» ProductType {2}(1)=3

» ProductType {2}(2)=4

and so on.

B. Genetic operators.

For the generating law, we can buid a mask in order to
keep each gen of our individual structure (type of package
sent by each conection in each time instant) in his

corresponding value range. The mask is codified as in
chromosome of figure 3. The example corresponding to
table 1 is given in table 2:

 node 1 node 2 node 3 node 4

Conection 1,3 1,4 2,3 2,4 3,4 3,5 3,6 4,3 4,6 4,7

Nº conect 1 2 3 4 5 6 7 8 9 10

Nº products 2 2 2 2 4 4 4 4 4 4

Table 2: Mask (grey colour) needed for the mapping process.

Then, if we have Nind=20 individuals (with 10 conex
and 15 time instants) we can use the above mask to
generate the initial population as follows (using Matlab
notation):

Nconex=10;

Ninst=15;

Ngenes=Ninst*Nconex;

Nind=20;

mask=[2 2 2 2 4 4 4 4 4 4];

pop_aux=rand(Nind,Ngenes);

mask=repmat(mask,Nind,Ninst);

pop=round(pop_aux.*mascara);

Now, we pass to explain the genetic operators used in
the reprodution process:

Crossover operator: We can see a sechematic of the
cross process in figure 5. Althrougth our final codification
is the showed in figure 4, the efectc of the cross operator is
more esaily explained making use of our initial codification
showed in figure 2. Then, if we have two individuals with 4
conections and 15 instants the following cross is
implemented with one cross point:

Figure 5: Crossover operator

Mutaton operator: Again we can make use of the mask
for implement the mutation operator. Continuing with the
above example the implementation of this operator with
Matlab notation is:

probMut=0.08;

mutp=(rand(Nind,Ngenes)<probMut);

pop_aux=rand(Nind,Ngenes);

mutated=round(mask.*pop_aux).*mutp;

new_pop=pop.*(~mutp) + mutated;

V. DESIGN PROBLEM

In addition to satisfying the demands in time, the main
objective is to reduce to a minimum the number of different
kind of packets through every pipe, so that to avoid, as
much as possible, the possibilities of contaminating
products, while verifying a number of constraints. Table 3
gives the nomenclature of the parameters and variables
used in the model.

Parameters (provided by the problem specification)

Nf number of source nodes

Ni number of intermediate nodes

Nd number of sink nodes

Nc number of connections in the network

Nti number of tanks in node i.

LCmij lower limit in number of packets of tank j of
 node i
LCMij upper limit in number of packets of tank j of

 node i
Pij minimum number of packets of product j to be

sent from source i
Dij number of packets of product j demanded by

destination i
LTmj lower limit in the arrival time of packets to

 destination i
LTMj upper limit in the arrival time of packets to

 destination i

types number of different products.

Decision variables

Eij number of packets of product j that has been
sent by source i

Rij number of packets of product j received at
destination i

NC number of colisions in bidirectional pipes

Cij number of packets in tank j of node i

Ti time of arrival of a packet of any product to
destination i

Fi number of changes in the type of products sent
through conexión i (fragmentation)

Table 3: Parameters and decision variables used in the model.

The model is subject to the following constraints:

C1. A minimum production must be fulfilled:

1,.....,
1,.....,

ij ij ij

i

P E LCM
i Nf
j Nt

≤ ≤

=
=

C2. Every destination must received the amount of
demanded packets:

1,.....,
1,.....,

ij ij

i

R D
i Nd
j Nt

=

=
=

C3. There must be no collisions of packets through a
bidirectional pipe:

0=NC

C4. The tank capacity must not be violated:

1,....., ()
1,....,

ij ij ij

i

LCm C LCM
i Nf Ni
j Nt

≤ ≤

= +
=

C5. The arrival of a packet to a node must be at due
time:

Ndi
LTMTLTm iii

,.....,1=
≤≤

And the objectives are the following ones:

O1. Minimize the time that takes in verifying the
demand in each destination:

Ndi
Ti

,.....,1
)min(

=

O2. Minimize the sum of the previous times:

∑

=

Nd

i
iT

1

min

O3. Minimize the fragmentation of the products in
every connection:

Nci
Fi

,.....,1
)min(

=

O4. Minimize the whole fragmentation:

