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Abstract - Heuristic methods are specially well suited to 
solve combinatorial  problems. One of this problem is 
the distribution of petroleum products through oil 
pipelines networks. In this paper the problem is stated 
and solved using a multiobjective and constraint 
evolutionary optimization algorithm. Several objective 
functions has been defined to express the goals of the 
solutions as well as the preferences among them. Some 
constraints are included as hard objective functions and 
some has been evaluated through a repairing function 
to avoid infeasible solutions. An example of working is 
given.  
 

I. INTRODUCTION 

Distribution of petroleum product through oil pipeline 
networks is a very important problem since it is an activity 
of  economic importance in every country. Usually the 
products are taken from refineries, ports or storage centers 
and  transported to the destination points. Usually the pipes 
are unidirectional but in some special cases there can be 
bidirectional pipes.  

The main goal is to satisfy the demanded products at 
the destination points in due time, but other important goal 
is to avoid sending consecutive products of different kinds 
because they may contaminate each other. Moreover, a 
number of constrains must be satisfied, as the limits in 
capacity of delivering of sources and of receiving in 
destination, the limits in the capacity of the transportation 
network, and the limits in the storage capacity. 

This is a problem of combinatorial type. This kind of 
problems are well suited for evolutionary algorithms (EA) 
[1], [2]. Although originally developed to optimize a cost 
function or fitness function, algorithms have been proposed 
to solve multiobjective optimization and constrained 
problems [3],[4],[5]. 

In this paper we present a solution to a simplified 
problem of the optimal distribution of petroleum products 
through oil pipelines networks using an evolutionary 
multiobjective constrained optimization algorithm. In 
section 2 we study  the model of the problem. In section 3 
the model coding and representation used by the 
evolutionary algorithm is given. The objective functions, 

constraints and priorities used in the algorithm of the 
problem are stated in section 4.  An example is presented in 
section 5 and the conclusions are stated in section 6. 

To the autors knowledge this problem has not been 
aborded before. 

 
II. MODEL OF THE OIL PIPELINE NETWORK 

We consider a simplified model of an actual network. 
The network has a set of nodes made up of a set of sources, 
a set of sinks or receiving terminals, such as delivery points 
or storage terminals, and  a set of intermediate connections 
that actuate as receiving and delivering points with storage 
capacity. Every source and intermediate connections may 
have different pipes to different nodes and can deliver 
different products in different pipes simultaneously. We 
consider that the different products or oils are delivered  as 
discrete packets. There might be as many different types of 
packets as number of different products. A unit packet is 
the minimum fluid volume delivered by a source or 
intermediate node in a unit time, that is, the minimum 
volume of the pipe filled by a fluid. Every sink and 
intermediate node have as many tanks as products he can 
receive, to store the different products. Also we can assume 
that the sources take the fluids from tanks. 

In order to simplify the problem we assume that all 
pipes have the same diameter and characteristics. We also 
assume that all packets flow with the same speed and that 
they occupy a similar volume in the pipe. If two packets of 
different fluids follow one another there exist the 
possibility of both products to become contaminated. In a 
number of pipes the fluids may flow in both directions 
from one node to the other.  

A simple network can be seen in figure 1. This 
network has two sources (nodes 1 and 2), three sinks 
(nodes 5, 6 and 7) and two intermediate nodes (4 and 5). In 
pipe joining nodes 3 and 4 the fluid can flow in both 
directions. Numbers in links joining two nodes give the 
normalized distance in  terms of units of time needed by a 
given packet to cover the whole pipe. For instance, number 
4 in pipe linking nodes 1 and 3 means that one packet 
spends four periods of unit time to go from node 1 to node 
3, or that the pipe may contain four packets. 



 
Figure 1: Simple network model 

 
To code the topology of the network we use a matrix 

having as entries the distance among the nodes. An entry of 
zero says that there is no connection between these nodes. 
A connection is represented as a pair (i,j) where i is the 
output node and j the input node. A bidirectional links is 
acknowledge because we have a pair of symmetric 
connections (i, j) and (j, i). 
 

III. MODEL REPRESENTATION 

We describe the data structure, operators and functions 
that characterize the solution space.  Firs we have the 
solution coding and then we pass to describe the most 
important genetic operators used over the population. 

A. Coding a solution. 

A solution to the problem is given by the kind of 
packet sent by every source or interconnection node at 
every instant.   To code a solution we use a matrix in which 
the rows are the network connections and the columns the 
time. Every entry represents the kind of product that is 
delivered to the link at this time instant. Every product is 
coded as an integer and the value 0 is used to represents 
that no packet is delivered at this time. Figure 2 shows a 
solution for the network of figure 1. In order to use this 
coding, we need a prior knowledge of a maximum value of 
the time needed to find a solution. This estimation is made 
from the network parameters and the constraints. In figure 
2 we have taken this value as Ninst = 15 and we have 
suppose that there are three kind of products.  