∑

+

=

NdNf

i
iF

1
min

To solve the problem we use a multiobjective and
multiple constraint optimization evolutionary algorithms
(MOEA) as proposed in [4]. Constraint satisfaction can be
seen as hard objective. In that way, constraints C1, C2, C3
are implemented as high priority objective functions, and
solutions are penalized on the extent to which they violate
the constraints. On the other hand, constraints C4 and C5
are handled by a repairing function. This function test each
individual to find if every delivered packet meet the
constraints, if so the individual is kept, or else each wrong
packet is removed from the chromosome. Therefore this
function assures us that constraints C4 and C5 are always
fulfilled. Hence, the repairing operator is inserted in the EA
implemented for this problem, which is schematized in the
following figure, just before the evaluation step.

Objetivos
(Baja prioridad)

? 1 J 2 J3

‘nodo 1’J3+n+1Tiempo 1’ J4

Función de
evaluación

J3+n+m+2

Suma tiempos llegada
J3+n+m+3

Tiempo ’destino n’ J3+n+m+1

Optimization
criteria

Sent = Produced? Recieved = Demanded? Colisions?

Arrival time to D1

Constraints

Evaluation
function

and
fitness
criteria

..............

Sum of Arrival
time s

Number of packages from N1

Arrival time to DNd Number of packages from DNs+Ni

Sum of Number of
packages

Genetic Operators
Crossover and Mutation

Initialization
Operator

Repairing
Operator

Tanks Capacity
must not

 be violated Constraints
All the packages

must arrive
 in the time interval

Received ?
demanded

Figure 6. Constraints and objective functions in the MOEA.

The following objective functions are considered:

• J1 : penalty for the infeasibility of C1. As the
minimal production of each product of each source
is constrained and must be sent, there is an objective
value J1 that measures the part of the minimal
production which has not been sent, i.e. the total
number of package units that each source should
have sent but haven’t. High values of J1 mean that
the constraint is far to be fulfilled, while when the
value is 0 all the minimal production will be
consumed by the evaluated working strategy.

• J2 : penalty for the infeasibility of C2. The number
of package units received by each destiny for each of
the product types is fixed in the problem statement,
therefore there is an objective value J2 which
measures the total (for all the products and all
the destinies) number of package units that the
destinies should and have not received.
Individuals with more receptions than requests don’t
exist because the repairing operator solves that
problem. High values of J2 mean that the requests
are far to be fulfilled, while when the value is 0 the

number of package unit receptions will be exactly
the number of package units demanded.

• J3 : penalty for the infeasibility of C3. As there
must not be collisions of packages in the pipes
where the products can be sent in both directions,
there is an objective value J3 which measures the
number of package units that have collided. The
higher the value of J3, the bigger the number of
collisions. If the value is 0, the constraint is fulfilled.

• J4, ... J3+j , .. JNd+3 : for every destination j, time of
arrival of the last packet (O1). For each destiny node
the time of arrival of the products must be inside the
correct arrival time interval and once inside the
interval minimized. So, the best arrival time will be
the minimal arrival time. There is an arrival time
objective value J4:Nd+3 for each of the destiny
nodes.

• JNd+4 : sum of J4, ... J3+j , .. JNd+3 (O2). The total
arrival time JNd+4 which is obtained as the sum of
all the arrival time objective values, is also used.
The arrival times are used to let the EA minimize
independently the time of arrival in each destiny and
the total arrival time is used to make the EA
minimize all the arrival times simultaneously.

• JNd+5, ... JNd+4+j , .. JNd+Nc+4 : fragmentation at the
output of every connection j (O3). The number of
packages sent through each pipeline must be
minimized, i.e. the package units of each product
must be sent as continuously as possible. Instead of
having a different objective in charge of accounting
the number of packages sent through each pipe,
there is a different objective JNd+5:Nd+4+Ns+Ni for
counting the number of packages sent by each
source and intermediate node to maintain a
manageable number of objectives in complex
functions.

• JNd+Nc+4 : sum of JNd+5, ... JNd+4+j , .. JNd+Nc+4 (O4).
The total number of packages sent through the
whole network JNd+5+Np+Ni , obtained as the sum of
all the number of packages sent by each source
and intermediate node, is also used. The number of
packages sent by each source and intermediate node
is used to let the EA minimize independently the
number of packages sent by the pipelines departing
each distributing node and the total number of
packages to make the EA minimize the total number
of packages simultaneously.

For each population the objective functions are
evaluated and the population is ranked using the
preferability relation given in figure 7. Now a dominance
matrix is built. This matrix keeps the dominance relation

between each pair of individuals. Fitness is assigned over
the population using Goldberg method [1]. In this method
the population is divided in several groups. First, it is
formed a group with the individuals that are not dominated;
next group is obtained by eliminating of the population the
individuals from the first group and taking the individuals
that, now, are not dominated, and so on. The individuals in
a group are given the same fitness value. The worst group
is given a fitness value of 1, the second worst group is
given a fitness value of 1 + ∆, the third worst group is
given a fitness value of 1+2∆, and so on. Where, ∆ is a
design parameter. The fitness value given to every group
with the objectives values obtained by each individual
gives the final value used for selecting the parents.

? 1J1 : Sent = Minimal Produced J2 :Recieved = Demanded J3 :ColisionsFist Level
(Hard Constraints)

1 JNd+5+Np :Total number of packages J1 Second Level
(Minimizing)

1 JNd+4 :Total arrival time Third Level
(Minimizing)

1JNd+5 : Packages Source ‘1’ Fourth Level
(Minimizing) JNd+4+Ns+Ni: Packages Inter. ‘Ni’………

1J4: Time Destiny ‘1’
Fifth Level

(Minimizing and
Constraints)

JNd+3 : Time Destiny ‘Nd’………

Figure 7. Scheme of priorities.

V. EXAMPLE

To solve the problem we have used the toolbox
EVOCOM [6]. We show the results obtained when
applying the algorithm to the network of figure 8. This
network has 3 source nodes, 4 sink nodes and 5
intermediate nodes. There are 20 unidirectional links and
one bidirectional link, and, therefore, 22 connection points.
We suppose that three kind of products can flow through
the network: A, B and C.

Figure 8: Network model.

Table 4 shows the minimum, maximum and initial
content of the tanks of the source and intermediate nodes,
table 5 shows the minimum production in the source nodes,
and table 6 shows for every product the minimum and
maximum time allowed to fulfill the demand, as well as the
demanded amount.

Table 4: Capacity and content of the tanks of source and

intermediate nodes

Table 5: Minimum production of packets of every source

Table 6: Number of demanded packets and allowed arrival time

The following parameters are chosen in the algorithm:

Parameter Value

Number of individua 21
Number of sustitutions 7
Number of generations 12000
Crossover probability 0.8

Number of cross points 2
Probability of mutation 0.008

Table 7: The most relevant EA parameters

For the recombination process we took one of the
recombination methods provided by the Toolbox
EVOCOM [6]. The tried method was rec_subgen which
keep constant the population size. This method operates in
the following form: given the old and new population (with
n individuals), it substitutes the last n individuals of the old
population by the individuals of the new population.

While running the EA, the values of the different
objectives of the best solution in each generation were
stored and are presented in the following figures to show
the evolution of the algorithm. The results obtained after

12000 generations are given in the following figures.
Figure 9 shows the values of the objective functions in the
first 10 generations. As can be seen, the initial population
fulfills constraints C1 and C3, and these constraints keep
on fulfilling. Initially only two individuals violates
constraint C2, but as soon as two generations later no
violation occurs.

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Generation

J3

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

J1

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

J2

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Generation

J3

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

J1

0 1 2 3 4 5 6 7 8 9 10
-2

0

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Generation

J3

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

J1

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

J2

Figure 9: Evolution of the cost functions of constraints C1, C2 C3

Figure 10 shows the cost functions for objective O1,

that is the maximum time of arrivals of packets to the sink
nodes.

0 5000 10000
85

90

95

100

105

J4

Generación
0 5000 10000

85

90

95

100

105

J5

Generación

0 5000 10000
85

90

95

100

105

J6

Generation
0 5000 10000

85

90

95

100

105

J7

Generation

0 5000 10000
85

90

95

100

105

J4

Generación
0 5000 10000

85

90

95

100

105

J5

Generación

0 5000 10000
85

90

95

100

105

J6

Generation
0 5000 10000

85

90

95

100

105

J7

Generation
Figure 10: Time spend in satisfying demand at the sink nodes

(objective O1)

Figure 11 shows the cost function for objective
O2. We can appreciate that about the generation 2000 there
is an increase in the cost function, followed by a trend to
decrease. As we can see in figures 11 and 12, this is due to
an increase in the rate of reduction of objectives O3 and
O4, that is in reducing the number of different packets sent
through the delivering nodes.