 

 
Figure 2: Matrix solution coding. 

Not only will this coding let the objective function 
reproduce a solution and evaluate it properly, but also it 
favours the implementation of quickly initialization, 
crossover and mutation operators: initial values are random 
integers in the range [0, number of oil types], the crossing 
points will be instant of times and the crossover performed 
dividing the matrix in groups of columns, and the mutation 
will be carried out modifying randomly the value of some 
of the elements of the matrix.  

However, in order to store a whole population in a no 
structured variable is more suitable to represent each 
individual as a vector and the population as a matrix, with a 
row for individual. The above coding can be rearranged in 
a row vector, by placing consecutively each of the columns 
of the matrix (instant of times), in such a way that the first 
n elements store the types of package units sent through the 
n connections in the first instant of time, the following n 
elements the types of package units sent during the second 
instant of time, and so on. The new coding of the same 
solution to the problem as the one presented in figure 2, is 
shown in figure 3: 
 

Instant 1 ................... Instant 15 
1.......................10 ........................... 1.......................10
1 1 2 2 2 2 2 1 2 1 ........................... 0 3 1 3 1 3 1 3 1 3

Figure 3: Vector solution coding 

Implementing the objective function for this coding is 
as easy as for the original one and as all the population can 
be stored in a matrix, quicker genetic operators that work 
over the whole population (and not individual by 
individual) can be developed straightforward.  

However, this codification doesn’t necessary fulfil the 
problem statement conditions yet, because the types of oils 
produced for each source could be different, and all the 
elements in the row vector solution are in the range [0, 
number of oil types]. The easiest way of handling this 
aspect of the problem is to code, for each of the sources, 
the types of oils from 1 to the number of different oils sent 
by that source (leaving the 0 for the case of not sending any 
product at that instant of time). This coding will not 
overload the genetic operators and the real type of oil 
coded in the individual can be obtained, before evaluating 
the individuals to obtain its fitness, by means of the 
Package_Type variable. 

For example, for the network of the figure 1, if the 
source 1 can handle packages of type 1 and 2, and the 
source 2 can handle packages of type 3 and 4, the valid 
values in the individual row vector for the connections 1, 2, 
3 and 4 will be in the range [0,2] and for the others in the 
range [0-4]. In the two first connections, the values 1 and 2 
will code types 1 and 2, while in the two following 
connections the same values will code the types 3 and 4. 
For all the other connections, the values [1,4] will code 



types [1,4]. The Package_Type for the example is 
presented in table 1 (the coding values in first row are 
mapped to the valid types for each node in the same 
column), while the final coding for an individual is shown 
in figure 4 (at the top, the vector individual; at the bottom 
the individual after the mapping to the real oil types): 
 

coding values 0 1 2 3 4 

Types for Source 1 0 1 2   

Types for Source 2 0 3 4   

Types for Inter. node 1  0 1 2 3 4 

Types for Inter. node 2 0 1 2 3 4 
Table 1: Package_Type variable. 

 
Instant 1 ................... Instant 15 

1.......................10 ........................... 1.......................10
1 1 1 1 2 2 2 1 2 1 ........................... 0 1 1 2 1 3 1 3 1 3

 
Instant 1 ................... Instant 15 

1.......................10 ........................... 1.......................10
1 1 3 3 2 2 2 1 2 1 ........................... 0 1 3 4 1 3 1 3 1 3

Figure 4: Vector individual coding (top) and real 
type mapped individual (bottom). 

The information in table 1 can be kept easily in a 
structure where every row is a cell  associated to  a node, 
and ,within every row, there are as many columns as 
connections departing  from this node. So, the value of the 
gene acts as entry to get the product associated to it. In 
Matlab notation the representation of the information in 
table 1 would be as follows: 

 
ProductType={ [1 2] ; % node 1

[3 4] ; % node 2

[1 2 3 4] ; % node 3

[1 2 3 4] }; % node 4

 
With  this representation the products associated to the 
genes of the first node are: 

» ProductType {1}(1)=1

» ProductType {1}(2)=2

 
and those of the second node are  

» ProductType {2}(1)=3

» ProductType {2}(2)=4

and so on. 

B. Genetic operators. 

For the generating law, we can buid a mask in order to 
keep each gen of our individual structure (type of package 
sent by each conection in each time instant) in his 

corresponding value range. The mask is codified as in 
chromosome of figure 3. The example corresponding to 
table 1 is given in table 2: 
 

 node 1 node 2 node 3 node 4 

Conection 1,3 1,4 2,3 2,4 3,4 3,5 3,6 4,3 4,6 4,7

Nº conect 1 2 3 4 5 6 7 8 9 10 

Nº products 2 2 2 2 4 4 4 4 4 4 

Table 2: Mask (grey colour) needed for the mapping process. 
 

Then, if we have Nind=20 individuals (with 10 conex 
and 15 time instants) we can use the above mask to 
generate the initial population as follows (using Matlab 
notation): 

Nconex=10;

Ninst=15;

Ngenes=Ninst*Nconex;

Nind=20;

mask=[2 2 2 2 4 4 4 4 4 4];

pop_aux=rand(Nind,Ngenes);

mask=repmat(mask,Nind,Ninst);

pop=round(pop_aux.*mascara);

Now, we pass to explain the genetic operators used in 
the reprodution process: 

Crossover operator: We can see a sechematic of the 
cross process in figure 5. Althrougth our final codification 
is the showed in figure 4, the efectc of the cross operator is 
more esaily explained making use of our initial codification 
showed in figure 2. Then, if we have two individuals with 4 
conections and 15 instants the following cross is 
implemented with one cross point:  

 
Figure 5: Crossover operator 

Mutaton operator: Again we can make use of the mask 
for implement the mutation operator. Continuing with the 
above example the implementation of this operator with 
Matlab notation is:

probMut=0.08;

mutp=(rand(Nind,Ngenes)<probMut);

pop_aux=rand(Nind,Ngenes);

mutated=round(mask.*pop_aux).*mutp;

new_pop=pop.*(~mutp) + mutated;



V. DESIGN PROBLEM 

In addition to satisfying the demands in time,  the main 
objective is to reduce to a minimum the number of different 
kind of packets through every pipe, so that to avoid, as 
much as possible, the possibilities of contaminating 
products, while verifying a number of constraints. Table 3 
gives the nomenclature of the parameters and variables 
used in the model. 
 

Parameters (provided by the problem specification) 

Nf number of source nodes 

Ni number of intermediate nodes 

Nd number of sink nodes 

Nc number of connections in the network  

Nti number of tanks in node i. 

LCmij       lower  limit in number of packets of tank j of   
              node i 
LCMij upper limit in number of packets of tank j of  

 node i  
Pij minimum number of packets of product j to be    

sent from source i  
Dij number of packets of product j demanded by  

destination i  
LTmj lower limit in the arrival time of  packets to   

 destination i  
LTMj upper limit in the arrival time of  packets to  

 destination i  

types number of different products. 

Decision variables 

Eij number of packets of product j that has been  
sent by source i  

Rij number of packets of product j received  at  
destination i  

NC number of colisions in bidirectional pipes 

Cij number of packets in tank j of node i    

Ti time of arrival of a packet of any product to          
destination i  

Fi number of changes in the type of products sent  
through conexión i (fragmentation)  

 
Table 3: Parameters and decision variables used in the model. 

The model is subject to the following constraints: 

C1. A minimum production must be fulfilled: 
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C2. Every destination must received the amount of 
demanded packets: 
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C3. There must be no collisions of packets through a 
bidirectional pipe: 

0=NC  

C4. The tank capacity must not be violated: 
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C5. The arrival of a packet to a node must be at due 
time: 

Ndi
LTMTLTm iii

,.....,1=
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And the objectives are the following ones: 

O1. Minimize the time that takes in verifying the 
demand in each destination: 
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O2. Minimize the sum of the previous times: 
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O3. Minimize the fragmentation of the products in 
every connection: 
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O4. Minimize the whole fragmentation: 
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To solve the problem we use a multiobjective and 
multiple constraint optimization evolutionary algorithms 
(MOEA) as proposed in [4].  Constraint satisfaction can be 
seen as hard objective. In that way, constraints C1, C2, C3 
are implemented as high priority objective functions, and  
solutions are penalized on the extent to which they violate 
the constraints. On the other hand, constraints C4 and C5 
are handled by a repairing function. This function test each 
individual to find if every delivered packet meet the 
constraints, if so the individual  is kept, or else each wrong 
packet is removed from the chromosome. Therefore this 
function  assures us that constraints C4 and C5 are always 
fulfilled. Hence, the repairing operator is inserted in the EA 
implemented for this problem, which is schematized in the 
following figure, just before the evaluation step. 