0 2000 4000 6000 8000 10000 12000
365

370

375

380

385

390

395

J8

Generation
0 2000 4000 6000 8000 10000 12000

365

370

375

380

385

390

395

J8

Generation
Figure 11: Sum of times in figure 10 (objective O2).

Figure 12 shows the evolution of the

fragmentation at the output of sources and intermediate
nodes (objectives O3).

0 5000 10000
0

50

100

J9

Generación
0 5000 10000

0

50

100

J1
0

Generación

0 5000 10000
0

50

100

J1
1

Generación
0 5000 10000

0

50

100

J1
2

Generación

0 5000 10000
0

50

100

J1
3

Generación
0 5000 10000

0

50

100

J1
4

Generación

0 5000 10000
0

50

100

J1
5

Generation
0 5000 10000

0

50

100

J1
6

Generation

0 5000 10000
0

50

100

J9

Generación
0 5000 10000

0

50

100

J1
0

Generación

0 5000 10000
0

50

100

J1
1

Generación
0 5000 10000

0

50

100

J1
2

Generación

0 5000 10000
0

50

100

J1
3

Generación

0 5000 10000
0

50

100

J9

Generación
0 5000 10000

0

50

100

J1
0

Generación

0 5000 10000
0

50

100

J1
1

Generación
0 5000 10000

0

50

100

J1
2

Generación

0 5000 10000
0

50

100

J1
3

Generación
0 5000 10000

0

50

100

J1
4

Generación

0 5000 10000
0

50

100

J1
5

Generation
0 5000 10000

0

50

100

J1
6

Generation
Figure 12: Fragmentation at the output of the delivery nodes.

Objective O3.

We can see a continuous decreasing trend. This
trend is more clearly appreciated in figure 13 where the
sum of the previous objective functions is shown.

0 2000 4000 6000 8000 10000 12000
100

150

200

250

300

350

400

450

500

J1
7

Generation
0 2000 4000 6000 8000 10000 12000

100

150

200

250

300

350

400

450

500

J1
7

Generation
Figure 13: Total fragmentation. Objective O4

VI. CONCLUSIONS

We have presented a simplified problem about the
continuous distribution of products through an oil-pipeline
network. The main objective of the network is satisfy
demands in a minimum time and to avoid fragmentation as
much as possible in order to reduced contamination of
products. Moreover, a number of constraints must be
fulfilled. Although the problem belongs to the kind of NP-
complete problems has been solved using an evolutionary
multiobjective and constraint optimization algorithm. The
problem solved can be used for networks with every
number of sources, sinks and intermediate nodes, and with
any number of products.

VII. REFERENCES

[1] Goldberg, D.E. (1989). Genetic Algorithms in
Search, Optimization, and Machine Learning,
Addison-Wesley.

[2] Michalewicz, Z.Genetic Algorithms +Data
Structures=Evolution Programs. 3rd ed. Springer-
Verlag, Berlin

[3] Coello Coello, C.A. (2000). An Updated Survey of
GA-Based Multiobjective Optimization Techniques.
ACM Computing Surveys. Vol. 32. nº 2. June 2000,
109-143.

[4] Fonseca, C. M. and P.J. Fleming (1998).
Multiobjective Optimization and Multiple Constraint
Handling with Evolutionary Algorithm-Part I:
Unified Formulation. IEEE Transactions on
Systems, Man, and Cybernetics. Part A: Systems
and Humans. Vol. 28, nº 1. January 1998, 26-37.

[5] Michalewicz, Z. and Schoenauer, M. Evolutionary
Algorithms for Constrained Parameter Optimization
Problems. Evolutionary Computation 4(1): 1-32,
1996.

[6] Besada-Portas, E. López-Orozco, J.A., Andrés-Toro.
B. (2001). A versatile toolbox for solving industrial
problems with several evolutionary techniques. In
Evolutionary Methods for Design, Optimization and
Control. Ed. International Centre for Numerical
Methods in Engenieering (CIMNE). Barcelona.
Spain, March 2002. ISBN 84-89925-97-6.