 
 

Objetivos 
(Baja prioridad) 

? 1 J 2 J3

‘nodo 1’J3+n+1Tiempo 1’ J4

Función de 
evaluación .............. .....................

J3+n+m+2

Suma tiempos llegada 
J3+n+m+3

Tiempo ’destino n’ J3+n+m+1

Optimization 
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Sent = Produced? Recieved = Demanded? Colisions?

Arrival  time   to  D1 

Constraints 

Evaluation 
function 

and 
fitness 
criteria 

.............. .....................

Sum of  Arrival 
time s 

Number of packages  from  N1 

Arrival  time   to  DNd Number of packages  from  DNs+Ni

Sum of  Number of 
packages 

Genetic Operators 
Crossover and Mutation 

Initialization 
Operator 

Repairing 
Operator 

Tanks Capacity 
must not 

 be  violated Constraints 
All the packages 

must arrive 
 in the time interval 

Received ?  
demanded

 
Figure 6. Constraints and objective functions in the MOEA. 

 
The following objective functions are considered: 

•  J1 :  penalty for the infeasibility of  C1. As the 
minimal production of each product of each source 
is constrained and must be sent, there is an objective 
value J1 that measures the part of the minimal 
production which has not been sent, i.e. the total 
number of package units that each source should 
have sent but haven’t. High values of J1 mean that 
the constraint is far to be fulfilled, while when the 
value is 0 all the minimal production will be 
consumed by the evaluated working strategy. 

•  J2 :  penalty for the infeasibility of  C2. The number 
of package units received by each destiny for each of 
the product types is fixed in the problem statement, 
therefore there is an objective value J2 which 
measures the total (for all the products and all 
the destinies) number of package units that the 
destinies should and have not received. 
Individuals with more receptions than requests don’t 
exist because the repairing operator solves that 
problem. High values of J2 mean that the requests 
are far to be fulfilled, while when the value is 0 the 

number of package unit receptions will be exactly 
the number of package units demanded. 

•  J3 :  penalty for the infeasibility of  C3. As there 
must not be collisions of packages in the pipes 
where the products can be sent in both directions, 
there is an objective value J3 which measures the 
number of package units that have collided. The 
higher the value of J3, the bigger the number of 
collisions. If the value is 0, the constraint is fulfilled. 

•  J4, ... J3+j , .. JNd+3 :  for every destination j, time of 
arrival of  the last packet (O1). For each destiny node 
the time of arrival of the products must be inside the 
correct arrival time interval and once inside the 
interval minimized. So, the best arrival time will be 
the minimal arrival time. There is an arrival time 
objective value J4:Nd+3 for each of the destiny 
nodes. 

•  JNd+4 :  sum of  J4, ... J3+j , .. JNd+3 (O2). The total 
arrival time JNd+4 which is obtained as the sum of 
all the arrival time objective values, is also used. 
The arrival times are used to let the EA minimize 
independently the time of arrival in each destiny and 
the total arrival time is used to make the EA 
minimize all the arrival times simultaneously. 

•  JNd+5, ... JNd+4+j , .. JNd+Nc+4 : fragmentation at the 
output of every connection j (O3).  The number of 
packages sent through each pipeline must be 
minimized, i.e. the package units of each product 
must be sent as continuously as possible. Instead of 
having a different objective in charge of accounting 
the number of packages sent through each pipe, 
there is a different objective JNd+5:Nd+4+Ns+Ni for 
counting the number of packages sent by each 
source and intermediate node to maintain a 
manageable number of objectives in complex 
functions. 

•  JNd+Nc+4 :  sum of  JNd+5, ... JNd+4+j , .. JNd+Nc+4 (O4).  
The total number of packages sent through the 
whole network JNd+5+Np+Ni , obtained as the sum of 
all the number of packages sent by each source 
and intermediate node, is also used. The number of 
packages sent by each source and intermediate node 
is used to let the EA minimize independently the 
number of packages sent by the pipelines departing 
each distributing node and the total number of 
packages to make the EA minimize the total number 
of packages simultaneously. 

For each population the objective functions are 
evaluated and the population is ranked using the 
preferability relation given in figure 7. Now a dominance 
matrix is built. This matrix keeps the dominance relation 



between each pair of individuals.  Fitness is assigned over 
the population using Goldberg method [1]. In this method 
the population is divided in several groups. First, it is 
formed a group with the individuals that are not dominated; 
next group is obtained by eliminating of the population  the 
individuals from the first group and taking the individuals 
that, now, are not dominated, and so on. The individuals in 
a group are given  the same fitness value. The worst group 
is given a fitness value of 1, the second worst group is 
given a fitness value of 1 + ∆, the third  worst group is 
given a fitness value of  1+2∆, and so on. Where, ∆ is a 
design parameter. The fitness value given to every group 
with the objectives values obtained by each individual 
gives the final value used for selecting the parents. 

 
 

? 1J1 : Sent = Minimal Produced J2 :Recieved = Demanded J3 :ColisionsFist Level 
(Hard Constraints) 

1 JNd+5+Np :Total number of packages J1 Second Level 
(Minimizing) 

1 JNd+4 :Total arrival time Third Level 
(Minimizing) 

1JNd+5 : Packages Source ‘1’ Fourth Level 
(Minimizing) JNd+4+Ns+Ni: Packages Inter. ‘Ni’………

1J4: Time Destiny ‘1’ 
Fifth Level 

(Minimizing and 
Constraints) 

JNd+3 : Time Destiny ‘Nd’………

 
 

Figure 7. Scheme of priorities. 
 

V. EXAMPLE 

To solve the problem we have used the toolbox 
EVOCOM [6]. We show the results obtained when 
applying the algorithm to the network of figure 8.  This 
network has 3 source nodes, 4 sink nodes and 5 
intermediate nodes. There are 20 unidirectional links and 
one bidirectional link, and, therefore, 22 connection points.  
We suppose that three kind of products can flow through 
the network: A, B and C.  
 

 
Figure 8: Network model. 

Table 4 shows the minimum, maximum and initial 
content of the tanks of the source and intermediate nodes, 
table 5 shows the minimum production in the source nodes, 
and  table 6 shows for every product the minimum and 
maximum time allowed to fulfill the demand, as well as the 
demanded amount.  

 

 
Table 4: Capacity and content of the tanks of source and 

intermediate nodes 
 

 
Table 5: Minimum production of packets of every source 

 

 
Table 6: Number of demanded packets and allowed arrival time 

 
The following parameters are chosen in the algorithm: 

 
Parameter Value 

Number of individua 21 
Number of sustitutions 7 
Number of generations 12000 
Crossover probability 0.8 

Number of cross points 2 
Probability of mutation 0.008 

Table 7: The most relevant EA parameters 
 

For the recombination process we took one of the 
recombination methods provided by the Toolbox 
EVOCOM [6]. The tried method was rec_subgen which 
keep constant the population size. This method operates in 
the following form: given the old and new population (with 
n individuals), it substitutes the last n individuals of the old 
population by the individuals of the new population. 

While running the EA, the values of the different 
objectives of the best solution in each generation were 
stored and are presented in the following figures to show 
the evolution of the algorithm. The results obtained  after 



12000 generations are given in the following figures. 
Figure 9 shows the values of the objective functions in the 
first 10 generations. As can be seen, the initial population 
fulfills constraints C1 and C3, and these constraints keep 
on fulfilling. Initially only two individuals violates 
constraint C2, but as soon as two generations later no 
violation occurs. 
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Figure 9: Evolution of the cost functions of constraints C1, C2 C3 

 
Figure 10 shows the cost functions for objective O1, 

that is the maximum time of arrivals of packets to the sink 
nodes. 
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Figure 10: Time spend  in satisfying demand at the sink nodes 

(objective O1) 
 

Figure 11 shows the cost function for objective 
O2. We can appreciate that about the generation 2000 there 
is an increase in the cost function, followed by a trend to 
decrease.  As we can see in figures 11 and 12, this is due to 
an increase in the rate of reduction of objectives O3 and 
O4, that is in reducing the number of different packets sent 
through the delivering nodes.  
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Figure 11: Sum of times in figure 10 (objective O2). 

 
Figure 12 shows the evolution of the 

fragmentation at the output of sources and intermediate 
nodes  (objectives O3).   
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Figure 12: Fragmentation at the output of the delivery nodes. 

Objective O3. 

We can see a continuous decreasing trend. This 
trend is more clearly appreciated in figure 13 where the 
sum of the previous objective functions is shown. 
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Figure 13: Total fragmentation. Objective  O4 



VI. CONCLUSIONS 

We have presented a  simplified problem about the 
continuous distribution of products through an oil-pipeline 
network. The main objective of the network is satisfy 
demands in a minimum time and to avoid fragmentation as 
much as possible in order to reduced contamination of 
products. Moreover, a number of constraints must be 
fulfilled. Although the problem belongs to the kind of  NP-
complete problems has been solved using an evolutionary 
multiobjective and constraint optimization algorithm. The 
problem solved can be used for networks with every 
number of sources, sinks and intermediate nodes, and with 
any number of products.  
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